首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catecholaminergic neurotoxin 6-hydroxydopamine has been widely used to mimic the lesions in dopaminergic neurons to develop Parkinson’s disease. The present study was aimed to evaluate the combined treatment with Curcumin and desferrioxamine (DFO) on 6-OHDA- induced neurotoxicity in the striatum of rats. Rat models with 6-OHDA-induced Parkinson’s disease were treated with curcumin, DFO, or both and the effect of different treatments on dopamine level was examined. Moreover, the effect of different treatments on the levels of PCC, SOD, and GSH was also assessed to elucidate the underlying mechanisms of the neuroprotective effects of combined treatment of curcumin and DFO.  相似文献   

2.
We have studied permeability of isolated rat hepatocyte membranes for molecules of dimethyl sulfoxide (DMSO) at different hypertonicity of a cryoprotective medium. The permeability coefficient of hepatocyte membranes k 1 for DMSO molecules was shown to be the differential function of osmotic pressure between a cell and an extracellular medium. Ten-fold augmentation of DMSO concentration in the cryoprotective medium causes the decrease of permeability coefficients k 1 probably associated with the increased viscosity in membrane-adjacent liquid layers as well as partial limitations appeared as a result of change in cell membrane shape after hepatocyte dehydration. We have found out that in aqueous solutions of NaCl (2246 mOsm/L) and DMSO (2250 mOsm/L) the filtration coefficient L p in the presence of a penetrating cryoprotectant (L pDMSO = (4.45 ± 0.04) · 10?14 m3/Ns) is 3 orders lower compared to the case with electrolyte (L pNaCl = (2.25 ± 0.25) · 10?11 m3/Ns). This phenomenon is stipulated by the cross impact of flows of a cryoprotectant and water at the stage of cell dehydration. Pronounced lipophilicity of DMSO, geometric parameters of its molecule as well as the presence of large aqueous pores in rat hepatocyte membranes allow of suggesting the availability of two ways of penetrating this cryoprotectant into the cells by non-specific diffusion through membrane lipid areas and hydrophilic channels.  相似文献   

3.
The aim of the present study was to assess whether the protective effects of ischemic preconditioning (PC) are associated with activation of the mitochondrial ATP-sensitive potassium channels (mitoKATP) and if there is any relationship between the activity of these channels and the mitochondrial permeability transition pore (MPTP) opening in ischemic-reperfused rat hearts under different nutritional conditions. Langendorff-perfused hearts of fed and 24-h fasted rats were exposed to 25 min of no-flow global ischemia plus 30 min of reperfusion. Fasting accelerated functional recovery and attenuated MPTP opening. The mitoKATP blocker, 5-hydroxydecanoic (HD), did not influence functional recovery and MPTP opening induced by ischemia–reperfusion in the fed hearts but partially reversed the beneficial effects of fasting. PC and the mitoKATP opener, diazoxide (DZ), improved functional recovery, preserved cell viability, and inhibited MPTP opening in both fed and fasted hearts. The protection elicited by PC and DZ on contractile recovery and MPTP opening was reversed by HD, which did not affect cell viability. Altogether, these results argue for a role of mitoKATP and its impact on preservation mitochondrial inner membrane permeability as a relevant factor in the improvement of contractile function in the ischemic-reperfused rat heart. They also suggest that the functional protection elicited by PC may be related to this mechanism.  相似文献   

4.
5.

Aim

Iron deficiency is a common comorbidity in chronic heart failure (CHF) which may exacerbate CHF. The c-kit+ cardiac stem cells (CSCs) play a vital role in cardiac function repair. However, much is unknown regarding the role of iron deficiency in regulating c-kit+ CSCs function. In this study, we investigated whether iron deficiency regulates c-kit+ CSCs proliferation, migration, apoptosis, and differentiation in vitro.

Method

All c-kit+ CSCs were isolated from adult C57BL/6 mice. The c-kit+ CSCs were cultured with deferoxamine (DFO, an iron chelator), mimosine (MIM, another iron chelator), or a complex of DFO and iron (Fe(III)), respectively. Cell migration was assayed using a 48-well chamber system. Proliferation, cell cycle, and apoptosis of c-kit+ CSCs were analyzed with BrdU labeling, population doubling time assay, CCK-8 assay, and flow cytometry. Caspase-3 protein level and activity were examined with Western blotting and spectrophotometric detection. The changes in the expression of cardiac-specific proteins (GATA-4,TNI, and β-MHC) and cell cycle-related proteins (cyclin D1, RB, and pRB) were detected with Western blotting.

Result

DFO and MIM suppressed c-kit+ CSCs proliferation and differentiation. They also modulated cell cycle and cardiac-specific protein expression. Iron chelators down-regulated the expression and phosphorylation of cell cycle-related proteins. Iron reversed those suppressive effects of DFO. DFO and MIM didn’t affect c-kit+ CSCs migration and apoptosis.

Conclusion

Iron deficiency suppressed proliferation and differentiation of c-kit+ CSCs. This may partly explain how iron deficiency affects CHF prognosis.  相似文献   

6.
Haemophilus influenzae may be distinguished from other gram-negative bacteria by its growth requirement for hemin. The ability of this bacterium to accumulate hemin while growing in a fully defined medium has been partially characterized.Haemophilus influenzae type b ATCC 9795 transported hemin at a rate of 1.2 pmol/min/109 cells during logarithmic growth. The kinetics of active transport of doubly radiolabeled hemin indicated that both iron and the porphyrin ring were taken up at the same rate. Hemin satisfied some of the total iron requirement ofHaemophilus as determined by starving the cells for iron with the addition of ethylenediamine-di-(o-hydroxyphenylacetic acid) (EDDA) and by limiting the porphyrin supply. Outer membrane proteins were compared from cells grown under hemin sufficiency versus cells grown under hemin starvation: in the latter case, a protein of molecular weight 43,000 was present in enhanced amounts; this protein may play a role in the permeability of hemin across the cell envelope ofH. influenzae type b.  相似文献   

7.
Cell-impermeant iron chelator desferrioxamine (DFO) can have access to organelles if appended to suitable vectors. Mitochondria are important targets for the treatment of iron overload-related neurodegenerative diseases. Triphenylphosphonium (TPP) is a delocalized lipophilic cation used to ferry molecules to mitochondria. Here we report the synthesis and characterization of the conjugate TPP–DFO as a mitochondrial iron chelator. TPP–DFO maintained both a high affinity for iron and the antioxidant activity when compared to parent DFO. TPP–DFO was less toxic than TPP alone to A2780 cells (IC50 = 135.60 ± 1.08 and 4.34 ± 1.06 μmol L?1, respectively) and its native fluorescence was used to assess its mitochondrial localization (Rr = +0.56). These results suggest that TPP–DFO could be an interesting alternative for the treatment of mitochondrial iron overload e.g. in Friedreich’s ataxia.  相似文献   

8.

Objective

Over 5% of the world's population suffers from disabling hearing loss. Stem cell homing in target tissue is an important aspect of cell‐based therapy, which its augmentation increases cell therapy efficiency. Deferoxamine (DFO) can induce the Akt activation, and phosphorylation status of AKT (p‐AKT) upregulates CXC chemokine receptor‐4 (CXCR4) expression. We examined whether DFO can enhance mesenchymal stem cells (MSCs) homing in noise‐induced damaged cochlea by PI3K/AKT dependent mechanism.

Materials and Methods

Mesenchymal stem cells were treated with DFO. AKT, p‐AKT protein and hypoxia inducible factor 1‐ α (HIF‐1α) and CXCR4 gene and protein expression was evaluated by RT‐ PCR and Western blot analysis. For in vivo assay, rats were assigned to control, sham, noise exposure groups without any treatment or receiving normal, DFO‐treated and DFO +LY294002 (The PI3K inhibitor)‐treated MSCs. Following chronic exposure to 115 dB white noise, MSCs were injected into the rat cochlea through the round window. Number of Hoechst‐ labelled cells was determined in the endolymph after 24 hours.

Results

Deferoxamine increased P‐AKT, HIF‐1α and CXCR4 expression in MSCs compared to non‐treated cells. DFO pre‐conditioning significantly increased the homing ability of MSCs into injured ear compared to normal MSCs. These effects of DFO were blocked by LY294002.

Conclusions

Pre‐conditioning of MSCs by DFO before transplantation can improve stem cell homing in the damaged cochlea through PI3K/AKT pathway activation.
  相似文献   

9.
Acute intestinal ischemia reperfusion (IR) injury is often associated with intestinal epithelial barrier (IEB) dysfunction. Enteric glial cells (EGCs) play an essential role in maintaining the integrity of IEB functions. However, the precise mechanism of EGCs under IR stimulation remains unclear. Here, we report that EGCs are closely involved in the modulation of IEB functions in response to IR challenge. The intestinal IR treatment led to the significant upregulation of the EGC activation marker, glial fibrillary acidic protein, accompanied by the increasing abundance of glial-derived neurotrophic factor (GDNF) and inducible nitric oxidase (iNOS) proteins, which was also confirmed in in vitro hypoxia reoxygenation (HR) tests. Co-culturing with EGCs attenuated the tight junctional abnormalities, blocked the downregulation of ZO-1 and occludin protein expression, and relieved the decrease of permeability of intestinal epithelial cell (IEC) monolayers under HR treatment. Furthermore, exogenous GDNF administration displays the barrier-protective effects similar to EGCs against HR stimulation, while RNA interference-mediated knockdown of GDNF significantly inhibited the protective capability of EGCs. The expression of both GDNF and iNOS proteins of EGCs was significantly upregulated by co-culturing with IECs, which was further increased by HR treatment. Interestingly, through inhibiting iNOS activity, the barrier-protective effect of EGCs was influenced in normal condition but enhanced in HR condition. These results suggest that GDNF plays an important role in the barrier-protective mechanism of activated EGCs under IR stimulation, whereas EGCs (via iNOS release) are also involved in intestinal inflammation response, which may contribute to IEB damage induced by IR injury.  相似文献   

10.
The effect of FeSO4.7H2O, Fe2(SO4)3.9H2O, disodium salt of ethylene-diaminotetraacetic acid, dihydrate (EDTA) and N-(2-acetamido) iminodiacetic acid (ADA) and their combinations on the androgenesis was studiedin vitro in tobacco (cv. White Burley) and datura (Datura innoxia Mill.). Simultaneously the reversibility and irreversibility of the morphogenic process leading to the conversion of the pollen embryoid into complete plant was followed. Complete plants developed in anthers on media with trivalent iron, chelated trivalent iron, chelated bivalent iron, bivalent iron in the presence of ADA and of media with EDTA. The number of androgenic plants in anthers increased in the following order: Fe3+ < Fe3+ EDTA ≦ ≦ EDTA < Fe2+ EDTA. The marked brown colour of cultured anthers was due to the presence of trivalent iron in the medium. The androgenic development was most rapid on the medium containing only trivalent iron, slower on media with chelated iron and slowest on medium with EDTA. The viability of cultures with complete plants decreased in the reverse order. No complete plants grew on media without trivalent iron and without EDTA and on media containing only bivalent iron whereas globular embryoids arose and developed continuously on these media. The anthers reacted in the same way on both complete and minimal media. Isolated embryoids formed complete plants in corresponding variants on complete media only. The development of pollen embryoids into complete plants was stopped by the transfer of globular and torpedo-shaped embryoids from medium with EDTA to the medium without EDTA. Isolated greenish cotyledonar embryoids continued to grow even on the medium without EDTA.  相似文献   

11.
This study investigated the nitric oxide (NO) role as a mediator of arginine on bacterial translocation (BT) and gut damage in mice after intestinal obstruction (IO). The effects of pretreatment with arginine with or without NO inhibition on the systemic and local immunological response were also assessed. Mice were categorized into four groups. Group ARG received chow containing 2 % arginine, while group ARG + l-NAME received the same diet plus l-NAME (N-nitro-l-arginine methyl ester) by gavage. The IO and Sham groups were fed standard chow. After 7 days, animals were gavaged with radiolabeled Escherichia coli, anesthetized and subjected to IO, except the Sham group. Animals were euthanized after 18 h, and BT was evaluated in the mesenteric lymph nodes, blood, liver, spleen and lungs. In another experiment, the intestinal injury was assessed regarding intestinal permeability and ileum histological analyses. Intestinal secretory immunoglobulin A (sIgA) levels, serum IFN-γ and IL-10 cytokines were assessed. Arginine reduced BT, but NO inhibition enhanced BT compared with the ARG group (p < 0.05). Intestinal permeability in the ARG and ARG + l-NAME groups was similar but decreased when compared with the IO group (p < 0.05). Histological preservation was observed. Arginine treatment increased IL-10 and sIgA levels when compared with the Sham and IO groups (p < 0.05). The cytokines and sIgA concentrations were similar in the ARG + l-NAME and Sham groups. Arginine appeared to reduce BT and its effects on the modulation of cytokines and secretory IgA in mice after IO are mediated by NO production.  相似文献   

12.
Prion disorders are progressive neurodegenerative diseases characterized by extensive neuronal loss and accumulation of the abnormal form of the scrapie prion protein (PrP). Rutin is a flavonoid that occurs naturally in plant-derived beverages and foods and is used in traditional and folkloric medicine worldwide. In the present study, we evaluated the protective effects of rutin against PrP fragment (106–126)-induced neuronal cell death. Rutin treatment blocked PrP(106–126)-mediated increases in reactive oxygen species production and nitric oxide release and helped slowing the decrease of neurotrophic factors that results from PrP accumulation. Rutin attenuated PrP(106–126)-associated mitochondrial apoptotic events by inhibiting mitochondrial permeability transition and caspase-3 activity and blocking expression of the apoptotic signals Bax and PARP. Additionally, rutin treatment significantly decreased the expression of the death receptor Fas and its ligand Fas-L. Overall, our results demonstrated that rutin protects against the neurodegenerative effects of prion accumulation by increasing production of neurotropic factors and inhibiting apoptotic pathway activation in neuronal cells. These results suggested that rutin may have clinical benefits for prion diseases and other neurodegenerative disorders.  相似文献   

13.
The addition of Na2EDTA to a minimal medium (agar, sucrose) deprived of cations produces no morphoregulatory effect. This effect is induced only by the addition of iron. Traces of iron present in the agar are sufficient for the development of globular embryoid into a complete plant. The traces of iron in distilled water and sucrose (p. a.) are insufficient for the morphoregulation. The marked difference between the necessary limiting amount of chelate and necessary limiting amount of iron in non-modified media is explained by the presence of other cations, which saturate and thereby inactivate a greater part of Na2EDTA. It is recommended to decrease the amount of iron and leave the commonly used amount of chelate in the prepared media. Simultaneously with optimal morphoregulatory effect in androgenesis and somatic embryogenesis, vitality of tissue culture will be lengthened and ageing as well as necrosis of the cultures be decreased.  相似文献   

14.
This study was aimed to elucidate the roles of inhibition of related JAK/STAT pathways in regulating cytotoxicity induced by cisplatin in non-small-cell lung cancer (NSCLC) cell. We treated five non-small-cell lung cancer cell lines with cisplatin alone or with cisplatin and Jak2 inhibitor (ruxolitinib) and assessed cell viability, expression of Jak2 and STAT3 and cell apoptosis. We also investigated the effect of combination treatment inhibited tumor xenograft growth in two human NSCLC xenograft models bearing the cisplatin resistant (H1299) and sensitive (A549) cells. Different cell lines with different genetic background showed half-maximal inhibitory concentrations (IC50) of cisplatin from 4.66 to 68.28 µmol/L. They could be divided into cisplatin intrinsic resistant and cisplatin sensitive cell lines. In cisplatin-resistant cells with higher Jak2 and STAT3 expression, cisplatin and ruxolitinib combination dramatically suppressed the cell growth, down-regulated the expression of phosphorylated STAT3 and induced cleaved caspase-3 expression. Moreover combination with cisplatin and ruxolitinib also significantly inhibited the growth of resistant cell H1299, A549/DDP and H2347 in soft agar model. Finally, combination group significant inhibited the tumor growth and induced the caspase-3 expression compared with either single agent alone (P < 0.05) on the resistant cell xenografts model. The present study indicates that further study is warranted to determine the effectiveness of combination treatment with cisplatin and Jak2/stat3 pathway inhibitor for platinum-resistant NSCLC.  相似文献   

15.
Atherosclerosis is the common pathological basis of cardiovascular and cerebrovascular disease. This study aimed to investigate the effects of vascular endothelial growth factor (VEGF) and salvianolic acid B (SalB) on the permeability of the rabbit aortary endothelial cells (RAECs) and to figure out the possible underlying molecular mechanisms. The extravasation of 125I-low density lipoprotein (125I-LDL) through the RAECs was significantly increased by VEGF and decreased by SalB. Meanwhile, the tight junction-associated proteins occludin and claudin-5 were found downregulated by VEGF and the caveolae structure proteins caveolin-1 and caveolin-2 upregulated, which were abolished by the infusion of SalB. In addition, a marked increase in levels of cGMP and protein kinase G-1 (PKG-1) as well as activation of nuclear factor-κB (NF-κB) p65 were found after VEGF infusion, which were attenuated by SalB. This study demonstrates that VEGF and SalB can alter the LDL permeability of the RAECs by a paracellular pathway (downregulation of occludin and claudin-5) and a transcellular pathway (upregulation of caveolin-1 and caveolin-2), in which the cGMP/PKG/NF-κB signal pathway is possibly involved. The experimental results provide a new method and basic knowledge of prevention and treatment for cardiovascular and cerebrovascular disease.  相似文献   

16.
This study investigated the cytotoxicity, genotoxicity, and growth inhibition effects of four different inorganic nanoparticles (NPs) such as aluminum (nAl), iron (nFe), nickel (nNi), and zinc (nZn) on a dibenzofuran (DF) degrading bacterium Agrobacterium sp. PH-08. NP (0–1,000 mg L?1) -treated bacterial cells were assessed for cytotoxicity, genotoxicity, growth and biodegradation activities at biochemical and molecular levels. In an aqueous system, the bacterial cells treated with nAl, nZn and nNi at 500 mg L?1 showed significant reduction in cell viability (30–93.6 %, p < 0.05), while nFe had no significant inhibition on bacterial cell viability. In the presence of nAl, nZn and nNi, the cells exhibited elevated levels of reactive oxygen species (ROS), DNA damage and cell death. Furthermore, NP exposure showed significant (p < 0.05) impairment in DF and catechol biodegradation activities. The reduction in DF biodegradation was ranged about 71.7–91.6 % with single NPs treatments while reached up to 96.3 % with a mixture of NPs. Molecular and biochemical investigations also clearly revealed that NP exposure drastically affected the catechol-2,3-dioxygenase activities and its gene (c23o) expression. However, no significant inhibition was observed in nFe treatment. The bacterial extracellular polymeric materials and by-products from DF degradation can be assumed as key factors in diminishing the toxic effects of NPs, especially for nFe. This study clearly demonstrates the impact of single and mixed NPs on the microbial catabolism of xenobiotic-degrading bacteria at biochemical and molecular levels. This is the first study on estimating the impact of mixed NPs on microbial biodegradation.  相似文献   

17.
Non-small cell lung cancer (NSCLC) is an intractable disease for which effective treatment approaches are urgently needed. The ability to induce antigen-specific immune responses in patients with lung cancer has led to the development of immunotherapy as a novel concept for the treatment of NSCLC. Adoptive cellular therapy (ACT) represents an important advancement in cancer immunotherapy with the utilization of tumor infiltrating lymphocytes, cytokine-induced killer cells, natural killer cells and γδ T cells. In this study, we review recent advances in ACT for NSCLC in clinical trials and provide a perspective on the improvement in ACT and potential therapeutic approaches using engineered T cell therapy for NSCLC.  相似文献   

18.
The surface anionic groups of untreated or dimethyl sulfoxide (DMSO)-treatedHerpetomonas samuelpessoai cells were analyzed by cell electrophoresis, ultrastructural cytochemistry, and identification of sialic acids using thin-layer chromatography. Differentiation ofH. samuelpessoai induced by DMSO treatment caused a significant increase in the net negative surface charge. In flagellates exposed to DMSO, more cationized ferritin, colloidal iron hydroxide, and sendai virus particles bound to the cell surface. Treatment of both untreated and DMSO-treated flagellates with neuraminidase decreased markedly the EPM of cells to the cathodic pole. These findings suggest that sialic acid residues are the major anionogenic groups exposed on the surface ofH. samuelpessoai. Thin-layer chromatography showed thatN-acetyl andN,O-diacylneuraminic acids, in equal proportions, were present inH. samuelpessoai. However,N-acetylneuraminic acid predominates in DMSO-treated cells.  相似文献   

19.
Cardiac fibroblasts are known to be essential for adaptive responses in the pathogenesis of cardiovascular diseases, and increased intercellular communication of myocardial cells and cardiac fibroblasts acts as a crucial factor in maintaining the functional integrity of the heart. AMP-activated kinase (AMPK) is a key stress signaling kinase, which plays an important role in promoting cell survival and improving cell function. However, the underlying link between AMPK and gap junctional communication (GJIC) is still poorly understood. In this study, a connection between AMPK and GJIC in high glucose-mediated neonatal cardiac fibroblasts was assessed using fibroblast migration, measurement of dye transfer and connexin43 (Cx43) expression. 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) and Compound C (CC) were used to regulate AMPK activity. The levels of cell migration and Cx43 protein expression in neonatal cardiac fibroblasts increased during high glucose treatment, accompanied by developed dye transfer. In addition, high glucose induced abundant phosphorylation of AMPK. Suppression of AMPK phosphorylation using CC reduced dye transfer, cell migration and Cx43 protein expression in neonatal cardiac fibroblasts, whereas the activation of AMPK using AICAR mimicked the high glucose-mediated cell migration, Cx43 protein expression and dye transfer enhancement. AMPK appears to participate in regulating GJIC in high-glucose-treated neonatal cardiac fibroblasts, including cell migration, dye transfer, Cx43 expression and distribution.  相似文献   

20.
Glioblastoma is a highly aggressive type of brain cancer which currently has limited options for treatment. It is imperative to develop combination therapies that could cause apoptosis in glioblastoma. The aim of this study was to characterize the affect of modified ICA-1, a PKC-iota inhibitor, on the growth pattern of various glioblastoma cell lines. T98G and U87 glioblastoma cells were treated with ICA-1 alone and the absolute cell numbers of each group were determined for cell growth expansion analysis, cell viability analysis, and cell death analysis. Low dose ICA-1 treatment alone significantly inhibited cell growth expansion of high density glioblastoma cells without inducing cell death. However, the high dose ICA-1 treatment regimen provided significant apoptosis for glioblastoma cells. Furthermore, this study was conducted to use a two layer molecular level approach for treating glioblastoma cells with ICA-1 plus an apoptosis agent, tumor-necrosis factor-related apoptosis-inducing ligand (TRAIL), to induce apoptosis in such chemo-refractory cancer cells. Following ICA-1 plus TRAIL treatment, apoptosis was detected in glioblastoma cells via the TUNEL assay and via flow cytometric analysis using Annexin-V FITC/PI. This study offers the first evidence for ICA-1 alone to inhibit glioblastoma cell proliferation as well as the novel combination of ICA-1 with TRAIL to cause robust apoptosis in a caspase-3 mediated mechanism. Furthermore, ICA-1 plus TRAIL simultaneously modulates down-regulation of PKC-iota and c-Jun.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号