首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the changes in diaphragm electromyogram (EMG) during the course of severe loaded breathing, we subjected five conscious adult sheep to inspiratory flow resistive breathing (resistance greater than 150 cmH2O X l-1 X s) for up to 2-3 h and studied the total EMG power per breath (iEMG) and the EMG power per unit time after dividing the duration of EMG activity within each breath into three equal parts (iEMG1, iEMG2, and iEMG3). Both total breath iEMG and transdiaphragmatic pressure (Pdi) increased, remained at a high level for a certain period of time, and then started to fall. A change in the pattern of iEMG within a breath was observed during loaded breathing. The increase in total-breath iEMG was associated mostly with an increase in iEMG3, or the last part of the EMG power within each inspiration. Similarly, the decrease in total breath iEMG was primarily due to a decrease in iEMG3. We conclude that, in sheep subjected to severe IFR loads for prolonged periods the marked increase in total-breath iEMG at the beginning of loaded breathing and the marked decrease in this iEMG at the time of decrease in Pdi are largely due to changes in iEMG that occur during the latter third of each breath. We speculate that during loaded breathing the recruitment pattern of diaphragmatic muscle fibers changes during the course of an inspiratory effort.  相似文献   

2.
Contraction work (CW) was recorded for each of 200 repetitive isokinetic plantar flexions (1.05 rad.s-1) and knee extensions (1.57 rad.s-1) in 14 elite male orienteers. Simultaneous recordings of integrated electromyograms (iEMG) were obtained from the 3 parts of triceps surae and from 3 superficial portions of quadriceps femoris. CW in both muscle groups decreased significantly during the first 30 contractions (the fatigue phase), followed by a steady state level. The relative steady state level was higher for the plantar flexors (70 +/- 17%) than for the knee extensors (56 +/- 12%). For quadriceps a significant increase in iEMG occurred during the first 10 contractions followed by a decrease, whereas the iEMG of the plantar flexors showed a gradual decrease to the steady state level, which was similar for the two muscle groups (71-72%). The chosen expression of output/input balance (CW/iEMG) was constant throughout the plantarflexion test but decreased during the initial 20 knee extensions down to 82%. Thus, the fatigue phase of the knee extensions appeared to be divided into two; the first part had decreases in both CW and CW/iEMG and the second part with a decrease in CW alone. In contrast the plantar flexors only showed the characteristics of the second part.  相似文献   

3.
The relation between local circulation and alternate muscle activity among knee extensor synergists was determined during low-level sustained knee extension at 2.5% of maximal voluntary contraction for 60 min in seven subjects. Blood volume of rectus femoris (RF) and vastus lateralis (VL) was assessed by using near-infrared spectroscopy. Surface electromyogram (EMG) was recorded from RF, VL, and vastus medialis (VM). Alternate muscle activity was observed between RF and either VL or VM. Cross-correlation analysis was used to investigate the relation between blood volume and integrated EMG (iEMG) sequences throughout the task. One negative peak in the cross-correlation function was seen between the iEMG and blood volume with time lag of 30-60 s, indicating that muscle activity increases (or decreases) with the decrease (or increase) in local circulation with the corresponding time lag. Two cases in the emergence of alternate muscle activities, i.e., an increase in the EMG of RF accompanied by a decline of EMG in VL (case I) and vice versa (case II) were further analyzed. The time lag between iEMG and blood volume was longer in case I than that in case II. These results were statistically significant in the RF but not in the VL. It is concluded that even during low-level sustained contraction, local circulation is modulated by the alternate muscle activity of knee extensor synergists, and a negative correlation between the muscle activity and blood volume sequences was found in only RF but not in VL.  相似文献   

4.
The objective of this work was to increase our understanding of how motor patterns are produced during movement tasks by quantifying adaptations in muscle coordination in response to altered task mechanics. We used pedaling as our movement paradigm because it is a constrained cyclical movement that allows for a controlled investigation of test conditions such as movement speed and effort. Altered task mechanics were introduced using an elliptical chainring. The kinematics of the crank were changed from a relatively constant angular velocity using a circular chainring to a widely varying angular velocity using an elliptical chainring. Kinetic, kinematic and muscle activity data were collected from eight competitive cyclists using three different chainrings--one circular and two different orientations of an elliptical chainring. We tested the hypotheses that muscle coordination patterns (EMG timing and magnitude), specifically the regions of active muscle force production, would shift towards regions in the crank cycle in which the crank angular velocity, and hence muscle contraction speeds, were favorable to produce muscle power as defined by the skeletal muscle power-velocity relationship. The results showed that our hypothesis with regards to timing was not supported. Although there were statistically significant shifts in muscle timing, the shifts were minor in absolute terms and appeared to be the result of the muscles accounting for the activation dynamics associated with muscle force development (i.e. the delay in muscle force rise and decay). But, significant changes in the magnitude of muscle EMG during regions of slow crank angular velocity for the tibialis anterior and rectus femoris were observed. Thus, the nervous system used adaptations to the muscle EMG magnitude, rather than the timing, to adapt to the altered task mechanics. The results also suggested that cyclists might work on the descending limb of the power-velocity relationship when pedaling at 90 rpm and sub-maximal power output. This finding might have important implications for preferred pedaling rate selection.  相似文献   

5.
An inability to perform tasks involving reaching is a common problem for stroke patients. Knowledge of normal muscle activation patterns during these tasks is essential to the identification of abnormal patterns in post-stroke hemiplegia. Findings will provide insight into changes in muscle activation patterns associated with recovery of upper limb function.In this study with neurologically intact participants the co-ordination of shoulder and elbow muscle activity during two dimensional reaching tasks is explored. Eight participants undertook nine tracking tasks in which trajectory (orientation and length), duration, speed and resistance to movement were varied. The participants’ forearm was supported using a hinged arm-holder, which constrained their hand to move in a two dimensional plane. EMG signals were recorded from triceps, biceps, anterior deltoid, upper, middle and lower trapezius and pectoralis major.A wide variation in muscle activation patterns, in terms of timing and amplitude, was observed between participants performing the same task. EMG amplitude increased significantly with length, duration and resistance of the task for all muscles except anterior deltoid. Co-activation between biceps and triceps was significantly dependent on both task and trajectory orientation. Activation pattern of pectoralis major was dependent on trajectory. Neither trajectory orientation nor task condition affected the activation pattern of anterior deltoid. Normal ranges of timing of muscle activity during the tasks were identified.  相似文献   

6.
The surface electromyogram (EMG) from active muscle and oxygen uptake (VO2) were studied simultaneously to examine changes of motor unit (MU) activity during exercise tests with different ramp increments. Six male subjects performed four exhausting cycle exercises with different ramp slopes of 10, 20, 30 and 40 W.min-1 on different days. The EMG signals taken from the vastus lateralis muscle were stored on a digital data recorder and converted to obtain the integrated EMG (iEMG). The VO2 was measured, with 20-s intervals, by the mixing chamber method. A non-linear increase in iEMG against work load was observed for each exercise in all subjects. The break point of the linear relationship of iEMG was determined by the crossing point of the two regression lines (iEMGbp). Significant differences were obtained in the exercise intensities corresponding to maximal oxygen uptake (VO2max) and the iEMGbp between 10 and 30, and 10 and 40 W.min-1 ramp exercises (P < 0.05). However, no significant differences were obtained in VO2max and VO2 corresponding to the iEMGbp during the four ramp exercises. With respect to the relationship between VO2 and exercise intensity during the ramp increments, the VO2-exercise intensity slope showed significant differences only for the upper half (i.e. above iEMGbp). These results demonstrated that the VO2max and VO2 at which a nonlinear increase in iEMG was observed were not varied by the change of ramp slopes but by the exercise intensity corresponding to VO2max and the iEMGbp was varied by the change of ramp slopes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The aim of the present work was to determine the EMG activity and the moment of force developed by the main elbow flexor muscles, and to establish on this basis the degree of their participation in isometric contractions performed at various positions of the elbow. This was achieved by recording the following biomechanical parameters: EMG and tensile stress (or force) from biceps brachii (BB) and brachioradialis (BR); EMG from brachialis; external resultant force (FE). There was: a linear or quadratic relationship between the integrated EMG from each muscle and FE; a linear relationship between the force produced by BB or BR and FE. The slope of these relationships depended on the elbow angle, except for that between BB force and FE. It is proposed that iEMG changes compensate for those of the force lever arm. It has been calculated that the contribution of BR to external torque decreased from the extension to flexion while that of BB increased from 70 degrees to 90 degrees and then decreased. How far these data can be extrapolated to man is a matter of discussion based on iEMG and anthropometrical data.  相似文献   

8.
The purpose of the study was to examine the effect of prolonged tonic vibration applied to a single synergist muscle on maximal voluntary contraction (MVC) and maximal rate of force development (dF/dt(max)). The knee extension MVC force and surface electromyogram (EMG) from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) during MVC were recorded before and after vibration of RF muscle at 30 Hz for 30 min. MVC, dF/dt(max), and the integrated EMG (iEMG) of RF decreased significantly after prolonged tonic vibration in spite of no changes in iEMG of VL and VM. The present results indicate that MVC and dF/dt(max) may be influenced by the attenuated Ia afferent functions of a single synergist muscle.  相似文献   

9.
This study investigated the effect of prolonged load carriage on lower limb muscle activity displayed by female recreational hikers. Electromyography (EMG) signals from vastus lateralis (VL), biceps femoris (BF), semitendinosus (ST), tibialis anterior (TA) and gastrocnemius (GM) were recorded for fifteen female hikers carrying four loads (0%, 20%, 30% and 40% body weight (BW)) over 8 km. Muscle burst duration, muscle burst onset relative to initial contact and integrated EMG signals (iEMG) were calculated to evaluate muscle activity, whereas the shift in mean power frequency (MPF) was used to evaluate muscle fatigue. Increased walking distance significantly decreased the MPF of TA; decreased the iEMG for VL, ST and GM; and shortened VL muscle burst duration. Furthermore, carrying 20–40% BW loads significantly increased VL and GM iEMG and increased BF muscle burst duration, whereas a 40% BW load caused a later VL muscle burst onset. The differences observed in muscle activity with increased load mass seem to be adjustments aimed at maintaining balance and attenuating the increased loads placed on the lower limbs during gait. Based on the changes in muscle activity, a backpack load limit of 30% BW may reduce the risk of lower limb injury for female hikers during prolonged walking.  相似文献   

10.
In this study, we compared changes in corticomotor excitability under various task conditions engaging the index finger of each hand. Functional demands were varied, from simple execution to demanding sensory exploration. In a first experiment, we contrasted facilitation in the first dorsal interosseus (FDI) by monitoring changes in motor evoked potentials (MEPs) when participants (young adults, n = 18) performed either a simple button pressing (BP) task or a more demanding tactile exploration (TE) task (i.e., discrimination of raised letters). This experiment showed a large effect of task conditions (p < 0.01) on MEP amplitude but no effect of “Hand”, while latency measurements were unchanged. In fact, MEPs were on average 40% larger during TE (2410 ± 1358 µV) than during BP (1670 ± 1477 µV). The two tasks produced, however, different patterns of electromyographic (EMG) activity, which could have accounted for some of the differences observed. A second experimental session involved a subset of participants (10/18) tested in third task condition: finger movement (FM). The latter task consisted of scanning a smooth surface with the tip of the index finger to reproduce the movements seen with the TE task. The addition of this third condition task confirmed that MEP facilitation seen during TE reflected task-specific influences and not differences in background EMG activity. These results, altogether, provide further insights into the effect of task conditions on corticomotor excitability. Our findings, in particular, stress the importance of behavioural context and tactile exploration in leading to selective increase in corticomotor excitability during finger movements.  相似文献   

11.
To examine whether transfer of heart rate (HR) feedback training to tasks not used during training could be improved by using multiple tasks during training, a modified multiple baseline across tasks, single subject design study was conducted using six high HR-reactive young adults. Participants received HR feedback training during the presentation of a videogame, and transfer of training was assessed to a mental arithmetic challenge and handgrip task. Transfer of training was next assessed following training with the mental arithmetic challenge and handgrip task. HR responses to each training task with no HR feedback were assessed during a pre-treatment session, an immediate post-training period following training on each task, a short delay (1–2 days) post-training session, and a long delay (1–2 weeks) post-training session. HR response to a novel speech task was assessed at pre-treatment and during short delay and long delay post-training sessions. Results revealed that participants reduced HR during training and generally maintained this reduction in HR during the immediate post-training assessment when HR feedback was not present. Participants were not able to reduce HR responses to tasks during short delay and long delay post-training sessions, and they were unable to transfer HR reduction skills to the speech task. Transfer of HR feedback training to new tasks was limited in nature and efforts to train across multiple stressors did not appear to improve transfer of training.  相似文献   

12.
The purpose of this study was to explore changes in spatial muscle activation within the three divisions of the trapezius muscle during a dynamic, cyclic task of the upper limb. Surface EMG signals were detected from thirteen healthy subjects from the upper, middle and lower divisions of the trapezius muscle at multiple electrode sites in the cephalad-caudal direction during a repetitive shoulder flexion task. Initial values and rate of change of average rectified value (ARV) and of instantaneous mean power spectral frequency (iMNF) were estimated at 45 degrees , 90 degrees and 120 degrees of shoulder flexion throughout the 5-min task. The location of the electrodes had a significant effect on initial EMG ARV for both the upper and middle division of the trapezius muscle (P<0.05). Both the rate of change and normalized rate of change of ARV were greatest for the most cranial muscle fibers of the upper division (P<0.05). Initial values and rates of change of iMNF were also affected by electrode location for the upper and lower divisions of the trapezius muscle (P<0.05). These results demonstrate that muscle activity and its changes over time depend on position within the three divisions of the trapezius muscle during a dynamic, cyclic task of the upper limb. This suggests non-uniform muscle fiber distribution and/or recruitment. The results also highlight the importance of multiple recording sites when investigating trapezius muscle function in dynamic tasks.  相似文献   

13.
We recorded the activity of cerebellar Purkinje cells (PCs), primary motor cortical (M1) neurons, and limb EMG signals while monkeys executed a sequential reaching and button pressing task. PC simple spike discharge generally correlated well with the activity of one or more forelimb muscles. Surprisingly, given the inhibitory projection of PCs, only about one quarter of the correlations were negative. The largest group of neurons burst during movement and were positively correlated with EMG signals, while another significant group burst and were negatively correlated. Among the PCs that paused during movement most were negatively correlated with EMG. The strength of these various correlations was somewhat weaker, on average, than equivalent correlations between M1 neurons and EMG signals. On the other hand, there were no significant differences in the timing of the onset of movement related discharge among these groups of PCs, or between the PCs and M1 neurons. PC discharge was modulated largely in phase, or directly out of phase, with muscle activity. The nearly synchronous activation of PCs and muscles yielded positive correlations, despite the fact that the synaptic effect of the PC discharge is inhibitory. The apparent function of this inhibition is to restrain activity in the limb premotor network, shaping it into a spatiotemporal pattern that is appropriate for controlling the many muscles that participate in this task. The observed timing suggests that the cerebellar cortex learns to modulate PC discharge predictively. Through the cerebellar nucleus, this PC signal is combined with an underlying cerebral cortical signal. In this manner the cerebellum refines the descending command as compared with the relatively crude version generated when the cerebellum is damaged.  相似文献   

14.
This study analysed the changes in electromyographic (EMG) activity of the vastus lateralis, biceps femoris and gastrocnemius muscles during incremental treadmill running. The changes in EMG were related to the lactate and ventilatory thresholds. Ten trained subjects participated in the study. Minute ventilation, oxygen consumption, carbon dioxide expired and the fraction of oxygen in the expired gas were recorded continuously. Venous blood samples were collected at each exercise intensity and analysed for lactate concentration. The EMG were recorded at the end of each exercise intensity using surface electrodes. The EMG were quantified through integration (iEMG) and by calculating the mean power frequency (MPF). The iEMG measurements were characterized by a breakpoint in the vastus lateralis and/or gastrocnemius muscles in eight of the subjects tested. However, the results indicated that blood lactate concentrations had already begun to increase in a nonlinear fashion before the iEMG breakpoint had been surpassed. Consequently, the occurence of the lactate threshold cannot be attributed solely to the change in motor unit recruitment or rate coding patterns demonstrated by the iEMG breakpoint. The ventilatory threshold was shown to be a far more reliable and convenient noninvasive predictor of the lactate threshold in comparison with EMG techniques. In conclusion, the EMG measurements used in this study (i.e. iEMG and MPF) were not considered to be viable noninvasive determinants of the aerobic-anaerobic transition phase in treadmill running.  相似文献   

15.
The shoulder allows kinematic and muscular changes to facilitate continued task performance during prolonged repetitive work. The purpose of this work was to examine changes during simulated repetitive work in response to a fatigue protocol. Participants performed 20 one-minute work cycles comprised of 4 shoulder centric tasks, a fatigue protocol, followed by 60 additional cycles. The fatigue protocol targeted the anterior deltoid and cycled between static and dynamic actions. EMG was collected from 14 upper extremity and back muscles and three-dimensional motion was captured during each work cycle. Participants completed post-fatigue work despite EMG manifestations of muscle fatigue, reduced flexion strength (by 28%), and increased perceived exertion (∼3 times). Throughout the post-fatigue work cycles, participants maintained performance via kinematic and muscular adaptations, such as reduced glenohumeral flexion and scapular rotation which were task specific and varied throughout the hour of simulated work. By the end of 60 post-fatigue work cycles, signs of fatigue persisted in the anterior deltoid and developed in the middle deltoid, yet perceived exertion and strength returned to pre-fatigue levels. Recovery from fatigue elicits changes in muscle activity and movement patterns that may not be perceived by the worker which has important implications for injury risk.  相似文献   

16.
Mental stress was induced by the Stroop colour word task (CW task) and the effects on the micro-circulation and electromyography (EMG) in the upper portion of the trapezius muscle were studied during a series of fatiguing, standardized static contractions. A lowered blood flow of the skin recorded continuously by laser-Doppler flowmetry (LDF) was used as a stress indicator in addition to an elevated heart rate. Muscle blood flow was recorded continuously by LDF using a single optical fibre placed inside the muscle, and related to surface EMG. A group of 20 healthy women of different ages was examined. Recordings were made during a 50-min period in the following sequence: a 10-min series of alternating 1-min periods of rest and stepwise increased contraction induced by keeping the arms straight and elevated at 30, 60, 90 and 135° with a 1-kg load carried in each hand; a 10-min recovery period without load; a repeated contraction series with simultaneous performance of the CW task; a second 10-min recovery period, and a second contraction series without CW task. Signal processing was done on line by computer. The LDF and root mean square (rms)-EMG values were calculated, as well as the EMG mean power frequency (MPF) for fatigue. The CW-task added to the contraction series caused an increase in the heart rate accompanied by a decrease in the blood flow to the skin and a 30% increase in the blood flow in the exercising muscle. Both returned to normal during the subsequent recovery period and showed normal levels during the final contraction series without CW. The rms-EMG showed a 20% increase that persisted during the final contraction series performed without CW. There was no influence on MPF. This CW has previously been shown to evoke an increased secretion of adrenaline from the adrenal medullae to the blood. The increased blood flow in the exercising muscle would therefore appear to have been caused by -adrenoceptor vasodilatation, and the fall in the blood flow in the skin by -adrenoceptor vasoconstriction. The findings may have implications for work situations characterized by repetitive static loads to the shoulder muscles and psychological stress.  相似文献   

17.
In this study, we investigated a motor strategy for increasing the amplitude of movement in rapid extensions at the elbow joint. This study focused on the changes in a triphasic electromyographic (EMG) pattern, i.e., the first agonist burst (AG1), the second agonist burst (AG2) and the antagonist burst (ANT), for increasing the amplitude of movement required after the initiation of movement. Subjects performed 40° (Basic task) and 80° of extension (Wide task). These tasks were performed under two conditions; performing a predetermined task (SF condition) and performing a task in response to a visual stimulus immediately after movement commencement (ST condition). Kinematic parameters and EMG activity from the agonist (triceps brachii) and the antagonist (biceps brachii) muscles were recorded. As a result, the onset latency of AG1 and AG2 and the duration of AG1 were longer under the ST condition than the SF condition. No difference was observed between the SF and ST condition with respect to ANT activity. It is concluded that the motor strategy for increasing the amplitude of movement after the initiation of movement was to control the movement velocity and the timing to stop movement by the coactivation duration of AG1 and ANT and to stop the desired position accurately by AG2 activity.  相似文献   

18.
目的:通过观察肌电图(EMG)的变化,了解运动员与普通中学生在纵跳过程中,膝关节屈伸肌群工作特点,为运动员科学选材提供依据。方法:30名男女青少年运动员和30名男女普通中学生进行各种形式纵跳(蹲跳、反向跳、下落跳),测试膝关节屈伸肌群的EMG变化情况。结果:主动肌(股外肌)EMG的变化存在性别差异,随着下肢工作强度的增加,男运动员积分肌电图(iEMG)和平均功率频率(Fmean)均没有显著变化,女运动员iEMG增加,Fmean没有显著变化,对抗肌(股二头肌),随着下肢工作强度的增加。青少年运动员EMG活动变化较小,而普通中学生的EMG活动明显增加。结论:在增加工作负荷的过程中,男运动员膝关节伸肌群以提高效率为主,女运动员以提高肌肉的募集数量为主;运动员的对抗肌协调水平高于普通中学生。  相似文献   

19.
Several investigations suggest that actual and mental actions trigger similar neural substrates. Yet, neurophysiological evidences on the nature of interhemispheric interactions during mental movements are still meagre. Here, we asked whether the content of mental images, investigated by task complexity, is finely represented in the inhibitory interactions between the two primary motor cortices (M1s). Subjects’ left M1 was stimulated by means of transcranial magnetic stimulation (TMS) while they were performing actual or mental movements of increasing complexity with their right hand and exerting a maximum isometric force with their left thumb and index. Thus, we simultaneously assessed the corticospinal excitability in the right opponent pollicis muscle (OP) and the ipsilateral silent period (iSP) in the left OP during actual and mental movements. Corticospinal excitability in right OP increased during actual and mental movements, but task complexity-dependent changes were only observed during actual movements. Interhemispheric motor inhibition in the left OP was similarly modulated by task complexity in both mental and actual movements. Precisely, the duration and the area of the iSP increased with task complexity in both movement conditions. Our findings suggest that mental and actual movements share similar inhibitory neural circuits between the two homologous primary motor cortex areas.  相似文献   

20.
The sound (SMG) generated by the biceps muscle during isometric exercise at 20, 40, 60, and 80% of maximum voluntary contraction (MVC) up to exhaustion has been recorded by a contact transducer and integrated (iSMG), together with the surface electromyogram (EMG) in eight young untrained men. At the onset of exercise, iSMG and integrated surface EMG (iEMG) amplitude increased linearly with exercise. iSMG remained constant for 253 +/- 73 (SD), 45 +/- 16, 21 +/- 5, and 0 s at the four levels of contraction. Then iSMG increased linearly at 20% MVC, fluctuated at 40% MVC, and decreased exponentially at 60 and 80% MVC. iSMG exhaustion-to-onset ratio was 5.0 at 20%, 1.0 at 40%, and 0.2 at 60 and 80% MVC. On the contrary, independently of exercise intensity, iEMG increased with time, being 1.4 higher at exhaustion than at the onset. The nonunivocal iSMG changes with time and effort of exercise suggest that the sound may be a useful tool to acquire different information to EMG and output force during muscle contraction up to fatigue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号