首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Susceptibility or resistance to infection with Cryptosporidium parvum (C.parvum) correlates with Selenium (Se) deficiency in response to infection. Both adult Se-adequate and Se-deficient mouse models of cryptosporidiosis were used to study the cell-mediated immune response during the course of C. parvum infection.

Methodology/Principal Findings

Blood samples from mouse models were used for Se status. The concentration of MDA, SOD, GPx and CAT in blood has revealed that lower Se level exist in Se-deficient mice. Mesenteric lymph node (MLN) lymphocytes from both mouse models were proliferated after ex vivo re-stimulation with C. parvum sporozoite antigen. The study of the cytokine profiles from the supernatant of proliferated MLN cells revealed that Se-adequate mice produced higher levels of Th1 (IFN-γ and IL-2) and moderate amounts of Th2 (IL-4) cytokines throughout the course of infection. Whereas, MLN cells from Se-deficient mice produced lower levels of IFN-γ, IL-2 and IL-4 cytokines. The counts of total white cell and CD3, CD4, CD8 cell in Se-adequate were higher than that in Se-deficient mice.

Significance

These results suggest that Cell immunity is affected by Se status after infection with C.parvum from kinetic changes of different white cells and cytokine. In conclusion, induced susceptibility of host is associated with an impaired antioxidant system following infection with C.parvum in C57BL/6 Selenium deficient mice.  相似文献   

2.
Recently we showed that exchanging intact casein with extensively hydrolysed casein in Western diets prevented diet-induced obesity in obesity-prone C57BL/6J mice. To gain further insight into the underlying mechanisms for the metabolic alterations induced by intake of hydrolysed casein, we performed an exploratory investigation using proton NMR spectroscopy, multi-block PCA (MBPCA) and a multi-compartment model including analyses of plasma, urine, faeces and tissue samples from mice fed diets with intact or hydrolysed casein and 16 or 32 energy% protein. The MBPCA superscores showed a clear separation between samples from mice fed intact and hydrolysed casein diets, respectively. Block loadings revealed that fecal fat content was higher, and tissue and plasma lipid levels were lower in mice fed hydrolysed casein diets compared with mice fed intact casein. Amino acid metabolism was also altered by dietary protein form, and levels of branched-chain amino acids were higher in faeces and urine and lower in plasma and spleen in mice fed hydrolysed protein. Moreover, hepatic levels of the sulphur-containing metabolites taurine and glutathione were increased in mice fed hydrolysed casein, and hepatic glycogen amount was increased in mice fed hydrolysed casein. In contrast, the levels of glucose and its metabolite lactate were reduced in faeces, liver and plasma. Taken together, NMR-based metabolomic analyses indicated that pathways within lipid, amino acid and carbohydrate metabolism were altered by intake of hydrolysed casein, and that these alterations are likely to be underlying mechanisms for the observed prevention against diet-induced obesity associated with hydrolysed casein intake.  相似文献   

3.
Deficiency of IQGAP2, a scaffolding protein expressed primarily in liver leads to rearrangements of hepatic protein compartmentalization and altered regulation of enzyme functions predisposing development of hepatocellular carcinoma and diabetes. Employing a systems approach with proteomics, metabolomics and fluxes characterizations, we examined the effects of IQGAP2 deficient proteomic changes on cellular metabolism and the overall metabolic phenotype. Iqgap2 ?/?mice demonstrated metabolic inflexibility, fasting hyperglycemia and obesity. Such phenotypic characteristics were associated with aberrant hepatic regulations of glycolysis/gluconeogenesis, glycogenolysis, lipid homeostasis and futile cycling corroborated with corresponding proteomic changes in cytosolic and mitochondrial compartments. IQGAP2 deficiency also led to truncated TCA-cycle, increased anaplerosis, increased supply of acetyl-CoA for de novo lipogenesis, and increased mitochondrial methyl-donor metabolism necessary for nucleotides synthesis. Our results suggest that changes in metabolic networks in IQGAP2 deficiency create a hepatic environment of a ‘pre-diabetic’ phenotype and a predisposition to non-alcoholic fatty liver disease which has been linked to the development of hepatocellular carcinoma.  相似文献   

4.

Introduction

Obestatin is a controversial gastrointestinal peptide purported to have metabolic actions.

Objectives

This study investigated whether treatment with a stable obestatin analogue (PEG-OB(Cys10, Cys13)) changed plasma metabolite levels firstly in lean and subsequently in diet-induced obesity (DIO) C57BL6/J mice.

Methods

Untargeted LC-HRMS metabolomics experiments were carried out in ESI + mode with plasma extracts from both groups of animals. Data were normalised, multivariate and univariate statistical analysis performed and metabolites of interest putatively identified.

Results

In lean mice, 39 metabolites were significantly changed by obestatin treatment and the majority of these were increased, including various C16 and C18 moieties of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and monoacylglycerol, along with vitamin A, vitamin D3, tyrosine, acetylcarnitine and 2α-(hydroxymethyl)-5α-androstane-3β,17β-diol. Decreased concentrations of glycolithocholic acid, 3-dehydroteasterone and various phospholipids were observed. In DIO mice, 25 metabolites were significantly affected and strikingly, the magnitudes of changes here were generally much greater in DIO mice than in lean mice, and in contrast, the majority of metabolite changes were decreases. Four metabolites affected in both groups included glycolithocholic acid, and three different long-chain (C18) phospholipid molecules (phosphatidylethanolamine, platelet activating factor (PAF), and monoacylglycerol). Metabolites exclusively affected in DIO mice included various phosphatidylcholines, lysophosphatidylcholines and fatty acyls, as well as creatine and oxidised glutathione.

Conclusion

This investigation demonstrates that obestatin treatment affects phospholipid turnover and influences lipid homeostasis, whilst providing convincing evidence that obestatin may be acting to ameliorate diet-induced impairments in lipid metabolism, and it may influence steroid, bile acid, PAF and glutathione metabolism.
  相似文献   

5.
Dietary selenium (Se) deficiency induces muscular dystrophy in chicken, but the molecular mechanism remains unclear. The aim of the present study was to investigate the effect of dietary Se deficiency on the expressions of 25 selenoproteins. One-day-old broiler chickens were fed either an Se deficiency diet (0.033 mg Se/kg; produced in the Se-deficient area of Heilongjiang, China) or a diet supplemented with Se (as sodium selenite) at 0.2 mg/kg for 55 days. Then, the mRNA levels of 25 selenoproteins in chicken muscles were examined, and the principal component was further analyzed. The results showed that antioxidative selenoproteins especially Gpxs and Sepw1 were highly and extensively expressed than other types of selenoproteins in chicken muscles. In 25 selenoproteins, Gpxs, Txnrd2, Txnrd 3, Dio1, Dio 3, Selk, Sels, Sepw1, Selh, Sep15, Selu, Selpb, Sepp1, Selo, Sepx1, and SPS2 were downregulated (P?P?>?0.05). Se deficiency decreased the expressions of 19 selenoproteins (P?P?相似文献   

6.
Dietary selenium (Se) deficiency is known to cause myodynia syndrome and Se influences immune responses by changing the expression of inflammatory cytokines and heat shock proteins (Hsps), but the details are not completely elucidated. In the present study, 72 1-day-old mice were divided into two groups; the first group was fed a Se-sufficient diet, while the second group was fed a Se-deficient diet. Skeletal muscles and blood samples were taken from all mice after 42 days of treatment. The activities of glutathione peroxidase (GPX) and glutathione (GSH), mRNA and protein expression levels of inflammatory cytokines (including TNF-α, inducible NO synthase, cyclooxygenase-2, and prostaglandin E synthases), protein expression levels of NF-κB, and the mRNA expression levels of Hsps in the skeletal muscles of mice were examined. The results showed that GPX and GSH activities were decreased, while the mRNA and protein expression levels of inflammatory cytokines and the mRNA levels of Hsps were increased by Se deficiency in mouse skeletal muscles. In the present study, the protective role of Se in oxidative stress, inflammatory cytokines, and Hsps in the skeletal muscles of mice was summarized.  相似文献   

7.
Second-generation selenium-deficient weanling rats fed graded levels of dietary Se were used (a) to study the impact of initial Se deficiency on dietary Se requirements; (b) to determine if further decreases in selenoperoxidase expression, especially glutathione peroxidase 4 (Gpx4), affect growth or gross disease; and (c) to examine the impact of vitamin E deficiency on biochemical and molecular biomarkers of Se status. Rats were fed a vitamin E-deficient and Se-deficient crystalline amino acid diet (3 ng Se/g diet) or that diet supplemented with 100 μg/g all-rac-α-tocopheryl acetate and/or 0, 0.02, 0.05, 0.075, 0.1, or 0.2 μg Se/g diet as Na2SeO3 for 28 days. Se-supplemented rats grew 6.91 g/day as compared to 2.17 and 3.87 g/day for vitamin E-deficient/Se-deficient and vitamin E-supplemented/Se-deficient groups, respectively. In Se-deficient rats, liver Se, plasma Gpx3, red blood cell Gpx1, liver Gpx1 and Gpx4 activities, and liver Gpx1 mRNA levels decreased to <1, <1, 21, 1.6, 49, and 11 %, respectively, of levels in rats fed 0.2 μg Se/g diet. For all biomarkers, ANOVA indicated significant effects of dietary Se, but no significant effects of vitamin E or vitamin E × Se interaction, showing that vitamin E deficiency, even in severely Se-deficient rat pups, does not result in compensatory changes in these biochemical and molecular biomarkers of selenoprotein expression. Se requirements determined in this study, however, were >50 % higher than in previous studies that started with Se-adequate rats, demonstrating that dietary Se requirements determined using initially Se-deficient animals can result in overestimation of Se requirements.  相似文献   

8.

Introduction

Since blood is in contact with all tissues in the body and is considered to dynamically reflect the body’s pathophysiological status, serum metabolomics changes are important and have diagnostic value in early cancer detection.

Objectives

In this prospective study, we investigated the application of metabolomics to differentiate subjects with incident breast cancer (BC) from subjects who remained free of cancer during a mean follow-up period of 7 years with the aim of identifying valuable biomarkers for BC.

Methods

Baseline serum samples from 84 female subjects with incident BC (BC group) and 88 cancer-free female subjects (control group) were used. Metabolic alterations associated with BC were investigated via metabolomics analysis of the baseline serum samples using ultra-performance liquid chromatography-linear-trap quadrupole-Orbitrap mass spectrometry.

Results

A total of 57 metabolites were identified through the metabolic analysis. Among them, 20 metabolite levels were significantly higher and 22 metabolite levels were significantly lower in the BC group than in the control group at baseline. Ten metabolic pathways, including amino acid metabolism, arachidonic acid (AA) metabolism, fatty acid metabolism, linoleic acid metabolism, and retinol metabolism, showed significant differences between the BC group and the control group. Logistic regression revealed that the incidence of BC was affected by leucine, AA, prostaglandin (PG)J2, PGE2, and γ-linolenic acid (GLA).

Conclusions

This prospective study showed the clinical relevance of dysregulation of various metabolisms on the incidence of BC. Additionally, leucine, AA, PGJ2, PGE2, and GLA were identified as independent variables affecting the incidence of BC.
  相似文献   

9.
10.
Selenium (Se) deficiency induces pancreatic atrophy in chickens, but the molecular mechanism remains unclear. In this study, we investigated the effect of dietary Se deficiency on the expressions of 25 selenoproteins and the content of nitric oxide (NO) and examined the relationship between selenoproteins and NO. Chickens (180; 1 day old) were randomly divided into two groups, low (L) group (fed with Se deficient (Se 0.033 mg/kg) diet) and control (C) group (fed with normal (Se 0.2 mg/kg) diet). Then, pancreas was collected at 15, 25, 35, 45, and 55 days, and the content of NO, the activity of inducible NO synthase (iNOS), and the messenger RNA (mRNA) levels of 25 selenoproteins and iNOS were measured. The results showed that 25 selenoproteins were decreased (P?P?Thioredoxin reductase 2 (TXNRD2), glutathione peroxidase 1 (GPX1), glutathione peroxidase 3 (GPX3), selenoprotein I (SELI), iodothyronine deiodinase 1 (DIO1), selenoprotein P1 (SEPP1), selenoprotein W1 (SEPW1), selenoprotein O (SELO), selenoprotein T (SELT), selenoprotein M (SELM), selenoprotein X1 (SEPX1), and SPS2 were excessively decreased (P?iNOS activity, and mRNA level were increased strikingly compared with C group (P?相似文献   

11.
The aim of the present study was to investigate the possible correlation of selenoprotein W (SelW) with inflammatory injury induced by dietary selenium (Se) deficiency in chicken. One-day-old male chickens were fed either a commercial diet or a Se-deficient diet for 55 days. Then, the expression levels of SelW messenger RNA (mRNA) and inflammation-related genes (NF-κB, TNF-α, iNOS, COX-2, and PTGES) in chicken skeletal muscles (wing muscle, pectoral muscle, and thigh muscle) were determined at 15, 25, 35, 45, and 55 days old, respectively. In addition, the correlation between SelW mRNA expression and inflammation-related genes were assessed. The results showed that dietary Se deficiency reduced the mRNA expression of SelW in chicken wing, pectorals, and thigh muscles. In contrast, Se deficiency increased the mRNA expression levels of inflammation-related genes in chicken skeletal muscle tissues at different time points. The Pearson’s correlation coefficients showed that the mRNA expression levels of inflammation-related genes were significantly negative related to SelW (p?相似文献   

12.
Copper deficiency was produced in developing rodents to study a possible interaction between copper and the selenoenzyme, glutathione peroxidase (GSH-Px). Dietary copper deficiency was investigated in Sprague-Dawley rats and in three mouse strains (C57BL, C3H/HeJ, C58); genetic copper deficiency was studied in two of the mouse strains, C57BL and C3H/HeJ, using brindled mice. In certain cases it appeared that copper deficiency was associated with depressed liver GSH-Px activity; values from copper-deficient livers were 40–70% of control values. However, the decrease in liver GSH-Px in both rats and mice was only observed when body weight was also depressed and did not necessarily correlate with copper deficiency signs, such as lower serum ceruloplasmin or liver cytochrome oxidase activities. In weanling rats, serum GSH-Px activity was normal despite a 60% reduction in liver activity. Mouse liver GSH-Px activity rose fourfold during the first 3 weeks of life to 75% of the adult level. Rat liver GSH-Px also increased during the suckling period. When perinatal copper deficiency, nutritional or genetic, was severe enough to retard growth, liver GSH-Px activity was depressed. Unlike rats, adult murine liver GSH-Px was equivalent in males and females.  相似文献   

13.
The effect of dietary selenium on the metabolism of 2-acetylaminofluorene (AAF) and on its interaction with hepatic DNA was studied in male, Charles River rats. All studies were commenced at least 3 weeks after placing weanling rats on a tomla yeastbased Se-deficient diet or the same diet supplemented with 0.5 ppm Se as Na2SeO3. Analysis of radioactive metabolites generated during in vitro incubation of [9-14C]-AAF with hepatic microsomes showed that Se-supplemented rats produced greater amounts of noncarcinogenic, phenolic metabolites than did Se-deficient animals. No significant difference was noted between the two dietary groups with respect to the production of the proximate carcinogenic metabolite,N-hydroxy-AAF. Analysis of urinary metabolites excreted during a 24-h period following a single ip injection of [9-14C]-AAF showed that Se-deficient animals produced 2–3 times as much N-hydroxy-AAF as did the supplemented rats. The increased excretion of the proximate carcinogenic metabolite by Se-deficient rats occurred both as the free and glucuronic acid conjugated forms. In contrast, Se-deficient rats excreted lower amounts of noncarcinogenic AAF metabolites. Taken together, these results suggest that dietary Se alters AAF biotransformation so as to decrease metabolic activation while enhancing detoxification pathways. The effect of dietary Se on AAF-DNA interactions was assessed in two ways. First, it was found that Se had no effect on the total amount of AAF residues covalently bound to hepatic DNA in vivo. This lack of effect was observed both at early (1-24 h) and late (4-7 d) intervals after administering a single ip injection of [9-14C]-AAF to rats from both dietary groups. In contrast, alkaline sucrose gradient analysis revealed a marked protective.effect of Se against AAF-induced DNA single-strand breaks. Further studies showed that the protective effect of Se was not mediated by a more rapid rate of repair of DNA damage. Accordingly, in addition to its favorable actions on carcinogen metabolism, the ability of Se to protect DNA against reactive metabolites may play a role in its reported anticarcinogenic activity.  相似文献   

14.
15.
Selenium (Se) influences the metabolism of thyroid hormones in mammals. However, the role of Se deficiency in the regulation of thyroid hormones in chickens is not well known. In the present study, we examined the levels of thyroidal triiodothyronine (T3), thyroidal thyroxine (T4), free triiodothyronine, free thyroxine (FT4), and thyroid-stimulating hormone in the serum and the mRNA expression levels of 25 selenoproteins in chicken thyroids. Then, principal component analysis (PCA) was performed to analyze the relationships between the selenoproteins. The results indicated that Se deficiency influenced the conversion of T4 to T3 and induced the accumulation of T4 and FT4. In addition, the mRNA expression levels of the selenoproteins were generally decreased by Se deficiency. The PCA showed that eight selenoproteins (deiodinase 1 (Dio1), Dio2, Dio3, thioredoxin reductase 2 (Txnrd2), selenoprotein i (Seli), selenoprotein u (Selu), glutathione peroxidase 1 (Gpx1), and Gpx2) have similar trends, which indicated that they may play similar roles in the metabolism of thyroid hormones. The results showed that Se deficiency inhibited the conversion of T4 to T3 and decreased the levels of the crucial metabolic enzymes of the thyroid hormones, Dio1, Dio2, and Dio3, in chickens. In addition, the decreased selenoproteins (Dio1, Dio2, Dio3, Txnrd2, Seli, Selu, Gpx1, and Gpx2) induced by Se deficiency may indirectly limit the conversion of T4 to T3 in chicken thyroids. The information presented in this study is helpful to understand the role of Se in the thyroid function of chickens.  相似文献   

16.

Introduction

Previous metabolomics studies have revealed perturbed metabolic signatures in esophageal squamous cell carcinoma (ESCC) patients, however, most of these studies included mainly late-staged ESCC patients due to the difficulties of collecting the early-staged samples from asymptotic ESCC subjects.

Objectives

This study aims to explore the early-staged ESCC metabolic signatures and potential of serum metabolomics to diagnose ESCC at early stages.

Methods

Serum samples of 97 ESCC patients (stage 0, 39 cases; stage I, 17 cases; stage II, 11 cases, stage III, 30 cases) and 105 healthy controls (HC) were enrolled and randomly separated into training data (77 ESCCs, 84 HCs) and validation data (20 ESCCs, 21 HCs). Untargeted metabolomics was performed to identify ESCC-related metabolic signatures.

Results

The global metabolomics profiles could clearly distinguish ESCC from HC in training data. 16 ascertained metabolites were found to be disturbed in the metabolic pathways characterized by dysregulated fatty acid biosynthesis, glycerophospholipid metabolism, choline metabolism in cancer and linoleic acid metabolism. The AUC value in validation data was 0.895, with sensitivity 85.0 % and specificity 90.5 %. Good diagnostic performances were also achieved for early stage ESCC, with the values of area under the curve (AUC) 0.881 for the ESCC patients in both stage 0 and I–II. In addition, six metabolites were found to discriminate ESCC stages. Among them, three biomarkers, dodecanoic acid, LysoPA(18:1), and LysoPC(14:0), exhibited clear trend for ESCC progression.

Conclusion

These findings suggest serum metabolomics, performed in a minimally noninvasive and convenient manner, may possess great potential for early diagnosis of ESCC patients.
  相似文献   

17.
Long-chain omega-3 polyunsaturated fatty acids (LC-O3PUFAs) exhibit therapeutic potential for the treatment and prevention of the neurological deficits associated with spinal cord injury (SCI). However, the mechanisms implicated in these protective responses remain unclear. The objective of the present functional metabolomics study was to identify and define the dominant metabolic pathways targeted by dietary LC-O3PUFAs. Sprague-Dawley rats were fed rodent purified chows containing menhaden fish oil-derived LC-O3PUFAs for 8 weeks before being subjected to sham or spinal cord contusion surgeries. We show, through untargeted metabolomics, that dietary LC-O3PUFAs regulate important biochemical signatures associated with amino acid metabolism and free radical scavenging in both the injured and sham-operated spinal cord. Of particular significance, the spinal cord metabolome of animals fed with LC-O3PUFAs exhibited reduced glucose levels (?48 %) and polar uncharged/hydrophobic amino acids (less than ?20 %) while showing significant increases in the levels of antioxidant/anti-inflammatory amino acids and peptides metabolites, including β-alanine (+24 %), carnosine (+33 %), homocarnosine (+27 %), kynurenine (+88 %), when compared to animals receiving control diets (p?N-acetylglutamate (+43 %) and acetyl CoA levels (+27 %), respectively. Interestingly, this dietary intervention resulted in a global correction of the pro-oxidant metabolic profile that characterized the SCI-mediated sensorimotor dysfunction. In summary, the significant benefits of metabolic homeostasis and increased antioxidant defenses unlock important neurorestorative pathways of dietary LC-O3PUFAs against SCI.  相似文献   

18.
The aim of the present study was to examine the effect of selenium (Se) deficiency on the expression of selenoproteins in chicken muscular stomach and to detect the correlation of selenoproteins with muscular stomach injuries. One-day-old broiler chickens were maintained for 55 days on a normal diet (0.2 mg/kg) or a Se-deficient diet (0.033 mg Se/kg). The expression levels of 25 selenoproteins, heat shock proteins (HSPs), and inflammatory factors were then examined by real-time PCR. Following this, the correlation between selenoproteins, HSPs, and inflammatory factors was analyzed by principal component analysis (PCA). The results showed that Se deficiency decreased the expression of 25 selenoproteins (P < 0.05), but increased the expression of HSP27, HSP40, HSP60, HSP70, and HSP90, and NF-κB, iNOS, TNF-α, COX-2, and HO-1 (P < 0.05). Selenoproteins showed a high negative correlation with HSPs and inflammatory factors. Thus, the results suggested that Se deficiency induced muscular stomach injuries by decreasing the expression of selenoproteins. In addition, selenoproteins play an important role in regulating HSPs and inflammatory response. The muscular stomach is a key target of Se deficiency and may play a special role in response to Se deficiency.  相似文献   

19.
The aim of the present study was to investigate the effects of selenium (Se) deficiency on the expressions of heat shock proteins (Hsp90, 70, 60, 40, and 27) and nitric oxide (NO) levels in neutrophils of broilers. One hundred eighty 1-day-old broilers were randomly assigned into two groups and were fed on a low-Se diet (0.008 mg/kg Se) or a control diet (0.2 mg/kg Se), respectively. Then, the messenger RNA (mRNA) levels of Hsp90, 70, 60, 40, and 27, induced nitric oxide synthase (iNOS), and NO levels were examined. The results showed that Se deficiency increased the mRNA levels of Hsps and iNOS and induced higher level of NO in chicken neutrophils (P?iNOS had the biggest correlation with Hsp60, which indicated that Hsp60 might play an important function in inhibiting the production of NO, and the correlation coefficient between Hsp60 and Hsp70 was over 0.9, which indicated that they might have a synergistic effect. These results suggested that the level of NO and Hsp expression levels in neutrophils can be influenced by Se deficiency. And Hsp40 might play the crucial protective role in neutrophils induced by Se deficiency.  相似文献   

20.

Introduction

Current computational tools for gas chromatography—mass spectrometry (GC–MS) metabolomics profiling do not focus on metabolite identification, that still remains as the entire workflow bottleneck and it relies on manual data reviewing. Metabolomics advent has fostered the development of public metabolite repositories containing mass spectra and retention indices, two orthogonal properties needed for metabolite identification. Such libraries can be used for library-driven compound profiling of large datasets produced in metabolomics, a complementary approach to current GC–MS non-targeted data analysis solutions that can eventually help to assess metabolite identities more efficiently.

Results

This paper introduces Baitmet, an integrated open-source computational tool written in R enclosing a complete workflow to perform high-throughput library-driven GC–MS profiling in complex samples. Baitmet capabilities were assayed in a metabolomics study involving 182 human serum samples where a set of 61 metabolites were profiled given a reference library.

Conclusions

Baitmet allows high-throughput and wide scope interrogation on the metabolic composition of complex samples analyzed using GC–MS via freely available spectral data. Baitmet is freely available at http://CRAN.R-project.org/package=baitmet.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号