首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in climate conditions, particularly during the Quaternary climatic oscillations, have long been recognized to be important for shaping patterns of species diversity. For species residing in the western Palearctic, two commonly observed genetic patterns resulting from these cycles are as follows: (1) that the numbers and distributions of genetic lineages correspond with the use of geographically distinct glacial refugia and (2) that southern populations are generally more diverse than northern populations (the “southern richness, northern purity” paradigm). To determine whether these patterns hold true for the widespread pest species the winter moth (Operophtera brumata), we genotyped 699 individual winter moths collected from 15 Eurasian countries with 24 polymorphic microsatellite loci. We find strong evidence for the presence of two major genetic clusters that diverged ~18 to ~22 ka, with evidence that secondary contact (i.e., hybridization) resumed ~ 5 ka along a well‐established hybrid zone in Central Europe. This pattern supports the hypothesis that contemporary populations descend from populations that resided in distinct glacial refugia. However, unlike many previous studies of postglacial recolonization, we found no evidence for the “southern richness, northern purity” paradigm. We also find evidence for ongoing gene flow between populations in adjacent Eurasian countries, suggesting that long‐distance dispersal plays an important part in shaping winter moth genetic diversity. In addition, we find that this gene flow is predominantly in a west‐to‐east direction, suggesting that recently debated reports of cyclical outbreaks of winter moth spreading from east to west across Europe are not the result of dispersal.  相似文献   

2.
This study characterizes a hybrid zone that spans a migratory divide between subspecies of the Swainson's thrush (Catharus ustulatus), a long distance migratory songbird, in the Coast Mountains of British Columbia. To assess the potential for a barrier to gene flow between the subspecies, I: (1) analyzed the shape and width of genetic and morphological clines relative to estimates of dispersal distance, (2) assessed the ratio of parental to hybrid genotypes across the hybrid zone, (3) estimated population density across the hybrid zone, and (4) compared the spatial relationship between the hybrid zone and an existing environmental gradient. The results indicate that the hybrid zone is characterized by mostly concordant character clines that are narrow relative to dispersal, the absence of a hybrid swarm, and low population density at the center of the zone. This hybrid zone and additional regions of contact between these subspecies are found on the border between coastal and interior climatic regions throughout the Pacific Northwest. An identified shift in the location, but not the width, of the mtDNA cline relative to the nuclear clines is consistent with asymmetrical hybridization. Neutral diffusion of populations following secondary contact and hybrid superiority within an ecotone are insufficient explanations for the observed patterns. The hypothesis that best fits the data is that the Swainson's thrush hybrid zone is a tension zone maintained by dispersal and ecologically mediated barriers to gene flow.  相似文献   

3.
This work explores an information-theoretic approach to drawing inferences about coupling of spatially extended ecological populations based solely on time-series of abundances. The efficacy of the approach, time-delayed mutual information, was explored using a spatially extended predator-prey model system in which populations at different patches were coupled via diffusive movement. The approach identified the relative magnitude and direction of information flow resulting from animal movement between populations, the change in information flow as a function of distance separating populations, and the diffusive nature of the information flow. In addition, when the diffusive movement was eliminated from the model, mutual information correctly provided no evidence of information flow, even when population synchrony was generated by a common environmental driving function. Thus, for this model system, time-delayed mutual information was useful in discriminating between the Moran effect and animal movement as causes of population synchrony, as well as in characterizing dispersal in terms of direction, relative speed and diffusive nature.  相似文献   

4.
Invasive species are believed to spread through a process of stratified dispersal consisting of short-distance diffusive spread around established foci and human mediated long-distance jumps. Brazilian peppertree (Schinus terebinthifolius), native to South America, was introduced twice as an ornamental plant into Florida, USA, just over 100 years ago. A previous study indicated that these two introductions were from genetically differentiated source populations in the native range. In this study, we took advantage of these contrasting genetic signatures to study the spatial spread of Brazilian peppertree across its entire range in Florida. A combination of spatial genetic and geostatistical analyses using chloroplast and nuclear microsatellite markers revealed evidence for both diffusive dispersal and long-distance jumps. Chloroplast DNA haplotype distributions and extensive bands of intra-specific hybridization revealed extensive dispersal by both introduced populations across the state. The strong genetic signature around the original introduction points, the presence of a general southeast to northwest genetic cline, and evidence for short-distance genetic spatial autocorrelation provided evidence of diffusive dispersal from an advancing front, probably by birds and small mammals. In the northernmost part of the range, there were patches having a high degree of ancestry from each introduction, suggesting long-distance jump dispersal, probably by the movement of humans. The evidence for extensive movement throughout the state suggests that Brazilian peppertree will be capable of rapidly recolonizing areas from which it has been eradicated. Concerted eradication efforts over large areas or the successful establishment of effective biocontrol agents over a wide area will be needed to suppress this species.  相似文献   

5.
  • The moss Syntrichia caninervis is widely distributed in cool temperate and cold deserts where environmental pressures create a dependence on asexual reproduction (fragment reproduction). However, when compared to sporophyte‐producing mosses, there is a lack of evidence to support the capacity of drought‐tolerant mosses that predominantly fragment and produce protonema to disperse over long distances.
  • We used 20 microsatellite loci to study genetic variation and structure in six populations (five natural populations and one population from a regeneration site) in three contrasting and widely separated regions of China.
  • The genetic diversity and expected heterozygosity were lower in populations from the Tengger Desert than in populations from the other regions. Using PCoA, UPGMA and Structure analysis, the genetic grouping divided the three regions into three distinct groups. This may indicate that in regions where S. caninervis reproduces predominantly asexually, propagules are spread mainly by short‐distance dispersal. The genetic diversity of the population from the regeneration site in the Tengger Desert was slightly higher than that of the nearby, naturally occurring population, and included some input from the Pamir Plateau almost 2,300 km to the west, suggesting long‐distance dispersal of S. caninervis propagules across the region.
  • Predominantly asexually reproducing populations of S. caninervis are mainly dependent on short‐distance dispersal. Long‐distance dispersal of S. caninervis propagules across the region is difficult. Establishment of populations with dominant asexual reproduction will eventually result in genetic differentiation.
  相似文献   

6.
In a dispersal‐limited species that has evolved reproductive character displacement at a contact zone, a cline in mating behaviour may result if gene flow diffuses alleles out of the contact zone into allopatric populations. Prior work has found such a clinal pattern in the shield‐back katydid Aglaothorax morsei, in which the male calling songs in a sympatric population have a displaced, short interpulse interval that increases in length with increasing distance from the contact zone. In this study, molecular phylogenetic and female preference data show that (1) sympatric populations result from secondary contact, (2) hybridization in sympatry has resulted in unidirectional mitochondrial introgression and (3) female preferences are consistent with reproductive character displacement and could generate a cline in mating behaviour. These data together suggest a history of reinforcement, generally considered rare in acoustically communicating insects; thus, Aglaothorax represents an important example of a rarely documented evolutionary process.  相似文献   

7.
Long‐distance dispersal is an integral part of plant species migration and population development. We aged and genotyped 1125 individuals in four disjunct populations of Pinus ponderosa that were initially established by long‐distance dispersal in the 16th and 17th centuries. Parentage analysis was used to determine if individuals were the product of local reproductive events (two parents present), long‐distance pollen dispersal (one parent present) or long‐distance seed dispersal (no parents present). All individuals established in the first century at each site were the result of long‐distance dispersal. Individuals reproduced at younger ages with increasing age of the overall population. These results suggest Allee effects, where populations were initially unable to expand on their own, and were dependent on long‐distance dispersal to overcome a minimum‐size threshold. Our results demonstrate that long‐distance dispersal was not only necessary for initial colonisation but also to sustain subsequent population growth during early phases of expansion.  相似文献   

8.
It was shown previously that the long lifespan and juvenile phase of trees strongly attenuate founder effects during colonisation in a diffusive dispersal model. However, this model yielded too slow a colonisation rate in comparison with palynological data for temperate forest trees. Since rare long-distance dispersal events have been shown to increase considerably colonisation rates in population dynamics models, we investigate here the impact of long-distance dispersal on within-population diversity (H(S)) and among-population differentiation (F(ST)) during the colonisation process. We use a stochastic approach and compare several dispersal strategies, ranging from very rare dispersal events of large amplitude to more frequent events of smaller amplitude. Using a simulation approach, which takes into account tree life-history traits, we show that long-distance dispersal events increase colonisation speed, and yield much larger founder effects in comparison with the diffusive model. The two models that include intermediate- and long-distance dispersal events show stronger deviations from experimental F(ST) values during and at the end of the colonisation process than the model with more frequent events of smaller dispersal variance. Furthermore, the introduction of a high level of pollen flow has a much more limited impact on models that include long-distance dispersal than on a diffusive dispersal model. The relatively high H(S) values that were obtained in all models are discussed according to the assumed mutation rate and effective population size. This study is an example of how observed genetic data can provide additional evidence on the best demographic model for a given species or group of species.  相似文献   

9.
Here, we review progress and prospects to explicitly test for long distance dispersal biogeographic events. Long distance dispersal represents a “jump” across some kind of barrier, such as a topographic feature or a zone of unsuitable climate and may include repeated jumps, or stepping‐stone dispersals. Long distance dispersals were considered integral for explaining the organization of biodiversity at large and small scales by early biogeographers, such as Darwin and Wallace. Darwin, Wallace, and others envisioned that long distance dispersals were predictable events because the vectors for dispersal, such as animals, winds, and currents, behaved in non‐random ways. However, these early biogeographers found that dispersal was hard to observe, and, later, with the advent of the theory of Continental Drift, vicariance became regarded as a better scientific explanation for the arrangement of biodiversity, because it represented a falsifiable hypothesis. Thus, long distance dispersal was reduced to a nuisance parameter in biogeography; a random possibility that could never fully be ruled out in a scenario in which evidence supported vicariance. Today, there is strong interest to more fully integrate long distance dispersal into understanding the assembly and organization of biodiversity on earth. In this review, we discuss progress and prospects for explicitly testing long distance dispersal hypotheses including through uses of molecular, morphological, paleontological, and informatics methods. We focus on hypothesis testing of long distance dispersals involved in the assembly of the flora of North America, which is a robust preliminary study system on account of its extant and extinct biodiversity being well‐catalogued.  相似文献   

10.
Perrin C  Wing SR  Roy MS 《Molecular ecology》2004,13(8):2183-2195
New Zealand's 14 deep-water fiords possess persistent salinity stratification and mean estuarine circulation that may serve to isolate populations of marine organisms that have a dispersal larval phase. In order to investigate this idea, we analysed the population structure of the sea star Coscinasterias muricata using a mitochondrial DNA marker. Genetic differentiation among populations of C. muricata was analysed using 366 base pairs of mtDNA D-loop. We compared populations from the fiords with several others sampled from around New Zealand. At a macro-geographical scale (> 1000 km), restricted gene flow between the North and South Islands was observed. At a meso-geographical scale (10-200 km), significant population structure was found among fiords and between fiords and open coast. The pattern of population genetic structure among the fiords suggests a secondary contact between a northern population and a southern one, separated by a contact or mixing zone. These populations may have diverged by the effects of random genetic drift and population isolation as a consequence of the influence of estuarine circulation on dispersal. In northern Fiordland, genetic structure approximated an isolation by distance model. However, the pattern in genetic differences suggests that distance alone cannot explain the most divergent populations and that fiord hydrography may increase the effect of genetic drift within populations in the fiords. Finally, our study indicates that populations within the fiords underwent recent rapid expansion, followed most probably by genetic drift due to a lack of gene flow among the fiords.  相似文献   

11.
Leptokurtic distributions of movement distances observed in field-release studies, in which some individuals move long distances while most remain at or near their release point, are a common feature of mobile animals. However, because leptokurtosis is predicted to be transient in homogeneous populations, persistent leptokurtosis suggests a population heterogeneity. We found evidence for a heterogeneity that may generate persistent leptokurtosis. We tested individuals of the Trinidad killifish Rivulus hartii for boldness in a tank test and released them back into their native stream. Boldness in the tank test predicted distance moved in the field releases, even after effects of size and sex were removed. Further, data from a 19-mo mark-recapture study showed that individual growth correlated positively with movement in a predator-threatened river zone where the Rivulus population is spatially fragmented and dispersal is likely to be a hazardous activity. In contrast, no such correlation existed in a predator-absent zone where the population is unfragmented. These results show that a behavioral trait, not discernible from body size or sex, contributes to dispersal and that a component of fitness of surviving "dispersers" is elevated above that of "stayers," a fundamental assumption or prediction of many models of the evolution of dispersal through hazardous habitat.  相似文献   

12.
Pleistocene extinctions affected mainly large‐bodied animals, determining the loss or changes in numerous ecological functions. Evidence points to a central role of many extinct megafauna herbivores as seed dispersers. An important step in understanding the legacy of extinct mutualistic interactions is to evaluate the roles and effectiveness of megafauna herbivores in seed dispersal. Here we use morphological and ecophysiological allometries to estimate both quantitative and qualitative aspects of seed‐dispersal services likely provided by extinct megafauna. We developed a mechanistic model that encompasses four stages of seed dispersal – seed ingestion, gut retention, animal movement, and seed deposition. We estimate seed‐dispersal kernels through simulations to infer the role of Pleistocene megafauna in promoting long‐distance dispersal and examine how seed dispersal was affected by extinctions. Simulations suggest extinct large‐bodied frugivores would frequently disperse large seeds over a thousand meters, whereas smaller‐bodied frugivores are more likely to deposit the seeds over a few hundred meters. Moreover, events of long‐distance seed dispersal by the extinct megafauna would be up to ten times longer than long‐distance dispersal by smaller‐sized extant mammals. By estimating the combined distribution of seed dispersal distances considering all large‐bodied mammalian frugivores in specific South American Pleistocene assemblages we found that long‐distance dispersal contracted by at least two thirds after the megafauna died out. The disruption of long‐distance dispersal is expected to have consequences for recruitment, spatial and genetic structure of plant populations, population persistence and community composition. Promoting long‐distance seed dispersal was one among other salient features of extinct Pleistocene megafauna that reveal their influence on natural ecosystems. Modeling the consequences of megafaunal extinctions can offer quantitative predictions on the consequences of ongoing defaunation to plant populations and ecological communities.  相似文献   

13.
The estimates of contemporary gene flow assessed based on naturally established seedlings provide information much needed for understanding the abilities of forest tree populations to persist under global changes through migration and/or adaptation facilitated by gene exchange among populations. Here, we investigated pollen‐ and seed‐mediated gene flow in two mixed‐oak forest stands (consisting of Quercus robur L. and Q. petraea [Matt.] Liebl.). The gene flow parameters were estimated based on microsatellite multilocus genotypes of seedlings and adults and their spatial locations within the sample plots using models that attempt to reconstruct the genealogy of the seedling cohorts. Pollen and seed dispersal were modelled using the standard seedling neighbourhood model and a modification—the 2‐component seedling neighbourhood model, with the later allowing separation of the dispersal process into local and long‐distance components. The 2‐component model fitted the data substantially better than the standard model and provided estimates of mean seed and pollen dispersal distances accounting for long‐distance propagule dispersal. The mean distance of effective pollen dispersal was found to be 298 and 463 m, depending on the stand, while the mean distance of effective seed dispersal was only 8.8 and 15.6 m, which is consistent with wind pollination and primarily seed dispersal by gravity in Quercus. Some differences observed between the two stands could be attributed to the differences in the stand structure of the adult populations and the existing understory vegetation. Such a mixture of relatively limited seed dispersal with occasional long distance gene flow seems to be an efficient strategy for colonizing new habitats with subsequent local adaptation, while maintaining genetic diversity within populations.  相似文献   

14.
Pollen dispersal was investigated in five remnant populations of Eucalyptus wandoo, a dominant insect-pollinated tree in the fragmented agricultural region of southern Western Australia. Paternity analysis using six microsatellite loci identified a pollen source for 45% of seedlings, and the remainder were assumed to have arisen from pollen sources outside the stands. Outcrossing was variable, ranging from 52 to 89%, and long distance pollen dispersal was observed in all populations with up to 65% of pollen sourced from outside the populations over distances of at least 1 km. Modelling dispersal functions for pollination events within the two larger populations showed little difference between the four two-parameter models tested and indicated a fat-tailed dispersal curve. Similarity of direct and indirect historical estimates of gene flow indicates maintenance of gene flow at levels experienced prior to fragmentation. The study revealed extensive long distance pollen dispersal in remnant patches of trees within a fragmented agricultural landscape in the southern temperate region and highlighted the role of remnant patches in maintaining genetic connectivity at the landscape scale.  相似文献   

15.
Guinea baboons are heavily hunted for bushmeat consumption in Guinea-Bissau. We investigated whether hunting-driven mortality has affected population structure in this generalist primate using two genetic markers. Sampling was conducted in protected areas separated by anthropogenic landscape features. We predicted significant genetic differentiation between samples and investigated whether genetic discontinuities in the data were concordant with the location of human infrastructures. Genetic diversity was not significantly reduced when compared with a neighbouring population in Senegal and we inferred historically female-biased dispersal and recent contact between localities. Evidence was found for a contact zone between genetically differentiated populations where gene-flow is unidirectional, admixed individuals are at a higher proportion and individuals differentiated for both genetic markers co-exist within the same social units. Genetic discontinuities were, however, unrelated to anthropogenic dispersal barriers and we could not explain the existence of a contact zone by geographic distance, habitat type or the effect of social structure. We propose that hunting practices have affected the population structure by increasing dispersal distances, facilitating contact between previously separated gene pools within social groups. We suggest that hunting-related density sinks found in areas where the quality of the habitat remains adequate could precipitate the immigration of genetically distinct individuals from distant populations. Alternatively, migrants found in protected areas might be avoiding hunters, in locations they may perceive as less disturbed. This study suggests that hunting practices must be considered when investigating genetic patterns in primates and underlines the utility of molecular approaches to detect population perturbations due to bushmeat hunting.  相似文献   

16.
The cyprinid fishes, Notropis cornutus and N. chrysocephalus, hybridize in a long, narrow zone in the midwestern United States. To quantify the extent of introgression of genetic markers outside of this zone, samples were collected along transects starting near the region of contact (as defined by morphological characters), followed by samples progressively more distant. Diagnostic allozymic and mitochondrial DNA (mtDNA) restriction site markers were used to estimate the extent of introgression outside of the zone, while polymorphic allozyme and mtDNA markers were used to evaluate the potential for gene flow among populations within transects. Analysis of populations from the northern transect provided evidence for differentiation of populations for some of the markers; however, on average, enough gene flow has occurred to overcome substantial differentiation. Introgressed mtDNA and allozyme haplotypes were rare and found only in the population closest to the contact zone. The rarity of introgressed alleles in the more northern populations is consistent with the recent origin of these populations after the Wisconsin glaciation (less than 12,000 years bp) and/or selection maintaining the northern boundary of the contact zone. Analysis of populations from the southern transect revealed evidence for population subdivision but no evidence for introgression at the diagnostic allozyme loci; however, nearly all individuals from this transect possessed introgressed mtDNA haplotypes, with samples furthest from the contact zone exhibiting the highest frequencies of introgression. Patterns of variation for one of the polymorphic allozyme markers (Est-A) and introgressed mtDNAs were highly correlated, suggesting that allozymic heterogeneity at this locus is also the result of introgression. The most likely explanation for these data is that these introgressed haplotypes are indicators of a more southern position of the contact zone during the Pleistocene, with the contact zone shifting northward with the recession of the glacial front. Such movement implicates selection in the maintenance of distributional limits of these species, and hence, the width and position of the contact zone.  相似文献   

17.
Dispersal in most group‐living species ensures gene flow among groups, but in cooperative social spiders, juvenile dispersal is suppressed and colonies are highly inbred. It has been suggested that such inbred sociality is advantageous in the short term, but likely to lead to extinction or reduced speciation rates in the long run. In this situation, very low levels of dispersal and gene flow among colonies may have unusually important impacts on fitness and persistence of social spiders. We investigated sex‐specific differences in dispersal and gene flow among colonies, as reflected in the genetic structure within colonies and populations of the African social spider Stegodyphus dumicola Pocock, 1898 (Eresidae). We used DNA fingerprinting and mtDNA sequence data along with spatial mapping of colonies to compare male and female patterns of relatedness within and among colonies at three study sites. Samples were collected during and shortly after the mating season to detect sex‐specific dispersal. Distribution of mtDNA haplotypes was consistent with proliferation of social nests by budding and medium‐ to long‐distance dispersal by ballooning females. Analysis of molecular variance and spatial autocorrelation analyses of AFLPs showed high levels of genetic similarity within colonies, and STRUCTURE analyses revealed that the number of source populations contributing to colonies ranged from one to three. We also showed significant evidence of male dispersal among colonies at one site. These results support the hypothesis that in social spiders, genetic cohesion among populations is maintained by long‐distance dispersal of female colony founders. Genetic diversity within colonies is maintained by colony initiation by multiple dispersing females, and adult male dispersal over short distances. Male dispersal may be particularly important in maintaining gene flow among colonies in local populations.  相似文献   

18.
Dispersal is crucial for gene flow and often determines the long‐term stability of meta‐populations, particularly in rare species with specialized life cycles. Such species are often foci of conservation efforts because they suffer disproportionally from degradation and fragmentation of their habitat. However, detailed knowledge of effective gene flow through dispersal is often missing, so that conservation strategies have to be based on mark–recapture observations that are suspected to be poor predictors of long‐distance dispersal. These constraints have been especially severe in the study of butterfly populations, where microsatellite markers have been difficult to develop. We used eight microsatellite markers to analyse genetic population structure of the Large Blue butterfly Maculinea arion in Sweden. During recent decades, this species has become an icon of insect conservation after massive decline throughout Europe and extinction in Britain followed by reintroduction of a seed population from the Swedish island of Öland. We find that populations are highly structured genetically, but that gene flow occurs over distances 15 times longer than the maximum distance recorded from mark–recapture studies, which can only be explained by maximum dispersal distances at least twice as large as previously accepted. However, we also find evidence that gaps between sites with suitable habitat exceeding ~20 km induce genetic erosion that can be detected from bottleneck analyses. Although further work is needed, our results suggest that M. arion can maintain fully functional metapopulations when they consist of optimal habitat patches that are no further apart than ~10 km.  相似文献   

19.
Sagittaria trifolia L. is a perennial, erect herb that is confined to ponds, rice fields, ditches, and freshwater wetlands. Using chloroplast DNA (cpDNA) atpB-rbcL intergenic spacer sequences, we studied the phylogeographic pattern and demographic history of S. trifolia with 108 samples from 42 populations representing the entire geographic range in China. Twenty-seven haplotypes were characterized and two of them were widely distributed in the populations. In the minimum-spanning network, all tip haplotypes were unique to a particular population, while the interior nodes represented widespread haplotypes. Nested clade analysis (NCA) of cpDNA haplotypes indicated that long distance dispersal characterized the post-glacial recolonization of S. trifolia in China. No specific refugia areas were suggested because genetic differentiation was low among the sampled regions and among populations within regions although a large number of the haplotypes were unique to a single population. The present data support that the unique haplotypes in individual population most likely represent recent mutational derivatives after long distance dispersal rather than the relics in refugia. These results for S. trifolia represent the first phylogeographic analysis of a widespread marsh herb in China and support the importance of long distance dispersal events in the post-glacial migrations of plants.  相似文献   

20.
Marine species in the Indo‐Pacific have ranges that can span thousands of kilometres, yet studies increasingly suggest that mean larval dispersal distances are less than historically assumed. Gene flow across these ranges must therefore rely to some extent on larval dispersal among intermediate ‘stepping‐stone’ populations in combination with long‐distance dispersal far beyond the mean of the dispersal kernel. We evaluate the strength of stepping‐stone dynamics by employing a spatially explicit biophysical model of larval dispersal in the tropical Pacific to construct hypotheses for dispersal pathways. We evaluate these hypotheses with coalescent models of gene flow among high‐island archipelagos in four neritid gastropod species. Two of the species live in the marine intertidal, while the other two are amphidromous, living in fresh water but retaining pelagic dispersal. Dispersal pathways predicted by the biophysical model were strongly favoured in 16 of 18 tests against alternate hypotheses. In regions where connectivity among high‐island archipelagos was predicted as direct, there was no difference in gene flow between marine and amphidromous species. In regions where connectivity was predicted through stepping‐stone atolls only accessible to marine species, gene flow estimates between high‐island archipelagos were significantly higher in marine species. Moreover, one of the marine species showed a significant pattern of isolation by distance consistent with stepping‐stone dynamics. While our results support stepping‐stone dynamics in Indo‐Pacific species, we also see evidence for nonequilibrium processes such as range expansions or rare long‐distance dispersal events. This study couples population genetic and biophysical models to help to shed light on larval dispersal pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号