首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 837 毫秒
1.
2.
Wolff EC  Kang KR  Kim YS  Park MH 《Amino acids》2007,33(2):341-350
Summary. A naturally occurring unusual amino acid, hypusine [N ɛ-(4-amino-2-hydroxybutyl)-lysine] is a component of a single cellular protein, eukaryotic translation initiation factor 5A (eIF5A). It is a modified lysine with structural contribution from the polyamine spermidine. Hypusine is formed in a novel posttranslational modification that involves two enzymes, deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). eIF5A and deoxyhypusine/hypusine modification are essential for growth of eukaryotic cells. The hypusine synthetic pathway has evolved in eukaryotes and eIF5A, DHS and DOHH are highly conserved, suggesting maintenance of a fundamental cellular function of eIF5A through evolution. The unique feature of the hypusine modification is the strict specificity of the enzymes toward its substrate protein, eIF5A. Moreover, DHS exhibits a narrow specificity toward spermidine. In view of the extraordinary specificity and the requirement for hypusine-containing eIF5A for mammalian cell proliferation, eIF5A and the hypusine biosynthetic enzymes present new potential targets for intervention in aberrant cell proliferation.  相似文献   

3.
The eukaryotic translation initiation factor 5A (eIF5A) contains a special amino acid residue named hypusine that is required for its activity, being produced by a post‐translational modification using spermidine as substrate. Stem cells from rat skeletal muscles (satellite cells) were submitted to differentiation and an increase of eIF5A gene expression was observed. Higher content of eIF5A protein was found in satellite cells on differentiation in comparison to non‐differentiated satellite cells and skeletal muscle. The treatment with N1‐guanyl‐1,7‐diaminoheptane (GC7), a hypusination inhibitor, reversibly abolished the differentiation process. In association with the differentiation blockage, an increase of glucose consumption and lactate production and a decrease of glucose and palmitic acid oxidation were observed. A reduction in cell proliferation and protein synthesis was also observed. L ‐Arginine, a spermidine precursor and partial suppressor of muscle dystrophic phenotype, partially abolished the GC7 inhibitory effect on satellite cell differentiation. These results reveal a new physiological role for eIF5A and contribute to elucidate the molecular mechanisms involved in muscle regeneration. J. Cell. Physiol. 218: 480–489, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

4.
Stress granules (SGs) are cytoplasmic foci at which untranslated mRNAs accumulate in cells exposed to environmental stress. We have identified ornithine decarboxylase (ODC), an enzyme required for polyamine synthesis, and eIF5A, a polyamine (hypusine)-modified translation factor, as proteins required for arsenite-induced SG assembly. Knockdown of deoxyhypusine synthase (DHS) or treatment with a deoxyhypusine synthase inhibitor (GC7) prevents hypusine modification of eIF5A as well as arsenite-induced polysome disassembly and stress granule assembly. Time-course analysis reveals that this is due to a slowing of stress-induced ribosome run-off in cells lacking hypusine-eIF5A. Whereas eIF5A only marginally affects protein synthesis under normal conditions, it is required for the rapid onset of stress-induced translational repression. Our results reveal that hypusine-eIF5A-facilitated translation elongation promotes arsenite-induced polysome disassembly and stress granule assembly in cells subjected to adverse environmental conditions.  相似文献   

5.
The polyamines, putrescine, spermidine, and spermine, are ubiquitous multifunctional cations essential for cellular proliferation. One specific function of spermidine in cell growth is its role as a butylamine donor for hypusine synthesis in the eukaryotic initiation factor 5A (eIF5A). Here, we report the ability of novel mono-methylated spermidine analogs (α-MeSpd, β-MeSpd, γ-MeSpd, and ω-MeSpd) to function in the hypusination of eIF5A and in supporting the growth of DFMO-treated DU145 cells. We also tested them as substrates and inhibitors for deoxyhypusine synthase (DHS) in vitro. Of these compounds, α-MeSpd, β-MeSpd, and γ-MeSpd (but not ω-MeSpd) were substrates for DHS in vitro, while they all inhibited the enzyme reaction. As racemic mixtures, only α-MeSpd and β-MeSpd supported long-term growth (9-18 days) of spermidine-depleted DU145 cells, whereas γ-MeSpd and ω-MeSpd did not. The S-enantiomer of α-MeSpd, which supported long-term growth, was a good substrate for DHS in vitro, whereas the R-isomer was not. The long-term growth of DFMO-treated cells correlated with the hypusine modification of eIF5A by intracellular methylated spermidine analogs. These results underscore the critical requirement for hypusine modification in mammalian cell proliferation and provide new insights into the specificity of the deoxyhypusine synthase reaction.  相似文献   

6.
The unusual basic amino acid, hypusine [Nε-(4-amino-2-hydroxybutyl)-lysine], is a modified lysine with the addition of the 4-aminobutyl moiety from the polyamine spermidine. This naturally occurring amino acid is a product of a unique posttranslational modification that occurs in only one cellular protein, eukaryotic translation initiation factor 5A (eIF5A, eIF-5A). Hypusine is synthesized exclusively in this protein by two sequential enzymatic steps involving deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). The deoxyhypusine/hypusine synthetic pathway has evolved in archaea and eukaryotes, and eIF5A, DHS and DOHH are highly conserved suggesting a vital cellular function of eIF5A. Gene disruption and mutation studies in yeast and higher eukaryotes have provided valuable information on the essential nature of eIF5A and the deoxyhypusine/hypusine modification in cell growth and in protein synthesis. In view of the extraordinary specificity and functional significance of hypusine-containing eIF5A in mammalian cell proliferation, eIF5A and the hypusine biosynthetic enzymes are novel potential targets for intervention in aberrant cell proliferation.  相似文献   

7.
The eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein and is essential in all eukaryotes. However, the specific roles of eIF5A in translation and in other biological processes remain elusive. In the present study, we described the role of eIF5A, its posttranslational modifications (PTM), and the biosynthetic pathway needed for the PTM in Entamoeba histolytica, the protozoan parasite responsible for amoebic dysentery and liver abscess in humans. E. histolytica encodes two isotypes of eIF5A and two isotypes of enzymes, deoxyhypusine synthase (DHS), responsible for their PTM. Both of the two eIF5A isotypes are functional, whereas only one DHS (EhDHS1, but not EhDHS2), is catalytically active. The DHS activity increased ~2000-fold when EhDHS1 was co-expressed with EhDHS2 in Escherichia coli, suggesting that the formation of a heteromeric complex is needed for full enzymatic activity. Both EhDHS1 and 2 genes were required for in vitro growth of E. histolytica trophozoites, indicated by small antisense RNA-mediated gene silencing. In trophozoites, only eIF5A2, but not eIF5A1, gene was actively transcribed. Gene silencing of eIF5A2 caused compensatory induction of expression of eIF5A1 gene, suggesting interchangeable role of the two eIF5A isotypes and also reinforcing the importance of eIF5As for parasite proliferation and survival. Furthermore, using a sibling species, Entamoeba invadens, we found that eIF5A1 gene was upregulated during excystation, while eIF5A2 was downregulated, suggesting that eIF5A1 gene plays an important role during differentiation. Taken together, these results have underscored the essentiality of eIF5A and DHS, for proliferation and potentially in the differentiation of this parasite, and suggest that the hypusination associated pathway represents a novel rational target for drug development against amebiasis.  相似文献   

8.
The eukaryotic translation initiation factor 5A (eIF5A) undergoes a specific post-translational modification called hypusination. This modification is required for the functionality of this protein. The compound N1-guanyl-1,7-diaminoheptane (GC7) is a potent and selective inhibitor of deoxyhypusine synthase, which catalyses the first step of eIF5A hypusination process. In the present study, the effects of GC7 on cell death were investigated using two cell lines: melan-a murine melanocytes and Tm5 murine melanoma. In vitro treatment with GC7 increased by 3-fold the number of cells presenting DNA fragmentation in Tm5 cells. Exposure to GC7 also decreased viability to both cell lines. This study also describes, for the first time, the in vivo antitumour effect of GC7, as indicated by impaired melanoma growth in C57BL/6 mice.  相似文献   

9.
The 1st step in the posttranslational hypusine [N(epsilon)-(4-amino-2-hydroxybutyl)lysine] modification of eukaryotic translation initiation factor 5A (eIF5A) is catalyzed by deoxyhypusine synthase (DHS). The eIF5A intermediate is subsequently hydroxylated by deoxyhypusine hydroxylase (DHH), thereby converting the eIF5A precursor into a biologically active protein. Depletion of eIF5A causes inhibition of cell growth, and the identification of eIF5A as a cofactor of the HIV Rev protein turns this host protein and therefore DHS into an interesting target for drugs against abnormal cell growth and/or HIV replication. The authors developed a 96-well format DHS assay applicable for the screening of DHS inhibitors. Using this assay, they demonstrate DHS inhibition by AXD455 (Semapimod, CNI-1493). This assay represents a powerful tool for the identification of new DHS inhibitors with potency against cancer and HIV.  相似文献   

10.
Hypusination is an essential posttranslational modification unique to archaeal and eukaryotic protein synthesis initiation factor 5A (aIF5A and eIF5A, respectively). We have investigated the effect of the efficient hypusination inhibitor N(1)-guanyl-1,7-diaminoheptane (GC(7)) on four archaeal and one bacterial species. We found that (i) archaea are sensitive to GC(7), whereas the bacterium Escherichia coli is not, (ii) GC(7) causes rapid and reversible arrest of growth of the archaeon Sulfolobus acidocaldarius, and (iii) the growth arrest is accompanied by a specific reversible arrest of the cell cycle prior to cell division. Our findings establish a link between hypusination and sustained growth of archaea and thereby provide the framework to study molecular details of archaeal cell cycle in connection with in vivo functions of hypusine and of aIF5A and eIF5A.  相似文献   

11.
Expanded polyglutamine 72 repeat (polyQ72) aggregates induce endoplasmic reticulum (ER) stress-mediated cell death with caspase-12 activation and vesicular formation (autophagy). We examined this relationship and the molecular mechanism of autophagy formation. Rapamycin, a stimulator of autophagy, inhibited the polyQ72-induced cell death with caspase-12 activation. PolyQ72, but not polyQ11, stimulated Atg5-Atg12-Atg16 complex-dependent microtubule-associated protein 1 (MAP1) light chain 3 (LC3) conversion from LC3-I to -II, which plays a key role in autophagy. The eucaryotic translation initiation factor 2 alpha (eIF2alpha) A/A mutation, a knock-in to replace a phosphorylatable Ser51 with Ala51, and dominant-negative PERK inhibited polyQ72-induced LC3 conversion. PolyQ72 as well as ER stress stimulators upregulated Atg12 mRNA and proteins via eIF2alpha phosphorylation. Furthermore, Atg5 deficiency as well as the eIF2alpha A/A mutation increased the number of cells showing polyQ72 aggregates and polyQ72-induced caspase-12 activation. Thus, autophagy formation is a cellular defense mechanism against polyQ72-induced ER-stress-mediated cell death by degrading polyQ72 aggregates, with PERK/eIF2alpha phosphorylation being involved in polyQ72-induced LC3 conversion.  相似文献   

12.
The acetylase inhibitor, spermidine and the deacetylase activator, resveratrol, both induce autophagy and prolong life span of the model organism Caenorhabditis elegans in an autophagydependent fashion. Based on these premises, we investigated the differences and similarities in spermidine and resveratrol-induced autophagy. The deacetylase sirtuin 1 (SIRT1) and its orthologs are required for the autophagy induction by resveratrol but dispensable for autophagy stimulation by spermidine in human cells, Saccharomyces cerevisiae and C. elegans. SIRT1 is also dispensable for life-span extension by spermidine. Mass spectrometry analysis of the human acetylproteome revealed that resveratrol and/or spermidine induce changes in the acetylation of 560 peptides corresponding to 375 different proteins. Among these, 170 proteins are part of the recently elucidated human autophagy protein network. Importantly, spermidine and resveratrol frequently affect the acetylation pattern in a similar fashion. In the cytoplasm, spermidine and resveratrol induce convergent protein de-acetylation more frequently than convergent acetylation, while in the nucleus, acetylation is dominantly triggered by both agents. We surmise that subtle and concerted alterations in the acetylproteome regulate autophagy at multiple levels.  相似文献   

13.
Autophagy is induced by viral infection and has antiviral functions in plants, but the underlying mechanism is poorly understood. We previously identified a viral small interfering RNA (vsiRNA) derived from rice stripe virus (RSV) RNA4 that contributes to the leaf-twisting and stunting symptoms caused by this virus by targeting the host eukaryotic translation initiation factor 4A (eIF4A) mRNA for silencing. In addition, autophagy plays antiviral roles by degrading RSV p3 protein, a suppressor of RNA silencing. Here, we demonstrate that eIF4A acts as a negative regulator of autophagy in Nicotiana benthamiana. Silencing of NbeIF4A activated autophagy and inhibited RSV infection by facilitating autophagic degradation of p3. Further analysis showed that NbeIF4A interacts with NbATG5 and interferes with its interaction with ATG12. Overexpression of NbeIF4A suppressed NbATG5-activated autophagy. Moreover, expression of vsiRNA-4A, which targets NbeIF4A mRNA for cleavage, induced autophagy by silencing NbeIF4A. Finally, we demonstrate that eIF4A from rice, the natural host of RSV, also interacts with OsATG5 and suppresses OsATG5-activated autophagy, pointing to the conserved function of eIF4A as a negative regulator of antiviral autophagy. Taken together, these results reveal that eIF4A negatively regulates antiviral autophagy by interacting with ATG5 and that its mRNA is recognized by a virus-derived siRNA, resulting in its silencing, which induces autophagy against viral infection.  相似文献   

14.
《Autophagy》2013,9(6):647-649
The acetylase inhibitor, spermidine and the deacetylase activator, resveratrol, both induce autophagy and prolong life span of the model organism Caenorhabditis elegans in an autophagydependent fashion. Based on these premises, we investigated the differences and similarities in spermidine and resveratrol-induced autophagy. The deacetylase sirtuin 1 (SIRT1) and its orthologs are required for the autophagy induction by resveratrol but dispensable for autophagy stimulation by spermidine in human cells, Saccharomyces cerevisiae and C. elegans. SIRT1 is also dispensable for life-span extension by spermidine. Mass spectrometry analysis of the human acetylproteome revealed that resveratrol and/or spermidine induce changes in the acetylation of 560 peptides corresponding to 375 different proteins. Among these, 170 proteins are part of the recently elucidated human autophagy protein network. Importantly, spermidine and resveratrol frequently affect the acetylation pattern in a similar fashion. In the cytoplasm, spermidine and resveratrol induce convergent protein de-acetylation more frequently than convergent acetylation, while in the nucleus, acetylation is dominantly triggered by both agents. We surmise that subtle and concerted alterations in the acetylproteome regulate autophagy at multiple levels.  相似文献   

15.
The putative eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved and essential protein present in all organisms except bacteria. To be activated, eIF5A requires the conversion of a specific residue of lysine into hypusine. This hypusine modification occurs posttranslationally in two enzymatic steps, and the polyamine spermidine is the substrate. Despite having an essential function in translation elongation, the critical role played by eIF5A remains unclear. In addition to demonstrating genetic interactions with translation factors, eIF5A mutants genetically interact with mutations in YPT1, which encodes an essential protein involved in endoplasmic reticulum (ER)-to-Golgi vesicle transport. In this study, we investigated the correlation between the function of eIF5A in translation and secretion in yeast. The results of in vivo translocation assays and genetic interaction analyses suggest a specific role for eIF5A in the cotranslational translocation of proteins into the ER, but not in the posttranslational pathway. Additionally, we observed that a block in eIF5A activation up-regulates stress-induced chaperones, which also occurs when SRP function is lost. Finally, loss of eIF5A function affects binding of the ribosome-nascent chain complex to SRP. These results link eIF5A function in translation with a role of SRP in the cell and may help explain the dual effects of eIF5A in differential and general translation.  相似文献   

16.
In this study, a determination of Troponin I and creatine kinase activity in whole-blood samples in a cohort of 100 small infants in the age of 2–5 years from Uganda with complicated Plasmodium falciparum malaria suggests the prevalence of cardiac symptoms in comparison to non-infected, healthy patients. Troponin I and creatine kinase activity increased during infection. Different reports showed that complicated malaria coincides with hypoxia in children. The obtained clinical data prompted us to further elucidate the underlying regulatory mechanisms of cardiac involvement in human cardiac ventricular myocytes. Complicated malaria is the most common clinical presentation and might induce cardiac impairment by hypoxia. Eukaryotic initiation factor 5A (eIF-5A) is involved in hypoxia induced factor (HIF-1α) expression. EIF-5A is a protein posttranslationally modified by hypusination involving catalysis of the two enzymes deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase. Treatment of human cardiomyocytes with GC7, an inhibitor of DHS, catalyzing the first step in hypusine biosynthesis led to a decrease in proinflammatory and proapoptotic myocardial caspase-1 activity in comparison to untreated cardiomyocytes. This effect was even more pronounced after co-administration of GC7 and GPI from P. falciparum simulating the pathology of severe malaria. Moreover, in comparison to untreated and GC7-treated cardiomyocytes, co-administration of GC7 and GPI significantly decreased the release of cytochrome C and lactate from damaged mitochondria. In sum, coadministration of GC7 prevented cardiac damage driven by hypoxia in vitro. Our approach demonstrates the potential of the pharmacological inhibitor GC7 to ameliorate apoptosis in cardiomyocytes in an in vitro model simulating severe malaria. This regulatory mechanism is based on blocking EIF-5A hypusination.  相似文献   

17.
18.
Deoxyhypusine synthase catalyzes the formation of a deoxyhypusine residue in the translation eukaryotic initiation factor 5A (eIF5A) precursor protein by transferring an aminobutyl moiety from spermidine onto a conserved lysine residue within the eIF5A polypeptide chain. This reaction commences the activation of the initiation factor in fungi and vertebrates. A mechanistically identical reaction is known in the biosynthetic pathway leading to pyrrolizidine alkaloids in plants. Deoxyhypusine synthase from tobacco was cloned and expressed in active form in Escherichia coli. It catalyzes the formation of a deoxyhypusine residue in the tobacco eIF5A substrate as shown by gas chromatography coupled with a mass spectrometer. The enzyme also accepts free putrescine as the aminobutyl acceptor, instead of lysine bound in the eIF5A polypeptide chain, yielding homospermidine. Conversely, it accepts homospermidine instead of spermidine as the aminobutyl donor, whereby the reactions with putrescine and homospermidine proceed at the same rate as those involving the authentic substrates. The conversion of deoxyhypusine synthase-catalyzed eIF5A deoxyhypusinylation pinpoints a function for spermidine in plant metabolism. Furthermore, and quite unexpectedly, the substrate spectrum of deoxyhypusine synthase hints at a biochemical basis behind the sparse and skew occurrence of both homospermidine and its pyrrolizidine derivatives across distantly related plant taxa.  相似文献   

19.
Deoxyhypusine synthase catalyzes the first step in hypusine (N epsilon-(4-amino-2-hydroxybutyl)lysine) synthesis in a single cellular protein, eIF5A precursor. The synthesis of deoxyhypusine catalyzed by this enzyme involves transfer of the 4-aminobutyl moiety of spermidine to a specific lysine residue in the eIF5A precursor protein to form a deoxyhypusine-containing eIF5A intermediate, eIF5A(Dhp). We recently discovered the efficient reversal of deoxyhypusine synthesis. When eIF5A([3H]Dhp), radiolabeled in the 4-aminobutyl portion of its deoxyhypusine residue, was incubated with human deoxyhypusine synthase, NAD, and 1,3-diaminopropane, [3H]spermidine was formed by a rapid transfer of the radiolabeled 4-aminobutyl side chain of the [3H]deoxyhypusine residue to 1,3-diaminopropane. No reversal was observed with [3H]hypusine protein, suggesting that hydroxylation at the 4-aminobutyl side chain of the deoxyhypusine residue prevents deoxyhypusine synthase-mediated reversal of the modification. Purified human deoxyhypusine synthase also exhibited homospermidine synthesis activity when incubated with spermidine, NAD, and putrescine. Thus it was found that [14C]putrescine can replace eIF5A precursor protein as an acceptor of the 4-aminobutyl moiety of spermidine to form radiolabeled homospermidine. The Km value for putrescine (1.12 mM) as a 4-aminobutyl acceptor, however, is much higher than that for eIF5A precursor (1.5 microM). Using [14C]putrescine as an acceptor, various spermidine analogs were evaluated as donor substrates for human deoxyhypusine synthase. Comparison of spermidine analogs as inhibitors of deoxyhypusine synthesis, as donor substrates for synthesis of deoxyhypusine (or its analog), and for synthesis of homospermidine (or its analog) provides new insights into the intricate specificity of this enzyme and versatility of the deoxyhypusine synthase reaction.  相似文献   

20.
Hypoxia-induced cisplatin resistance is a major challenge during non-small cell lung cancer (NSCLC) treatment. Based on previous studies, we further explored the effect of eukaryotic initiation factor 5A2 (eIF5A2) in hypoxia-induced cisplatin resistance. In this study, we found that autophagy and cisplatin resistance were increased under hypoxic conditions in three different NSCLC cell lines. Compared with that under normoxic conditions, dramatic upregulation of eIF5A2 and hypoxia inducible factor 1 subunit alpha (HIF-1α) levels were detected under hypoxia exposure. Small interfering RNA silencing of HIF-1α resulted in decreased expression of eIF5A2, indicating that eIF5A2 acts downstream of HIF-1α. In addition, the expression of eIF5A2 was significantly higher in NSCLC tumors compared with that in normal tissues. RNA silencing-mediated downregulation of eIF5A2 decreased hypoxia-induced autophagy, thereby reducing hypoxia-induced cisplatin resistance in NSCLC cells. The roles of eIF5A2 in cisplatin resistance were further validated in vivo. Combined treatment using eIF5A2-targeted downregulation together with cisplatin significantly inhibited tumor growth compared with cisplatin alone in the subcutaneous mouse model. In conclusions, eIF5A2 overexpression is involved in hypoxia-induced autophagy during cisplatin resistance. We suggest that a combination of eIF5A2 targeted therapy and cisplatin chemotherapy is probably an effective strategy to reverse hypoxia-induced cisplatin resistance and inhibit NSCLC development.Subject terms: Cell biology, Lung cancer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号