首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coxsackievirus A21 (CAV21), like human rhinoviruses (HRVs), is a causative agent of the common cold. It uses the same cellular receptor, intercellular adhesion molecule 1 (ICAM-1), as does the major group of HRVs; unlike HRVs, however, it is stable at acid pH. The cryoelectron microscopy (cryoEM) image reconstruction of CAV21 is consistent with the highly homologous crystal structure of poliovirus 1; like other enteroviruses and HRVs, CAV21 has a canyon-like depression around each of the 12 fivefold vertices. A cryoEM reconstruction of CAV21 complexed with ICAM-1 shows all five domains of the extracellular component of ICAM-1. The known atomic structure of the ICAM-1 amino-terminal domains D1 and D2 has been fitted into the cryoEM density of the complex. The site of ICAM-1 binding within the canyon of CAV21 overlaps the site of receptor recognition utilized by rhinoviruses and polioviruses. Interactions within this common region may be essential for triggering viral destabilization after attachment to susceptible cells.  相似文献   

2.
A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses   总被引:100,自引:0,他引:100  
Rhinoviruses, which cause common colds, possess over 100 serotypes, 90% of which (the major group) share a single receptor. Lymphocyte function associated molecule 1 (LFA-1) mediates leukocyte adhesion to a wide variety of cell types by binding to intercellular adhesion molecule 1 (ICAM-1). We demonstrate identity between the receptor for the major group of rhinoviruses and ICAM-1. A major group rhinovirus binds specifically to purified ICAM-1 and to ICAM-1 expressed on transfected COS cells, and binding is blocked by three ICAM-1 monoclonal antibodies (MAb) that block ICAM-1-LFA-1 interaction, but not by an ICAM-1 MAb that does not block ICAM-1-LFA-1 interaction. This suggests that the ICAM-1 contact site(s) for LFA-1 and rhinoviruses is proximal or identical. In addition, ICAM-1 MAb block the cytopathic effect in HeLa cells mediated by representative major but not minor group rhinoviruses. ICAM-1 is induced by soluble mediators of inflammation, suggesting that the host immune response to rhinovirus may facilitate spread to uninfected cells.  相似文献   

3.
CVA21 and polioviruses both belong to the Enterovirus genus in the family of Picornaviridae, whereas rhinoviruses form a distinct picornavirus genus. Nevertheless, CVA21 and the major group of human rhinoviruses recognize intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor, whereas polioviruses use poliovirus receptor. The crystal structure of CVA21 has been determined to 3.2 A resolution. Its structure has greater similarity to poliovirus structures than to other known picornavirus structures. Cryo-electron microscopy (cryo-EM) was used to determine an 8.0 A resolution structure of CVA21 complexed with an ICAM-1 variant, ICAM-1(Kilifi). The cryo-EM map was fitted with the crystal structures of ICAM-1 and CVA21. Significant differences in the structure of CVA21 with respect to the poliovirus structures account for the inability of ICAM-1 to bind polioviruses. The interface between CVA21 and ICAM-1 has shape and electrostatic complementarity with many residues being conserved among those CVAs that bind ICAM-1.  相似文献   

4.
The attachment of erythrocytes infected with P. falciparum to human venular endothelium is the primary step leading to complications from severe and cerebral malaria. Intercellular adhesion molecule-1 (ICAM-1, CD54) has been implicated as a cytoadhesion receptor for P. falciparum-infected erythrocytes. Characterization of domain deletion, human/murine chimeric ICAM-1 molecules, and amino acid substitution mutants localized the primary binding site for parasitized erythrocytes to the first amino-terminal immunoglobulin-like domain of ICAM-1. The ICAM-1 binding site is distinct from those recognized by LFA-1, Mac-1, and the human major-type rhinoviruses. Synthetic peptides encompassing the binding site on ICAM-1 inhibited malaria-infected erythrocyte adhesion to ICAM-1-coated surfaces with a Ki of 0.1-0.3 mM, whereas the Ki for soluble ICAM-1 is 0.15 microM. These findings have implications for the therapeutic reversal of malaria-infected erythrocyte sequestration in the host microvasculature.  相似文献   

5.
Intercellular adhesion molecule 1 (ICAM-1, CD54) binds to the integrin LFA-1 (CD11a/CD18), promoting cell adhesion in immune and inflammatory reactions. ICAM-1 is also subverted as a receptor by the major group of rhinoviruses. Electron micrographs show that ICAM-1 is a bent rod, 18.7 nm long, suggesting a model in which the five immunoglobulin-like domains are oriented head to tail at a small angle to the rod axis. ICAM-1 sequences important to binding LFA-1, rhinovirus, and four monoclonal antibodies were identified through the characterization of chimeric ICAM-1 molecules and mutants. The amino-terminal two immunoglobulin-like domains of ICAM-1 appear to interact conformationally. Domain 1 of ICAM-1 contains the primary site of contact for both LFA-1 and rhinovirus; the presence of domains 3-5 markedly affects the accessibility of the binding site for rhinovirus and less so for LFA-1. The binding sites appear to be distinct but overlapping; rhinovirus binding also differs from LFA-1 binding in its lack of divalent cation dependence. Our analysis suggests that rhinoviruses mimic LFA-1 in binding to the most membrane-distal, and thus most accessible, site of ICAM-1.  相似文献   

6.
Human rhinoviruses (HRV) cause the majority of common colds and acute exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Effective therapies are urgently needed, but no licensed treatments or vaccines currently exist. Of the 100 identified serotypes, ∼90% bind domain 1 of human intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor, making this an attractive target for development of therapies; however, ICAM-1 domain 1 is also required for host defence and regulation of cell trafficking, principally via its major ligand LFA-1. Using a mouse anti-human ICAM-1 antibody (14C11) that specifically binds domain 1 of human ICAM-1, we show that 14C11 administered topically or systemically prevented entry of two major groups of rhinoviruses, HRV16 and HRV14, and reduced cellular inflammation, pro-inflammatory cytokine induction and virus load in vivo. 14C11 also reduced cellular inflammation and Th2 cytokine/chemokine production in a model of major group HRV-induced asthma exacerbation. Interestingly, 14C11 did not prevent cell adhesion via human ICAM-1/LFA-1 interactions in vitro, suggesting the epitope targeted by 14C11 was specific for viral entry. Thus a human ICAM-1 domain-1-specific antibody can prevent major group HRV entry and induction of airway inflammation in vivo.  相似文献   

7.
The intercellular adhesion molecule 1 (ICAM-1) is used as a cellular receptor by 90% of human rhinoviruses (HRVs). Chimeric immunoadhesin molecules containing extracellular domains of ICAM-1 and constant regions of immunoglobulins (Igs) were designed in order to determine the effect of increased valency, Ig isotype, and number of ICAM-1 domains on neutralization and disruption of rhinovirus structure. These immunoadhesins include ICAM-1 amino-terminal domains 1 and 2 fused to the hinge and constant domains of the heavy chains of IgA1, IgM, and IgG1 (IC1-2D/IgA, -/IgM, and -/IgG). In addition, all five extracellular domains were fused to IgA1 (IC1-5D/IgA). Immunoadhesins were compared with soluble forms of ICAM-1 containing five and two domains (sICAM-1 and ICI-2D, respectively) in assays of HRV binding, infectivity, and conformation. In prevention of HRV plaque formation, IC1-5D/IgA was 200 times and IC1-2D/IgM and IC1-2D/IgA were 25 and 10 times more effective, respectively, than ICAM-1. The same chimeras were highly effective in inhibiting binding of rhinovirus to cells and disrupting the conformation of the virus capsid, as demonstrated by generation of approximately 65S particles. The results show that the number of ICAM-1 domains and a flexible Ig hinge are important factors contributing to the efficacy of neutralization. The higher efficiency of chimeras that bound bivalently in disrupting HRV was attributed to higher binding avidity. The IC1-5D/IgA immunoadhesin was effective at nanomolar concentrations, making it feasible therapy for rhinovirus infection.  相似文献   

8.
Human rhinoviruses (HRV), responsible for approximately 60% of the common colds, are divided into two groups, according to their receptor specificity. The major group of HRVs gains access to human cells by binding to the intercellular adhesion molecule-1 (ICAM-1), whereas HRVs of the minor group use members of the low-density lipoprotein receptor (LDLR) family for cell entry. Previous studies confirmed that the HRV-binding region of ICAM-1 is located in the amino-terminal immunoglobulin-like (Ig) domain 1, which is encoded by exon 2 of the ICAM-1 gene. An A --> T transversion in codon 29 of ICAM-1 exon 2 causes a lysine to methionine substitution (K29M), and was found at a high frequency (33.2%) in Kilifi (Kenya), as well as in other African populations. In this study we examined whether polymorphisms in exon 2 of ICAM-1 could be detected in a Caucasian population, assuming that these could be of importance in HRV binding. DNA from 100 healthy, unrelated, Belgian volunteers was obtained through a noninvasive swish-and-spit method. Using a primer set in the adjacent intron sequences, the full-length ICAM-1 exon 2 was amplified by polymerase chain reaction (PCR), followed by direct sequencing of the PCR product. No polymorphisms could be demonstrated in exon 2 of the ICAM-1 gene among all 100 tested individuals. The rhinovirus-binding Ig domain 1 of ICAM-1 seems to be a highly conserved region in the Caucasian population.  相似文献   

9.
Intercellular adhesion molecule-1 (CD54), a cell adhesion molecule and the receptor for the major group of rhinoviruses, is a class 1 membrane protein with five Ig-like domains in its extracellular region, a transmembrane domain, and a short cytoplasmic domain. The amino-terminal domains (D1 and D2) are sufficient for virus binding and the first is most important (1). We have investigated whether other extracellular domains, transmembrane or cytoplasmic domains are required for virus entry as determined by postinfection virion protein biosynthesis. We demonstrate that cytoplasmic, transmembrane, and Ig-like domains 3, 4, and 5 are not essential for rhinovirus entry into transfected COS cells. The efficiency of rhinovirus infection directly correlates with the efficiency of rhinovirus binding and a form of intercellular adhesion molecule-1 that is glycophosphatidyl-inositol anchored, and thus does not extend into the inner leaflet of the membrane bilayer or the cytoplasm efficiently supports virus entry.  相似文献   

10.
Like all 10 minor receptor group human rhinoviruses (HRVs), HRV23 and HRV25, previously classified as major group viruses, are neutralized by maltose binding protein (MBP)-V33333 (a soluble recombinant concatemer of five copies of repeat 3 of the very-low-density lipoprotein receptor fused to MBP), bind to low-density lipoprotein receptor in virus overlay blots, and replicate in intercellular adhesion molecule 1 (ICAM-1)-negative COS-7 cells. From phylogenetic analysis of capsid protein VP1-coding sequences, they are also known to cluster together with other minor group strains. Therefore, they belong to the minor group; there are now 12 minor group and 87 major group HRV serotypes. Sequence comparison of the VP1 capsid proteins of all HRVs revealed that the lysine in the HI loop, strictly conserved in the 12 minor group HRVs, is also present in 9 major group serotypes that are neutralized by soluble ICAM-1. Despite the presence of this lysine, they are not neutralized by MBP-V33333 and fail to replicate in COS-7 cells and in HeLa cells in the presence of an ICAM-1-blocking antibody. These nine serotypes are therefore "true" major group viruses.  相似文献   

11.
The majority of human rhinoviruses use intercellular adhesion molecule 1 (ICAM-1) as a cell surface receptor. Two soluble forms of ICAM-1, one corresponding to the entire extracellular portion [tICAM(453)] and one corresponding to the two N-terminal immunoglobulin-like domains [tICAM(185)], have been produced, and their effects on virus-receptor binding, virus infectivity, and virus integrity have been examined. Results from competitive binding experiments indicate that the virus binding site is largely contained within the two N-terminal domains of ICAM-1. Virus infectivity studies indicate that tICAM(185) prevents infection by direct competition for receptor binding sites on virus, while tICAM(453) prevents infection at concentrations 10-fold lower than that needed to inhibit binding and apparently acts at the entry or uncoating steps. Neutralization by both forms of soluble ICAM-1 requires continual presence of ICAM-1 during the infection and is largely reversible. Both forms of soluble ICAM-1 can alter rhinovirus to yield subviral noninfectious particles lacking the viral subunit VP4 and the RNA genome, thus mimicking virus uncoating in vivo, although this irreversible modification of rhinovirus is not the major mechanism of virus neutralization.  相似文献   

12.
13.
14.
Human ICAM-1 is the cellular receptor for the major group of human rhinoviruses (HRVs). Previous studies have suggested that the N-terminal domain of ICAM-1 is critical for binding of the major group rhinoviruses. To further define the residues within domain 1 that are involved in virus binding, we constructed an extensive series of ICAM-1 cDNAs containing single and multiple amino acid residue substitutions. In each case, substitutions involved replacement of the human amino acids with those found in murine ICAM-1 to minimize conformational effects. To facilitate the mutagenesis process, a synthetic gene encompassing the first two domains of ICAM-1 was constructed which incorporated 27 additional restriction sites to allow mutagenesis by oligonucleotide replacement. Each of the new constructs was placed into a Rous sarcoma virus vector and expressed in primary chicken embryo fibroblast cells. Binding assays were performed with six major group HRVs, including one high-affinity binding mutant of HRV-14, and two monoclonal antibodies. Results indicated that different serotypes displayed a range of sensitivities to various amino acid substitutions. Amino acid residues of ICAM-1 showing the greatest effect on virus and antibody binding included Pro-28, Lys-29, Leu-30, Leu-37, Lys-40, Ser-67, and Pro-70.  相似文献   

15.
K-type major-group human rhinoviruses (HRVs) (including HRV54) share a prominent lysine residue in the HI surface loop of VP1 with all minor-group HRVs. Despite the presence of this residue, they cannot use members of the low-density lipoprotein receptor family for productive infection. Reexamining all K-type viruses for receptor usage, we noticed that HRV54 is able to replicate in RD cells that lack the major-group receptor intercellular adhesion molecule 1 (ICAM-1). By using receptor blocking assays, inhibition of sulfation, enzymatic digestion, and proteoglycan-deficient cell lines, we show here that wild-type HRV54, without any adaptation, uses heparan sulfate (HS) proteoglycan as an alternate receptor. However, infection via HS is less efficient than infection via ICAM-1. Moreover, HRV54 has an acid lability profile similar to that of the minor-group virus HRV2. In ICAM-1-deficient cells its replication is completely blocked by the H(+)-ATPase inhibitor bafilomycin A1, whereas in ICAM-1-expressing cells it replicates in the presence of the drug. Thus, use of a "noncatalytic" receptor requires the virus to be highly unstable at low pH.  相似文献   

16.
Structure of human rhinovirus serotype 2 (HRV2)   总被引:7,自引:0,他引:7  
Human rhinoviruses are classified into a major and a minor group based on their binding to ICAM-1 or to members of the LDL-receptor family, respectively. They can also be divided into groups A and B, according to their sensitivity towards a panel of antiviral compounds. The structure of human rhinovirus 2 (HRV2), which uses the LDL receptor for cell attachment and is included in antiviral group B, has been solved and refined at 2.6 A resolution by X-ray crystallography to gain information on the peculiarities of rhinoviruses, in particular from the minor receptor group. The main structural differences between HRV2 and other rhinoviruses, including the minor receptor group serotype HRV1A, are located at the internal protein shell surface and at the external antigenic sites. In the interior, the N termini of VP1 and VP4 form a three-stranded beta-sheet in an arrangement similar to that present in poliovirus, although myristate was not visible at the amino terminus of VP4 in the HRV2 structure. The betaE-betaF loop of VP2, a linear epitope within antigenic site B recognized by monoclonal antibody 8F5, adopts a conformation considerably different from that found in the complex of 8F5 with a synthetic peptide of the same sequence. This either points to considerable structural changes impinged on this loop upon antibody binding, or to the existence of more than one single conformation of the loop when the virus is in solution. The hydrophobic pocket of VP1 was found to be occupied by a pocket factor apparently identical with that present in the major receptor group virus HRV16. Electron density, consistent with the presence of a viral RNA fragment, is seen stacked against a conserved tryptophan residue.  相似文献   

17.
ICAM-1 (CD54): a counter-receptor for Mac-1 (CD11b/CD18)   总被引:13,自引:0,他引:13       下载免费PDF全文
《The Journal of cell biology》1990,111(6):3129-3139
While the leukocyte integrin lymphocyte function-associated antigen (LFA)-1 has been demonstrated to bind intercellular adhesion molecule (ICAM)-1, results with the related Mac-1 molecule have been controversial. We have used multiple cell binding assays, purified Mac- 1 and ICAM-1, and cell lines transfected with Mac-1 and ICAM-1 cDNAs to examine the interaction of ICAM-1 with Mac-1. Stimulated human umbilical vein endothelial cells (HUVECs), which express a high surface density of ICAM-1, bind to immunoaffinity-purified Mac-1 adsorbed to artificial substrates in a manner that is inhibited by mAbs to Mac-1 and ICAM-1. Transfected murine L cells or monkey COS cells expressing human ICAM-1 bind to purified Mac-1 in a specific and dose-dependent manner; the attachment to Mac-1 is more temperature sensitive, lower in avidity, and blocked by a different series of ICAM-1 mAbs when compared to LFA-1. In a reciprocal assay, COS cells cotransfected with the alpha and beta chain cDNAs of Mac-1 or LFA-1 attach to immunoaffinity- purified ICAM-1 substrates; this adhesion is blocked by mAbs to ICAM-1 and Mac-1 or LFA-1. Two color fluorescence cell conjugate experiments show that neutrophils stimulated with fMLP bind to HUVEC stimulated with lipopolysaccharide for 24 h in an ICAM-1-, Mac-1-, and LFA-1- dependent fashion. Because cellular and purified Mac-1 interact with cellular and purified ICAM-1, we conclude that ICAM-1 is a counter receptor for Mac-1 and that this receptor pair is responsible, in part, for the adhesion between stimulated neutrophils and stimulated endothelial cells.  相似文献   

18.
Intercellular adhesion molecule 1 (ICAM-1) functions as the cellular receptor for the major group of human rhinoviruses, being not only the target of viral attachment but also the mediator of viral uncoating. The configurations of HRV3-ICAM-1 complexes prepared both at 4 degrees C and physiological temperature (37 degrees C) were analyzed by cryoelectron microscopy and image reconstruction. The particle diameters of two complexes (with and without RNA) representing uncoating intermediates generated at 37 degrees C were each 4% larger than that of those prepared at 4 degrees C. The larger virus particle arose by an expansive movement of the capsid pentamers along the fivefold axis, which loosens interprotomer contacts, particularly at the canyon region where the ICAM-1 receptor bound. Particle expansion required receptor binding and preceded the egress of the viral RNA. These observations suggest that receptor-mediated uncoating could be a consequence of restrained capsid motion, where the bound receptors maintain the viral capsid in an expanded open state for subsequent genome release.  相似文献   

19.
Molecular cloning of murine intercellular adhesion molecule (ICAM-1).   总被引:28,自引:0,他引:28       下载免费PDF全文
K J Horley  C Carpenito  B Baker    F Takei 《The EMBO journal》1989,8(10):2889-2896
We have previously reported a murine lymphocyte surface antigen MALA-2 of approximately 95,000 Mr which is expressed mainly on activated lymphocytes. The rat monoclonal antibody YN1/1 that detects this antigen profoundly inhibits mixed lymphocyte response. We have now purified MALA-2 and determined its partial amino acid sequence. By using non-redundant synthetic oligonucleotides as probes, based on the amino acid sequence, we have isolated two full length cDNA clones encoding MALA-2. The two clones are identical except for the 5' end sequence. Expression of MALA-2 on transfected COS cells is only achieved with one of the two cDNA clones. The nucleotide sequence as well as the deduced amino acid sequence of MALA-2 display striking homology with those of the recently reported human intercellular adhesion molecule ICAM-1. All the unique features of the human ICAM-1, including its homology with the neural adhesion molecule NCAM, its internal repeat structure and the immunoglobulin-like structure, are found in MALA-2. Furthermore, purified MALA-2 crosslinked to a solid support binds Con A blasts that express LFA-1, the putative receptor for ICAM-1, and the binding can be blocked by YN1/1 antibody or antimurine LFA-1 antibody indicating a direct interaction of these molecules in cell adhesion. Therefore, we consider MALA-2 to be the murine homolog of human ICAM-1. Since ICAM-1 is known to be of primary importance in immune responses and inflammatory reactions, having a monoclonal antibody and a mouse model will provide the opportunity to study the functional role of ICAM-1 in vivo.  相似文献   

20.
Intercellular adhesion molecule-1 (ICAM-1) is found on the surface of many hemopoietic and non-hemopoietic cells and can function as an adhesive ligand for the integrin, leukocyte function associated molecule-1 (LFA-1, CD11a/CD18). ICAM-1/LFA-1 interaction is thought to be of importance in many immune mediated cell-cell adhesion reactions. Recently, the major human rhinovirus (HRV) receptor has been identified as ICAM-1. HRV has been shown to bind specifically to ICAM-1 on transfected COS cells and to purified ICAM-1, which has been adsorbed to plastic microtiter wells. We have compared the ability of ICAM-1 expressed on the surface of human fibroblasts (FB) to function as a receptor for HRV as well as a receptor for LFA-1-bearing human T lymphocytes. We show that FB stimulation by the cytokines IFN-gamma or IL-1, both known inducers of ICAM-1 synthesis and expression in FB, induced an increase in HRV binding to treated cells, which could be inhibited by antibody to ICAM-1. In contrast, only IFN-gamma and not IL-1 treatment of FB resulted in an increased adhesion of T lymphocytes. Binding of HRV to IFN-gamma-treated FB inhibited the subsequent adhesion of T cells. We also show that prior stimulation of FB with IL-1 enhanced the adhesion of HRV to IFN-gamma-stimulated cells, although IL-1 pretreatment was inhibitory for T cell adhesion. As these two cytokines both up-regulate ICAM-1 on the surface of human FB, the contrasting effects of IFN-gamma and IL-1 on human FB ICAM-1 adhesion to HRV and to LFA-1 suggest that qualitative as well as quantitative alterations of the ICAM-1 molecule may contribute to its specificity of ligand recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号