首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolated small intestinal epithelial cells, after incubation at 4 degrees C for 30 min, reach ion concentrations (36 mM K+, 113 mM Na+ and 110 mM Cl-) very similar to those of the incubation medium. Upon rewarming to 37 degrees C, cells are able to extrude Na+, Cl- and water and to gain K+. Na+ extrusion is performed by two active mechanisms. The first mechanism, transporting Na+ by exchanging it for K+, is inhibited by ouabain and is insensitive to ethacrynic acid. It is the classical Na+ pump. The second mechanism transports Na+ with Cl- and water, is insensitive to ouabain but is inhibited by ethacrynic acid. Both mechanisms are inhibited by dinitrophenol and anoxia. The second Na+ extruding mechanism could be the Na+/K+/2Cl- cotransport system. However, this possibility can be ruled out because the force driving cotransport would work inwards, and because Na+ extrusion with water loss continues after substitution of Cl- by NO3-. We propose that enterocytes have a second Na+ pump, similar to that proposed in proximal tubular cells.  相似文献   

2.
This review updates our current knowledge on the regulation of Na+/H+ exchanger, Na+,K+,Cl- cotransporter, Na+,Pi cotransporter, and Na+,K+ pump in isolated epithelial cells from mammalian kidney by protein kinase C (PKC). In cells derived from different tubule segments, an activator of PKC, 4beta-phorbol 12-myristate 13-acetate (PMA), inhibits apical Na+/H+ exchanger (NHE3), Na+,Pi cotransport, and basolateral Na+,K+ cotransport (NKCCl) and augments Na+,K+ pump. In PMA-treated proximal tubules, activation of Na+,K+ pump probably plays a major role in increased reabsorption of salt and osmotically obliged water. In Madin-Darby canine kidney (MDCK) cells, which are highly abundant with intercalated cells from the collecting duct, PMA completely blocks Na+,K+,Cl- cotransport and decreases the activity of Na+,Pi cotransport by 30-40%. In these cells, agonists of P2 purinoceptors inhibit Na+,K+,Cl- and Na+,Pi cotransport by 50-70% via a PKC-independent pathway. In contrast with MDCK cells, in epithelial cells derived from proximal and distal tubules of the rabbit kidney, Na+,K+,Cl- cotransport is inhibited by PMA but is insensitive to P2 receptor activation. In proximal tubules, PKC-induced inhibition of NHE3 and Na+,Pi cotransporter can be triggered by parathyroid hormone. Both PKC and cAMP signaling contribute to dopaminergic inhibition of NHE3 and Na+,K+ pump. The receptors triggering PKC-mediated activation of Na+,K+ pump remain unknown. Recent data suggest that the PKC signaling system is involved in abnormalities of dopaminergic regulation of renal ion transport in hypertension and in the development of diabetic complications. The physiological and pathophysiological implications of PKC-independent regulation of renal ion transporters by P2 purinoceptors has not yet been examined.  相似文献   

3.
The possible role of cerebrocortical ion homeostasis, NAD/NADH redox state and of cortical oxygen tension was investigated in the initiation of hypoxic cortical vasodilatation. In addition, changes in cerebrocortical extracellular concentrations of Na+, K+, and Cl- during anoxia were studied. The results were as follows. a) The cerebrocortical reflectance decrease, e.g. cerebral vasodilatation, lagged behind the cortical pO2 decrease by 1-2 sec, but preceded the decrease of arterial blood pressure and ECoG as well as the extracellular Na+, K+, Cl- increases by 20-30 sec. Since the cortical pO2 decreased first and the ion changes lagged behind the onset of vasodilatation by 20-30 sec, it is suggested that the CBF increase in hypoxia is mediated via the cortical pO2 decrease. b) A significant NAD reduction was already present after 20 sec. of nitrogen breathing. Since the ECoG and MABP decreased, and K+ activity increased much later than this, it is presumed that the NAD reduction during the first 30-40 sec of anoxia indicates an increased rate of glycolysis, but not mitochondrial hypoxia. c) In the predepolarization phase a 17% K+, 4% Na+, 5% Cl- increase is probably the result of a reduction of the extracellular spaces caused by water movement and by the migration of Na+ and Cl- from the extracellular to the intracellular space. The large K+, Na+, Cl- changes during terminal depolarization can be interpreted as a result of the failure of the membrane bound Na+ -K+ pump and of the altered ion permeability of the cell membranes.  相似文献   

4.
A rapid simple technique for the measurement of Na+, K+, Mg2+, Ca2+, PO4(3-), and Cl- was developed to analyze ion contents in the choroid plexus of the rat. The technique involves digestion in piperidine, precipitation of proteins with HClO4, and analysis of Na+, K+, Ca2+, and Mg2+ by atomic absorption spectroscopy and Cl- and PO4(3-) by visible spectroscopy. The coefficient of variation for the measurement of eight replicates was 1-3% for all ions. Analysis of choroid plexuses from eight rats yielded coefficients of variation of about 6% and the values for Na+, K+, and Cl- compared favorably to previous works. The analytical procedure described in this paper allows the determination of six major physiologic ions in rat choroid plexus (4 mg wet wt).  相似文献   

5.
本文以星形神经胶质细胞为对象,用同位素示踪技术较详细地研究了介质中Na、、K~+和CL~-、不同浓度的卡因酸以及几种抑制剂对L-谷氨酸摄取的影响;并观察了L-谷氨酸对星形神经胶质细胞膜运输Na~+、K~+、Cl~-和Ca~(2+)等的作用.结果表明:L-谷氨酸的摄取依赖于介质中是否存在Na~+ ,在缺Na~+介质中对Cl~-的依赖性也较明显,但在正常Na~+浓度下,含Cl~_和缺Cl~_没有明显差别.当增加介质中K~+浓度引起膜的去极化时,则能降低L~_谷氨酸的摄取.反过来,L-谷氨酸的摄取也对Na~+、K~+、Cl~-等的运输起刺激作用.此外,卡因酸及所用的几种抑制剂对谷氨酸的摄取办有明显抑制作用.  相似文献   

6.
Exocrine glands extrude both proteins and salt. Fluid secretion is related to a modification of the membrane permeability of secreting cells. This permeability change may be measured as an increase of labelled ion fluxes or as a rise of membrane conductance. It involves Na+, K+, Cl- and Ca2+ ions. Intracellular Ca2+ acts as "second messenger" in the development of the electrical response. Recent recordings using the "patch-clamp" technique have revealed three types of ion channel activated by secretory agents. These channels are sensitive to internal Ca2+ ions. They are respectively selective to K+, Cl- and positively charged monovalent ions. Two models suggesting possible roles for these channels in the secretion process are presented. However, evaluation of such models is presently restricted by numerous uncertainties on the function of secreting cells in vivo. Information is notably lacking concerning the exact composition of the secreted fluid, and the exchanges between exocrine glands and blood circulation.  相似文献   

7.
The time course of osmoregulatory adjustments and expressional changes of three key ion transporters in the gill were investigated in the striped bass during salinity acclimations. In three experiments, fish were transferred from fresh water (FW) to seawater (SW), from SW to FW, and from 15-ppt brackish water (BW) to either FW or SW, respectively. Each transfer induced minor deflections in serum [Na+] and muscle water content, both being corrected rapidly (24 hr). Transfer from FW to SW increased gill Na+,K+-ATPase activity and Na+,K+,2Cl- co-transporter expression after 3 days. Abundance of Na+,K+-ATPase alpha-subunit mRNA and protein was unchanged. Changes in Na+,K+,2Cl- co-transporter protein were preceded by increased mRNA expression after 24 hr. Expression of V-type H+-ATPase mRNA decreased after 3 days. Transfer from SW to FW induced no change in expression of gill Na+,K+-ATPase. However, Na+,K+,2Cl- co-transporter mRNA and protein levels decreased after 24 hr and 7 days, respectively. Expression of H+-ATPase mRNA increased in response to FW after 7 days. In BW fish transferred to FW and SW, gill Na+,K+-ATPase activity was stimulated by both challenges, suggesting both a hyper- and a hypo-osmoregulatory response of the enzyme. Acclimation of striped bass to SW occurs on a rapid time scale. This seems partly to rely on the relative high abundance of gill Na+,K+-ATPase and Na+,K+,2Cl- co-transporter in FW fish. In a separate study, we found a smaller response to SW in expression of these ion transport proteins in striped bass when compared with the less euryhaline brown trout. In both FW and SW, NEM-sensitive gill H+-ATPase activity was negligible in striped bass and approximately 10-fold higher in brown trout. This suggests that in striped bass Na+-uptake in FW may rely more on a relatively high abundance/activity of Na+,K+-ATPase compared to trout, where H+-ATPase is critical for establishing a thermodynamically favorable gradient for Na+-uptake.  相似文献   

8.
Segments of fetal and maternal trachea, maternal bronchi from near-term sheep, and trachea and bronchi from nonpregnant adult sheep were excised and mounted as sheets in Ussing chambers. The conductance (G) for each group of tissues was similar (approximately 4 mS/cm-2); the short circuit current (Isc) ranged from 45-90 microA/cm-2. Under short-circuit or open-circuit conditions trachea and bronchi from pregnant and nonpregnant adult animals absorbed Na+, whereas fetal trachea secreted Cl-. Short-circuited maternal bronchi secreted K+, whereas maternal and fetal trachea did not. Isoproterenol induced an increase in Isc, G, and Cl- secretion of fetal trachea. Maternal trachea and bronchi were not affected. Amiloride reduced Na+ absorption and Isc of maternal trachea and bronchi, but had little effect on fetal trachea. The permeability of fetal trachea to 14C-mannitol was 17 X 10(-7) cm/s and was not affected by isoproterenol. The permeation of dextran (10 K) and horseradish peroxidase across fetal trachea and of all three probes across maternal airways did not reach steady state, but the relative rates were compatible with an equivalent pore radius greater than 4 nm. We conclude that ion transport in fetal large airways contributes to the Cl- and liquid secretion by the entire fetal pulmonary epithelium, whereas resting ion transport of large airways from adult sheep, like that of mature airways of many species, is dominated by Na+ absorption. All of these airway epithelia are characterized by large paracellular aqueous paths.  相似文献   

9.
The ion permeability properties of rabbit skeletal muscle sarcolemmal vesicles were investigated by means of radioisotope flux, membrane potential, and light-scattering measurements. An enriched sarcolemmal fraction was obtained from the 22-27% region of sucrose gradients after isopycnic centrifugation. The presence of contaminating sarcoplasmic reticulum was assessed with the use of a purified sarcoplasmic reticulum vesicle fraction. 22Na+, 86Rb+, 36Cl-, and [3H]sucrose flux measurements indicated that the sarcolemmal fraction possessed isotope spaces ranging between 1.5 and 4 microliters/mg protein. Membrane potential measurements using the voltage-sensitive fluorescent probe 3,3'-dipentyl-2,2'-oxadicarbocyanine iodide (diO-C5-(3)) indicated that sarcolemmal vesicles were impermeable to H+ and Na+ but that 10-15% of the vesicles were permeable to K+. Light-scattering measurements indicated a small fraction of sarcolemmal vesicles were permeable to both K+ and Cl-. Whether the low permeability of sarcolemmal vesicles to Na+, K+, and Cl- is the result of a low concentration of ion channels or the inactivation of these channels during isolation is at present uncertain.  相似文献   

10.
Na+, Li+ and Cl− transport by brush border membranes from rabbit jejunum   总被引:1,自引:0,他引:1  
Na+, Li+, K+, Rb+, Br-, Cl- and SO4(2-) transport were studied in brush border membrane vesicles isolated from rabbit jejunum. Li+ uptakes were measured by flameless atomic absorption spectroscopy, and all others were measured using isotopic flux and liquid scintillation counting. All uptakes were performed with a rapid filtration procedure. A method is presented for separating various components of ion uptake: 1) passive diffusion, 2) mediated transport and 3) binding. It was concluded that a Na+/H+ exchange mechanism exists in the jejunal brush border. The exchanger was inhibited with 300 microM amiloride or harmaline. The kinetic parameters for sodium transport by this mechanism depend on the pH of the intravesicular solution. The application of a pH gradient (pHin = 5.5, pHout = 7.5) causes an increase in Jmax (50 to 125 pmol/mg protein . sec) with no change in Kt (congruent to 4.5 nM). Competition experiments show that other monovalent cations, e.g. Li+ and NH4+, share the Na+/H+ exchanger. This was confirmed with direct measurements of Li+ uptakes. Saturable uptake mechanisms were also observed for K+, Rb+ and SO4(2-), but not for Br-. The Jmax for K+ and Rb+ are similar to the Jmax for Na+, suggesting that they may share a transporter. The SO4(2-) system appears to be a Na+/SO4(2-) cotransport system. There does not appear to be either a Cl-/OH- transport mechanism of the type observed in ileum or a specific Na+/Cl- symporter.  相似文献   

11.
This study examines the effect of heat-induced cytoskeleton transitions and phosphoprotein phosphatase inhibitors on the activity of shrinkage-induced Na+, K+, 2Cl- cotransport and Na+/H+ exchange in rat erythrocytes and swelling-induced K+, Cl- cotransport in human and rat blood cells. Preincubation of human and rat erythrocytes at 49 degrees C drastically activated K+, Cl- cotransport and completely (rat) or partly (human) abolished its volume-dependent regulation. The same procedure did not affect basal activity of Na+, K+, 2Cl- cotransport but completely abolished its activation by shrinkage thus suggesting the involvement of a thermosensitive element of cytoskeleton network in the volume-dependent regulation of cotransporters. Both the shrinkage- and electrochemical proton gradient-induced Na+/H+ exchange was inhibited by the heat treatment to the same extent (50-70%), thus indicating the different signaling pathways involved in the activation of Na+, K+, 2Cl- cotransport and Na+/H+ exchange by cell shrinkage. This suggestion is in accordance with data on the different kinetics of volume-dependent activation and inactivation of these carriers as well as on their sensitivity to medium osmolality. Both swelling- and heat-induced increments of K+, Cl- cotransport activity were diminished by inhibitors of phosphoprotein phosphatases (okadaic acid and calyculin). In rat erythrocytes these compounds potentiate shrinkage-induced Na+/H+ exchange. On the contrary, neither basal nor shrinkage-induced Na+, K+, 2Cl- cotransport was affected by these compounds. Our results indicate a key role of cytoskeleton network in volume-dependent activation of K+, Cl- and Na+, K+, 2Cl- cotransport and the involvement of protein phosphorylation-dephosphorylation cycle in regulation of the activity of K+, Cl- cotransport and Na+/H+ exchange.  相似文献   

12.
The Na+ and Cl- dependence of imipramine binding and dissociation were determined in platelet plasma membrane vesicles. Equilibrium imipramine binding affinity depends on Na+ binding to two non-interacting, low-affinity sites. Binding of a single Cl- ion also enhances imipramine affinity. Imipramine dissociation is inhibited by Na+ and Cl-, indicating that both ions can bind after imipramine. Of the two Na+ ions required for imipramine binding, only one is involved in slowing imipramine dissociation, indicating that imipramine binding makes the two Na+ ions non-equivalent. The initial rate of imipramine association is strongly Na(+)-dependent, suggesting that Na+ binds prior to imipramine. Cl-, however, affects imipramine dissociation but not association. Thus, while Na+ and Cl- can bind either before or after imipramine, kinetic considerations impose a most likely binding order of first Na+, then imipramine and finally Cl-. We have confirmed and extended these conclusions using serotonin exchange and efflux measurements. Efflux of radioactivity from vesicles preloaded with [3H]serotonin is stimulated by both external K+ and external unlabelled serotonin. K+ acts to accelerate a step that is rate-limiting for net efflux but that does not involve Na+, Cl- or serotonin translocation. Unlabelled serotonin accelerates radioactivity efflux by exchanging with intravesicular label. This serotonin exchange requires external Cl-, but not external Na+. These results suggest that first Na+, then serotonin and finally Cl- bind from the external medium. Although serotonin exchange requires external Cl-, internal Cl- is not required. These results suggest that translocation does not disturb the spatial order of bound substrates, which dissociate internally in a first-in-first-out order.  相似文献   

13.
The mechanisms by which 86Rb+ (used as a tracer for K+) enters human nonpigmented ciliary epithelial cells were investigated. Ouabain-inhibitable bumetanide-insensitive 86Rb+ transport accounted for approximately 70-80% of total, whereas bumetanide-inhibitable ouabain-insensitive uptake accounted for 15-25% of total. K+ channel blockers such as BaCl2 reduced uptake by approximately 5%. Bumetanide inhibited 86Rb+ uptake with an IC50 of 0.5 microM, while furosemide inhibited with an IC50 of about 20 microM. Bumetanide-inhibitable 86Rb+ uptake was reduced in Na(+)-free or Cl(-)-free media, suggesting that Na+ and Cl- were required for optimal uptake via this mechanism. These characteristics are consistent with a Na+, K+, Cl- cotransporter in NPE cells. Treatment of NPE cells for 15 min with phorbol 12-myristate, 13-acetate (PMA), an activator of protein kinase C, caused a 50-70% decrease in 86Rb+ uptake via the Na+, K+, Cl- cotransporter. Other 86Rb+ uptake mechanisms were not affected. 86Rb+ uptake via the Na+, K+, Cl- cotransporter could be inhibited by other phorbol esters and by dioctanoylglycerol, an analog of diacylglycerol, but not by 4 alpha phorbol didecanoate, an ineffective activator of protein kinase C. Staurosporine, a protein kinase C inhibitor, blocked phorbol ester inhibition of 86Rb+ uptake. These data suggest that a Na+, K+, Cl- cotransporter in NPE cells is inhibited by activation of protein kinase C.  相似文献   

14.
Ehrlich ascites tumor cell membrane potential (Vm) and intracellular Na+, K+ and Cl- activities were measured under steady-state conditions in normal saline medium (Na+ = 154, K+ = 6, Cl- 150 mequiv./l). Membrane potential was estimated to be -23.3 +/- 0.8 mV using glass microelectrodes. Intracellular ion activities were estimated with similar glass electrodes rendered ion-selective by incorporation of ion-specific ionophores. Measurements of Vm and ion-activity differences were made in the same populations of cells. Under these conditions the intracellular Na+, K+ and Cl- activities are 4.6 +/- 0.5; 68.3 +/- 8.0; and 43.6 +/- 2.1 mequiv./l, respectively. The apparent activity coefficients for Na+ and K+ are 0.18 +/- 0.02 and 0.41 +/- 0.05 respectively. These are significantly lower than the activity coefficients expected for the ions in physiological salt solutions (0.71 and 0.73, respectively). The activity coefficient for intracellular Cl- (0.67 +/- 0.03), however, is close to that of the medium (0.73), and the transmembrane electrochemical potential difference for Cl- is not different from zero. The results establish that the energy available from the Na+ electrochemical gradient is much greater than previously estimated from chemical measurements.  相似文献   

15.
Ehrlich ascites cells were preincubated in hypotonic medium with subsequent restoration of tonicity. After the initial osmotic shrinkage the cells recovered their volume within 5 min with an associated KCl uptake. The volume recovery was inhibited when NO-3 was substituted for Cl-, and when Na+ was replaced by K+, or by choline (at 5 mM external K+). The volume recovery was strongly inhibited by furosemide and bumetanide, but essentially unaffected by DIDS. The net uptake of Cl- was much larger than the value predicted from the conductive Cl- permeability. The undirectional 36Cl flux, which was insensitive to bumetanide under steady-state conditions, was substantially increased during regulatory volume increase, and showed a large bumetanide-sensitive component. During volume recovery the Cl- flux ratio (influx/efflux) for the bumetanide-sensitive component was estimated at 1.85, compatible with a coupled uptake of Na+ and Cl-, or with an uptake via a K+,Na+,2Cl- cotransport system. The latter possibility is unlikely, however, because a net uptake of KCl was found even at low external K+, and because no K+ uptake was found in ouabain-poisoned cells. In the presence of ouabain a bumetanide-sensitive uptake during volume recovery of Na+ and Cl- in nearly equimolar amounts was demonstrated. It is proposed that the primary process during the regulatory volume increase is an activation of an otherwise quiescent, bumetanide-sensitive Na+,Cl- cotransport system with subsequent replacement of Na+ by K+ via the Na+/K+ pump, stimulated by the Na+ influx through the Na+,Cl- cotransport system.  相似文献   

16.
The inhibition of passive K+ influx into human red blood cells (RBC) by loop diuretics was found to be dependent on the external Na+ concentration. In the absence of external Na+, there was minimal inhibition but the influx remained dependent on Cl- ions. Thus, raising the external Na+ concentration increased the affinity of the putative (Na+, K+, Cl-) cotransport system in human RBC for loop diuretics.  相似文献   

17.
A new mathematical model of ion movements in airway epithelia is presented, which allows predictions of ion fluxes, membrane potentials and ion concentrations. The model includes sodium and chloride channels in the apical membrane, a Na/K pump and a cotransport system for Cl- with stoichiometry Na+:K+:2Cl- in the basolateral membrane. Potassium channels in the basolateral membrane are used to regulate cell volume. Membrane potentials, ion fluxes and intracellular ion concentration are calculated as functions of apical ion permeabilities, the maximum pump current and the cotransport parameters. The major predictions of the model are: (1) Cl- concentration in the cell is determined entirely by the intracellular concentration of negatively charged impermeable ions and the osmotic conditions; (2) changes in intracellular Na+ and K+ concentrations are inversely related; (3) cotransport provides the major driving force for Cl- flux, increases intracellular Na+ concentration, decreases intracellular K+ concentration and hyperpolarizes the cell interior; (4) the maximum rate of the Na/K pump, by contrast, has little effect on Na+ or Cl- transepithelial fluxes and a much less pronounced effect on cell membrane polarization; (5) an increase in apical Na+ permeability causes an increase in intracellular Na+ concentration and a significant increase in Na+ flux; (6) an increase in apical Cl- permeability decreases intracellular Na+ concentration and Na+ flux; (7) assuming Na+ and Cl- permeabilities equal to those measured in human nasal epithelia, the model predicts that under short circuit conditions, Na+ absorption is much higher than Cl- secretion, in agreement with experimental measurements.  相似文献   

18.
采用X射线微区分析技术,测定了4种生态型芦苇(Phragmites australis (CaV.) Trin. exSteud.)叶的表皮泡状细胞、叶肉细胞和叶脉维管束鞘细胞离子的含量.结果表明:沼泽芦苇的鞘细胞内,K+、Na+、Ca2+、Mg2+和Cl-分布均较叶肉细胞和泡状细胞高.沙丘芦苇的泡状细胞中Ca2+分布较叶肉细胞和鞘细胞高,而Mg2+在其叶肉细胞,以及K+、Na+和Cl-在其鞘细胞内分布均较高.在轻度盐化草甸芦苇的叶肉细胞内分布较多的Na+和Mg2+,而在鞘细胞内K+、Ca2+ 和Cl-的分布均较叶肉细胞和泡状细胞为高.重度盐化草甸芦苇的泡状细胞内Na+和Mg2+的分布较多;同样,在叶肉细胞中K+、Ca2+和Cl-的分布也较多.最后,讨论了上述各种离子在不同生态型芦苇叶内分布的状况, 以及与其环境适应的生理意义.  相似文献   

19.
Although much is known about the effects of Na+, K+, and Cl- on the functional activity of the neuronal dopamine transporter, little information is available on their role in the initial event in dopamine uptake, i.e., the recognition step. This was addressed here by studying the inhibition by dopamine of the binding of [3H]WIN 35,428 [2beta-carbomethoxy-3beta-(4-fluorophenyl)[3H]tropane], a phenyltropane analogue of cocaine, to the cloned human dopamine transporter expressed in HEK-293 cells. The decrease in the affinity of dopamine (or WIN 35,428) binding affinity with increasing [K+] could be fitted to a competitive model involving an inhibitory cation site (1) overlapping with the dopamine (or WIN 35,428) domain. The K+ IC50 for inhibiting dopamine or WIN 35,428 binding increased linearly with [Na+], indicating a K(D,Na+) of 30-44 mM and a K(D,K+) of 13-16 mM for this cation site. A second Na+ site (2), distal from the WIN 35,428 domain but linked by positive allosterism, was indicated by model fitting of the WIN 35,428 binding affinities as a function of [Na+]. No strong evidence for this second site was obtained for dopamine binding in the absence or presence of low (20 mM) Cl- and could not be acquired for high [Cl-] because of the lack of a suitable substitute ion for Na+. The K(D) but not Bmax of [3H]WIN 35,428 binding increased as a function of the [K+]/[Na+] ratio regardless of total [Cl-] or ion tonicity. A similar plot was obtained for the Ki of dopamine binding, with Cl- at > or = 140 mM decreasing the Ki. At 290 mM Cl- and 300 mM Na+ the potency of K+ in inhibiting dopamine binding was enhanced as compared with the absence of Cl- in contrast to the lack of effect of Cl- up to 140 mM (Na up to 150 mM). The results indicate that Cl- at its extracellular level enhances dopamine binding through a mechanism not involving site 1. The observed correspondence between the WIN 35,428 and dopamine domains in their inclusion of the inhibitory cation site explains why many of the previously reported interrelated effects of Na+ and K+ on the binding site of radiolabeled blockers to the dopamine transporter are applicable to dopamine uptake in which dopamine recognition is the first step.  相似文献   

20.
The ClC chloride channels control the ionic composition of the cytoplasm and the volume of cells, and regulate electrical excitability. Recently, it has been proposed that prokaryotic ClC channels are H+-Cl- exchange transporter. Although X-ray and molecular dynamics (MD) studies of bacterial ClC channels have investigated the filter open-close and ion permeation mechanism of channels, details have remained unclear. We performed MD simulations of ClC channels involving H+, Na+, K+, or H3O+ in the intracellular region to elucidate the open-close mechanism, and to clarify the role of H+ ion an H+-Cl- exchange transporter. Our simulations revealed that H+ and Na+ caused channel opening and the passage of Cl- ions. Na+ induced a bead-like string of Cl- -Na+-Cl--Na+-Cl- ions to form and permeate through ClC channels to the intracellular side with the widening of the channel pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号