首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously found that deletion of connexin 40 (Cx40) causes a misdirection of renin-expressing cells from the media layer of afferent arterioles to the perivascular tissue, extraglomerular mesangium, and periglomerular and peritubular interstitium. The mechanisms underlying this aberrant renin expression are unknown. Here, we questioned the relevance of cyclooxygenase-2 (COX-2) activity for aberrant renin expression in Cx40-deficient kidneys. We found that COX-2 mRNA levels were increased three-fold in the renal cortex of Cx40-deficient kidneys relative to wild-type (wt) kidneys. In wt kidneys, COX-2 immunoreactivity was minimally detected in the juxtaglomerular region, but renin expression was frequently associated with COX-2 immunoreactivity in Cx40-deficient kidneys. Treatment with COX-2 inhibitors for 1 wk lowered renin mRNA levels in wt kidneys by about 40%. In Cx40-deficient kidneys, basal renin mRNA levels were increased two-fold relative to wt kidneys, and these elevated mRNA levels were reduced to levels of untreated wt mice by COX-2 inhibitors. In parallel, renin immunoreactive areas were clearly reduced by COX-2 inhibitors such that renin expression vanished and decreased significantly in the periglomerular and peritubular extensions. Notably, COX-2 inhibitor treatment lowered plasma renin concentration (PRC) in wt kidneys by about 40% but did not affect the highly elevated PRC levels in Cx40-deficient mice. These findings suggest that aberrant renin-producing cells in Cx40-deficient kidneys express significant amounts of COX-2, which contribute to renin expression in these cells, in particular, those in the periglomerular and peritubular position. Apparently, these disseminated cells do not contribute to the enhanced renin secretion rates of Cx40-deficient kidneys.  相似文献   

2.
The renin regulatory locus (Rnr) is a genetic element governing mouse submaxillary gland (SMG) renin levels. A 45,000 dalton polypeptide detectable after in vitro translation of mouse SMG mRNA has been identified by genetic and physical criteria as SMG renin. A cDNA recombinant clone specific for SMG renin has been isolated and used to demonstrate that the previously described genetic regulation of SMG renin levels is manifest at the level of renin mRNA concentration. The renin cDNA clone has also been used in Southern blot analyses to study the organization of homologous DNA sequences in strains carrying different alleles at the Rnr locus. Restriction digest patterns of high renin strains (Rnrs) are characteristically distinct from patterns observed for low renin strains (Rnrb) and are suggestive of a structural gene duplication at the chromosome 1 locus in high renin strains. However, gene dosage cannot account for the increased levels in high renin strains, since SMG renin levels in Rnrs and those in Rnrb may differ up to 100-fold.  相似文献   

3.
We asked whether cyclooxygenase (COX) activity controls the renin-angiotensin system in the postnatal period. During kidney development, renin peaked at postnatal days 0-1 at the mRNA, tissue protein [renal renin concentration (RRC)], and plasma renin concentration (PRC) levels and was widely expressed along preglomerular vessels. PRC and renin mRNA expression was elevated until weaning in the 4th postnatal week compared with adult rats. Renocortical COX-2 was restricted to Tamm-Horsfall protein-positive cells in the thick ascending limb of Henle's loop, and cortical COX-2 mRNA and protein expression were elevated along with PRC in the 2nd and 3rd postnatal weeks. In contrast, cortical COX-1 expression was constant, but medullary COX-1 expression increased eightfold from the 1st to 4th postnatal week. A COX-2-selective blocker, parecoxib, and a nonselective blocker, indomethacin, given in a period with COX-2 induction from postnatal day 6 to day 12, markedly decreased PRC, but not renin mRNA or RRC. Inhibition of angiotensin AT(1) receptors by candesartan from postnatal day 1 to day 5 increased COX-2 mRNA (2.5-fold), protein, and distribution, renin mRNA (7-fold) and PRC (20- to 70-fold), but had no influence on COX-1 mRNA. Thus, due to very low levels of expression, COX-2 is unlikely to be responsible for the birth peak of renin, but COX-2 activity supports renin secretion later in the suckling period. ANG II negatively feeds back on renocortical COX-2 expression in the 1st postnatal days with high activity of the renin system. We suggest that suckling in the rat is correlated to an enhanced, COX-2-mediated, secretory activity of renin-producing juxtaglomerular cells.  相似文献   

4.
Prostaglandins have been implicated as paracrine regulators of renin secretion, but the specific pathways and receptor(s) carrying out these functions have not been fully elucidated. To examine the contributions of prostanoid synthetic pathways and receptors to regulation of renin in the intact animal, we used a panel of mice with targeted disruption of several key genes: cyclooxygenase-2 (COX-2), microsomal PGE synthases 1 and 2 (mPGES1, mPGES2), EP2 and EP4 receptors for PGE(2), and the IP receptor for PGI(2). To activate the macula densa signal for renin stimulation, mice were treated with furosemide over 5 days and renin mRNA levels were determined by real-time RT-PCR. At baseline, there were no differences in renin mRNA levels between wild-type and the various strains of mutant mice. Furosemide caused marked stimulation of renin mRNA expression across all groups of wild-type control mice. This response was completely abrogated in the absence of COX-2, but was unaffected in mice lacking mPGES1 or mPGES2. The absence of G(s)/cAMP-linked EP2 receptors had no effect on stimulation of renin by furosemide and there was only a modest, insignificant reduction in renin responses in mice lacking the IP receptor. By contrast, renin stimulation in EP4(-/-) mice was significantly reduced by ~70% compared with wild-type controls. These data suggest that stimulation of renin by the macula densa mechanism is mediated by PGE(2) through a pathway requiring COX-2 and the EP4 receptor, but not EP2 or IP receptors. Surprisingly, mPGES1 or mPGES2 are not required, suggesting other alternative mechanisms for generating PGE(2) in response to macula densa stimulation.  相似文献   

5.
6.
Renin gene expression and insulin-like growth factor-I (IGFI) gene expression are both developmentally upregulated in the renal cortex of ovine fetuses and decline after birth. The infusion of IGFI into ovine fetuses in late gestation increases plasma renin activity and concentration. In order to determine whether there are direct effects of IGFI or insulin on renin gene expression in the kidneys of ovine fetuses, we treated the renal cortical cells of ovine fetuses with IGFI or insulin. The results showed that the responses of renal renin mRNA to IGFI or insulin treatment in vitro were dependent on the culture conditions. Renin mRNA levels were significantly elevated by IGFI or insulin if the cells were cultured in medium devoid of serum (starved) for 16-18 h before treatment. In contrast, no obvious changes in renal renin mRNA expression were observed in the cells cultured in the presence of serum (non starved) before treatment with IGFI or insulin. IGFI and insulin also significantly enhanced cAMP concentrations in the medium of the cells starved in vitro. The data suggest that IGFI and insulin can act directly on the renal cortical cells from ovine fetuses to stimulate renin mRNA expression. It is possible that IGFI and insulin stimulate renin mRNA expression by increasing cAMP concentration in the cells.  相似文献   

7.
8.
The importance of prostaglandins in the regulation of the renin-angiotensin system during development is not known. These experiments were conducted to examine the effects of prostaglandin synthesis inhibitors on basal and isoproterenol-induced plasma renin concentration and renin gene expression in the late-gestation fetal lamb. Eighteen lamb fetuses ranging in gestational age from 129 to 138 days underwent surgical insertion of femoral arterial and venous catheters under general endotracheal anesthesia. After a period of recovery, animals underwent an infusion of isoproterenol after administration of a saline bolus (control experiments); 24-48 h later a second study was performed after administration of NS-398, a cyclooxygenase (COX)-2 inhibitor, or saline for a second control study. Administration of COX-2 inhibitor significantly reduced baseline plasma renin levels and attenuated responses in fetal renin secretion to isoproterenol infusions. Renal cortical cells from animals receiving COX-2 inhibitor had significantly lower levels of renin mRNA compared with animals receiving only saline. Renal cortical cells in culture from animals receiving only saline exhibited increased levels of renin mRNA when treated with isoproterenol, forskolin, or IBMX. Only forskolin increased renin mRNA levels in renal cortical cells in culture from animals receiving COX-2 inhibitor. We conclude that prostaglandins play a stimulatory role in the regulation of the renin-angiotensin system and are necessary for beta-adrenergic stimulation of renin secretion and gene expression in the late-gestation fetal lamb.  相似文献   

9.
To determine the role of the renal nerves on renin secretion and expression in the mature ovine fetus, we performed bilateral renal denervation on eight fetuses of time-dated pregnant ewes (126.8 +/- 0.6 days gestation) and compared renin in them to seven fetuses that underwent sham denervation (126.7 +/- 0.6 days gestation). Fetal arterial and venous catheters were implanted, and after 5-7 days of recovery isoproterenol was infused. Plasma active renin was lower in denervated animals than in intact animals under basal conditions and at each dose of isoproterenol. Plasma prorenin levels were lower in denervated fetuses but unaffected by isoproterenol. Denervation did not change renal renin, prorenin, or renin mRNA, but it did block isoproterenol-induced increases in renin mRNA in renocortical cells in vitro. We conclude that the renal nerves are required for renin secretory mechanisms and responsiveness of renin mRNA to beta-adrenergic stimulation but not for the expression of renin in the fetal kidney. We propose that one or more of the factors that maintain renin expression in the perinatal period may be absent or may be replaced by the renal nerves in the adult.  相似文献   

10.
The tissue distribution of rat renin mRNA was examined. Sensitive RNase protection analyses demonstrated that renin mRNA are produced by the extra-renal tissues such as adrenal, brain, liver, lung, pituitary and testis. In response to sodium depletion and captopril treatment, the expression of mRNAs encoding rat renin were in a tissue-specific manner. The level of kidney renin mRNA remarkably increased in sodium-depleted rats treated with captopril, whereas that of brain renin mRNA definitely decreased. No significant change in the level of liver renin mRNA was observed after the same treatment. These results suggest that the expression of cerebral renin is regulated by physiological stimuli independent of its extra-cerebral expression.  相似文献   

11.
J J Panthier  I Holm    F Rougeon 《The EMBO journal》1982,1(11):1417-1421
Inbred strains of mice have been divided into two distinct phenotypic groups having different levels of renin activity regulated by androgen in the submaxillary gland (SMG). Strains carrying the Rnrs allele of the renin gene regulator, located on chromosome 1, have a high level of renin activity; strains carrying the Rnrb allele have a low level of renin activity. The level of SMG renin activity correlates with the level of renin mRNA. We have analyzed, by Southern blot hybridization, the organization of renin genes in both strains. Strains carrying the Rnrb allele, such as BALB/c or C57 Bl/6, or CH3 mice, have one renin structural gene per haploid genome, while those having the Rnrs allele, such as AKR or Swiss mice, have two renin genes. We have also identified renin genes in mice belonging to different biochemical groups: Mus spretus has one renin gene while M. vrania and M. musculus brevirostris have two renin genes.  相似文献   

12.
Imig JD  Zhao X  Orengo SR  Dipp S  El-Dahr SS 《Peptides》2003,24(8):1141-1147
Angiotensin converting enzyme (ACE) inhibition leads to increased levels of bradykinin, cyclooxygenase-2 (COX-2), and renin. Since bradykinin stimulates prostaglandin release, renin synthesis may be regulated through a kinin-COX-2 pathway. To test this hypothesis, we examined the impact of bradykinin B2 receptor (B2R) gene disruption in mice on kidney COX-2 and renin gene expression. Kidney COX-2 mRNA and protein levels were significantly lower in B2R-/- mice by 40-50%. On the other hand, renal COX-1 levels were similar in B2R-/- and +/+ mice. Renal renin protein was 61% lower in B2R-/- compared to B2R+/+ mice. This was accompanied by a significant reduction in renin mRNA levels in B2R-/- mice. Likewise, intrarenal angiotensin I levels were significantly lower in B2R-/- mice compared to B2R+/+ mice. In contrast, kidney angiotensin II levels were not different and averaged 261+/-16 and 266+/-15fmol/g in B2R+/+ and B2R-/- mice, respectively. Kidney angiotensinogen, AT1 receptor and ACE activity were not different between B2R+/+ and B2R-/- mice. The results of these studies demonstrate suppression of renal renin synthesis in mice lacking the bradykinin B2R and support the notion that B2R regulation of COX-2 participates in the steady-state control of renin gene expression.  相似文献   

13.
Regulation of the expression levels of the rat angiotensin II receptor mRNA in the adrenal, aorta, kidney, and brain was assessed by the competitive polymerase chain reaction method. The bilateral nephrectomy or the administration of Dup753 markedly reduced the expression levels of this receptor mRNA in the adrenal and brain stem, but not in the kidney nor aorta. A continuous infusion of angiotensin II increased the expression level of this receptor mRNA in the adrenal but not in the other tissues. It is suggested that the expression level of this receptor mRNA in the adrenal is dependent on the renin angiotensin aldosterone system.  相似文献   

14.
15.
The expression of renin and angiotensinogen genes in the human placenta and related tissues has been examined by RNA blot hybridization analysis with specific human complementary DNA (cDNA) probes. Renin mRNA was detectable in the chorion throughout pregnancy and in the hydatidiform moles, but not in the decidua, amnion or myometrium. The relative concentration of renin mRNA in the chorion was at the highest level in early pregnancy and decreased thereafter, while the total amount contained in the whole placenta was at the lowest level in early pregnancy, and increased thereafter, reaching at term about one-sixth of the total renin mRNA in the kidney. Hydatidiform moles had an even higher concentration of renin mRNA than the early chorion. There was no significant difference in either the relative concentration or the total renin mRNA content in the placentae from 4 normal and 4 toxemic pregnancies. Angiotensinogen mRNA was undetectable in any of the placental tissues, hydatidiform moles or myometrium. These results show that renin is synthesized in the placenta, possibly to play some physiological role locally by utilizing angiotensinogen which is abundantly present in the maternal systemic circulation.  相似文献   

16.
MicroRNA-181a binds to the 3′ untranslated region of messenger RNA (mRNA) for renin, a rate-limiting enzyme of the renin-angiotensin system. Our objective was to determine whether this molecular interaction translates into a clinically meaningful effect on blood pressure and whether circulating miR-181a is a measurable proxy of blood pressure. In 200 human kidneys from the TRANScriptome of renaL humAn TissuE (TRANSLATE) study, renal miR-181a was the sole negative predictor of renin mRNA and a strong correlate of circulating miR-181a. Elevated miR-181a levels correlated positively with systolic and diastolic blood pressure in TRANSLATE, and this association was independent of circulating renin. The association between serum miR-181a and systolic blood pressure was replicated in 199 subjects from the Genetic Regulation of Arterial Pressure of Humans In the Community (GRAPHIC) study. Renal immunohistochemistry and in situ hybridization showed that colocalization of miR-181a and renin was most prominent in collecting ducts where renin is not released into the systemic circulation. Analysis of 69 human kidneys characterized by RNA sequencing revealed that miR-181a was associated with downregulation of four mitochondrial pathways and upregulation of 41 signaling cascades of adaptive immunity and inflammation. We conclude that renal miR-181a has pleiotropic effects on pathways relevant to blood pressure regulation and that circulating levels of miR-181a are both a measurable proxy of renal miR-181a expression and a novel biochemical correlate of blood pressure.  相似文献   

17.
Rat gene for renin-binding protein (RnBP) was shown to be expressed in the kidney, adrenal gland, brain, lung, spleen, ovary, testis, and heart. On sodium depletion and captopril administration, the rat showed a marked increase in the adrenal RnBP mRNA level and a slight decrease in the kidney RnBP mRNA level. In two-kidney, one clip hypertensive rats, the RnBP mRNA levels of the clipped and contralateral kidneys were unchanged and also its adrenal mRNA level was maintained at the control level. The recombinant rat RnBP was synthesized in Escherichia coli cells and purified to apparent homogeneity. The RnBP existed as a homodimer and formed a heterodimer with rat renin to inhibit renin activity extensively. Intravenous injection of the RnBP into rats resulted in a rapid and strong inhibition of plasma renin activity, which persisted at least for 2 h. These results suggest that the expression of RnBP gene in the kidney and adrenal gland is regulated independently, and the function of RnBP is related to electrolyte homeostasis, probably through the interaction with renin.  相似文献   

18.
Two distinct phenotypic groups of inbred strains of mice, with different amounts of submaxillary gland (SMG) renin have been described. We have previously shown that strains with high levels of SMG renin, such as Swiss or AKR mice, have two renin genes, Rn1 and Rn2, per haploid genome, while strains with low levels of SMG, such as BALB/c or C57Bl/6, have only one renin gene. We now report the molecular cloning of cDNA copies of Swiss mouse kidney renin mRNA and present nucleotide sequence data of the recombinant clones. Comparison of these sequences with the sequence of Swiss mouse SMG renin mRNA we have previously reported, demonstrates that Swiss mice express the two non-allelic genes, Rn1 and Rn2.  相似文献   

19.
The molecular biology of renin, prorenin, and the renin gene have been studied. A tissue-specific pattern of expression was found in rat and human tissues. In the human placenta, the transfected and endogenous renin promoters are active, and renin mRNA levels and transfected promoter activity are increased by a calcium ionophore plus cAMP. Cultured pituitary AtT-20 cells transfected with a preprorenin expression vector mimick renal renin release by converting prorenin to renin and releasing renin in response to 8Br-cAMP. Studies with mutant renin genes suggest that the body of renin directs renin to the regulated secretory pathway, and renin glycosylation affects its trafficking. Chinese hamster ovary cells were used to produce recombinant prorenin. Infused prorenin was not converted to renin in monkeys. Renin crystals were used to determine its three-dimensional structure. Renin resembles other aspartyl proteases in the active site and core, but it differs in other regions that probably explain renin's unique substrate specificity. Based on structural and mutational analysis, a model for human prorenin was built that suggests lysine -2 of the prosegment interacts with active site aspartate residues, and that the prosegment inactivation of renin is stabilized by binding of an amino terminal beta strand into a groove on renin.  相似文献   

20.
Using 32P-labeled DNA complementary to mouse submaxillary gland renin mRNA, we probed mRNA gel blots from mouse testis and kidney tissues. Poly(A)-RNA from testis contained a hybridizable RNA species which was blotted onto nitrocellulose paper. The molecular size of testicular renin mRNA (approximately 1600 nucleotides in length) was not significantly different from tht of kidney renin mRNA. Densitometric scan revealed that the content of renin mRNA in mouse testis was approximately 5-fold lower than that in mouse kidney. These results support the proposal that mouse testicular cells synthesize renin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号