首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
As an approach to understanding the structures and mechanisms which determine mRNA decay rates, we have cloned and begun to characterize cDNAs which encode mRNAs representative of the stability extremes in the poly(A)+ RNA population of Dictyostelium discoideum amoebae. The cDNA clones were identified in a screening procedure which was based on the occurrence of poly(A) shortening during mRNA aging. mRNA half-lives were determined by hybridization of poly(A)+ RNA, isolated from cells labeled in a 32PO4 pulse-chase, to dots of excess cloned DNA. Individual mRNAs decayed with unique first-order decay rates ranging from 0.9 to 9.6 h, indicating that the complex decay kinetics of total poly(A)+ RNA in D. discoideum amoebae reflect the sum of the decay rates of individual mRNAs. Using specific probes derived from these cDNA clones, we have compared the sizes, extents of ribosome loading, and poly(A) tail lengths of stable, moderately stable, and unstable mRNAs. We found (i) no correlation between mRNA size and decay rate; (ii) no significant difference in the number of ribosomes per unit length of stable versus unstable mRNAs, and (iii) a general inverse relationship between mRNA decay rates and poly(A) tail lengths. Collectively, these observations indicate that mRNA decay in D. discoideum amoebae cannot be explained in terms of random nucleolytic events. The possibility that specific 3'-structural determinants can confer mRNA instability is suggested by a comparison of the labeling and turnover kinetics of different actin mRNAs. A correlation was observed between the steady-state percentage of a given mRNA found in polysomes and its degree of instability; i.e., unstable mRNAs were more efficiently recruited into polysomes than stable mRNAs. Since stable mRNAs are, on average, "older" than unstable mRNAs, this correlation may reflect a translational role for mRNA modifications that change in a time-dependent manner. Our previous studies have demonstrated both a time-dependent shortening and a possible translational role for the 3' poly(A) tracts of mRNA. We suggest, therefore, that the observed differences in the translational efficiency of stable and unstable mRNAs may, in part, be attributable to differences in steady-state poly(A) tail lengths.  相似文献   

2.
3.
In this report, we show that the Saccharomyces cerevisiae protein Tpa1p (for termination and polyadenylation) influences translation termination efficiency, mRNA poly(A) tail length, and mRNA stability. Tpa1p is encoded by the previously uncharacterized open reading frame YER049W. Yeast strains carrying a deletion of the TPA1 gene (tpa1Delta) exhibited increased readthrough of stop codons, and coimmunoprecipitation assays revealed that Tpa1p interacts with the translation termination factors eRF1 and eRF3. In addition, the tpa1Delta mutation led to a 1.5- to 2-fold increase in the half-lives of mRNAs degraded by the general 5'-->3' pathway or the 3'-->5' nonstop decay pathway. In contrast, this mutation did not have any affect on the nonsense-mediated mRNA decay pathway. Examination of mRNA poly(A) tail length revealed that poly(A) tails are longer than normal in a tpa1Delta strain. Consistent with a potential role in regulating poly(A) tail length, Tpa1p was also found to coimmunoprecipitate with the yeast poly(A) binding protein Pab1p. These results suggest that Tpa1p is a component of a messenger ribonucleoprotein complex bound to the 3' untranslated region of mRNAs that affects translation termination, deadenylation, and mRNA decay.  相似文献   

4.
5.
Niepel M  Ling J  Gallie DR 《FEBS letters》1999,462(1-2):79-84
The 5'-cap structure and poly(A) tail of eukaryotic mRNAs cooperate to promote translation initiation but whether this functional interaction benefits certain classes of mRNAs has not been investigated. In this study, we investigate whether a structured 5'-leader or 3'-untranslated region (UTR) affects the cap/poly(A) tail interaction. A structured leader reduced the degree to which the 5'-cap promoted translation in plant cells and inhibited translation from capped and uncapped mRNAs equally in yeast. Secondary structure within the 3'-UTR reduced translational efficiency when adjacent to the stop codon but had little effect on the cap/poly(A) tail synergy. The functional interaction between the cap and poly(A) tail was as important for an mRNA with a structured leader or 3'-UTR as it was for an unstructured mRNA in either species, suggesting that these structures can reduce translation without affecting the functional interaction between the cap and poly(A) tail. However, the loss of Xrn1p, the major 5'-->3' exoribonuclease in yeast, abolished cap-dependent translation and the functional interaction between the cap and poly(A) tail, suggesting that the cap/poly(A) tail synergy is of particular importance under conditions of active RNA turnover.  相似文献   

6.
7.
Eukaryotic mRNAs harboring premature translation termination codons are recognized and rapidly degraded by the nonsense-mediated mRNA decay (NMD) pathway. The mechanism for discriminating between mRNAs that terminate translation prematurely and those subject to termination at natural stop codons remains unclear. Studies in multiple organisms indicate that proximity of the termination codon to the 3' poly(A) tail and the poly(A) RNA-binding protein, PAB1, constitute the critical determinant in NMD substrate recognition. We demonstrate that mRNA in yeast lacking a poly(A) tail can be destabilized by introduction of a premature termination codon and, importantly, that this mRNA is a substrate of the NMD machinery. We further show that, in cells lacking Pab1p, mRNA substrate recognition and destabilization by NMD are intact. These results establish that neither the poly(A) tail nor PAB1 is required in yeast for discrimination of nonsense-codon-containing mRNA from normal by NMD.  相似文献   

8.
9.
The poly(A) tail plays an important role in translation initiation. We report the identification of a mechanism that operates in mammalian somatic cells, and couples mRNA poly(A) tail length with its translation state. The regulation of human ferritin L-chain mRNA by iron-responsive elements (IREs) and iron regulatory proteins (IRPs) is subject to this mechanism: translational repression imposed by IRP binding to the IRE of ferritin L-chain mRNA induces poly(A) tail shortening. For the accumulation of mRNAs with short poly(A) tails, IRP binding to an IRE per se is not sufficient, but must cause translational repression. Interestingly, puromycin and verrucarin (general translation inhibitors that dissociate mRNAs from ribosomes) mimick the negative effect of the specific translational repressor proteins on poly(A) tail length, whereas cycloheximide and anisomycin (general translation inhibitors that maintain the association between mRNAs and ribosomes) preserve long poly(A) tails. Thus, the ribosome association of the mRNA appears to represent the critical determinant. These findings identify a novel mechanism of regulated polyadenylation as a consequence of translational control. They reveal differences in poly(A) tail metabolism between polysomal and mRNP-associated mRNAs. A possible role of this mechanism in the maintenance of translational repression is discussed.  相似文献   

10.
11.
12.
M. Wakiyama  T. Futami  K. Miura 《Biochimie》1997,79(12):781-785
Poly(A) tail has been known to enhance mRNA translation in eukaryotic cells. However, the effect of poly(A) tail in vitro is rather small. Rabbit reticulocyte lysate (RRL) is widely used for studying translation in vitro. Translation in RRL is typically performed in nuclease-treated lysate in which most of the endogenous mRNA have been removed. In this condition, the difference in the translational efficiency between poly(A)+ and poly(A) mRNAs is about two-fold. We studied the effect of poly(A) tail on luciferase mRNA translation in nuclease uncreated reticulocyte lysate, in which endogenous globin mRNAs were actively translated. In the case of capped mRNAs. stimulation of translation by poly(A) addition was about 1.5- to 1.6-fold and the effect of the poly(A) length was small. However, in the case of uncapped mRNAs, the addition of poly(A) tail increased luciferase expression over 10-fold. The effect of the poly(A) tail was dependent on its length. The difference in the translational efficiency was not due to the change of mRNA stability. These data indicate that RRL has the potential to translate mRNA in a poly(A) dependent manner.  相似文献   

13.
The half-lives of mRNAs in yeast vary from about 1 to over 100 min. While mRNA stabilities must strongly influence overall gene expression in this organism, very little is known about how they are determined. Labellings of yeast cells were conducted to investigate whether the 5'-cap structures of yeast mRNAs might influence their stability. Variation of the pulse-labelling period from 7.5 min to 120 min did not have any major influence on the relative labelling of m7GpppA (A cap) and m7GpppG (G cap) in total polyadenylated RNA. Whether an mRNA has the A cap or the G cap does not therefore have a marked effect on its stability. During the heat shock response the relative labelling of A caps to G caps in total polyadenylated RNA also does not fluctuate appreciably. This indicates that cap structure alone does not determine the destabilisation of non-heat shock mRNAs and stabilisation of heat shock mRNAs during this stress response.  相似文献   

14.
15.
The 5? cap and 3? poly(A) tail of mRNA are known to synergistically stimulate translation initiation via the formation of the cap?eIF4E?eIF4G?PABP?poly(A) complex. Most mRNA sequences have an intrinsic propensity to fold into extensive intramolecular secondary structures that result in short end-to-end distances. The inherent compactness of mRNAs might stabilize the cap?eIF4E?eIF4G?PABP?poly(A) complex and enhance cap-poly(A) translational synergy. Here, we test this hypothesis by introducing intrinsically unstructured sequences into the 5? or 3? UTRs of model mRNAs. We found that the introduction of unstructured sequences into the 3? UTR, but not the 5? UTR, decreases mRNA translation in cell-free wheat germ and yeast extracts without affecting mRNA stability. The observed reduction in protein synthesis results from the diminished ability of the poly(A) tail to stimulate translation. These results suggest that base pair formation by the 3? UTR enhances the cap-poly(A) synergy in translation initiation.  相似文献   

16.
The recognition and rapid degradation of mRNAs with premature translation termination codons by the nonsense-mediated pathway of mRNA decay is an important RNA quality control system in eukaryotes. In mammals, the efficient recognition of these mRNAs is dependent upon exon junction complex proteins deposited on the RNA during pre-mRNA splicing. In yeast, splicing does not play a role in recognition of mRNAs that terminate translation prematurely, raising the possibility that proteins deposited during alternative pre-mRNA processing events such as 3' end formation might contribute to the distinction between normal and premature translation termination. We have utilized mRNAs with a 3' poly(A) tail generated by ribozyme cleavage to demonstrate that the normal process of 3' end cleavage and polyadenylation is not required for mRNA stability or the detection of a premature stop codon. Thus, in yeast, the distinction between normal and premature translation termination events is independent of both splicing and conventional 3' end formation.  相似文献   

17.
18.
I have compared the quantity and the length of the poly(A) tracts of five haploid-expressed mRNAs in the polysomal and nonpolysomal fractions of round and elongating spermatids in mice: transition proteins 1 and 2, protamines 1 and 2, and an unidentified mRNA of about 1050 bases. Postmitochondrial supernatants of highly enriched populations of round and elongating spermatids (early and late haploid spermatogenic cells) were sedimented on sucrose gradients, and the size and amount of each mRNA in gradient fractions were analyzed in Northern blots. In round spermatids, all five mRNAs are restricted to the postpolysomal fractions, but in elongating spermatids about 30-40% of each mRNA is associated with the polysomes. The distribution of these mRNAs in sucrose gradients suggests that all five mRNAs are stored in a translationally repressed state in round and early elongating spermatids, and that they become translationally active in middle and late elongating spermatids. The translationally repressed forms of all five mRNAs are long and homogenous in size, whereas the polysomal forms are shorter and more heterogenous due to shortening of their poly(A) tracts. The relationship between translational activity and poly(A) size exemplified by these five mRNAs may be typical of mRNAs which are translationally repressed in round spermatids and translationally active in elongating spermatids.  相似文献   

19.
The cap structure and the poly(A) tail synergistically activate mRNA translation in vivo. Recent work using Saccharomyces cerevisiae spheroplasts and a yeast cell-free translation system revealed that the poly(A) tail can function as an independent promotor for ribosome recruitment, to internal initiation sites within an mRNA. This raises the question of how regulatory upstream open reading frames and translational repressor proteins binding to the 5'UTR can function, as well as how regulated polyadenylation can support faithful activation of protein synthesis. We investigated the function of the regulatory upstream open reading frame 4 from the yeast GCN 4 gene and the effect of IRP-1 binding to an iron-responsive element introduced into the 5' UTR of reporter mRNAs. Both manipulations effectively block cap-dependent translation, whereas ribosome recruitment promoted by the poly(A) tail under non-competitive conditions can efficiently bypass both blocks. We show that the synergistic use of both, the cap structure and the poly-A tail enforced by mRNA competition reinstates the full extent of translational control by both types of 5' UTR regulatory elements. With a view towards regulated polyadenylation, we studied the function of poly(A) tails of defined length on the translation of capped mRNAs. We find that poly(A) tail elongation increases translational efficiency, particularly under competitive conditions. Our results integrate recent findings on the function of the poly(A) tail into an understanding of translational control.  相似文献   

20.
Messenger RNA decay, which is a regulated process intimately linked to translation, begins with the deadenylation of the poly(A) tail at the 3' end. However, the precise mechanism triggering the first step of mRNA decay and its relationship to translation have not been elucidated. Here, we show that the translation termination factor eRF3 mediates mRNA deadenylation and decay in the yeast Saccharomyces cerevisiae. The N-domain of eRF3, which is not necessarily required for translation termination, interacts with the poly(A)-binding protein PABP. When this interaction is blocked by means of deletion or overexpression of the N-domain of eRF3, half-lives of all mRNAs are prolonged. The eRF3 mutant lacking the N-domain is deficient in the poly(A) shortening. Furthermore, the eRF3-mediated mRNA decay requires translation to proceed, especially ribosomal transition through the termination codon. These results indicate that the N-domain of eRF3 mediates mRNA decay by regulating deadenylation in a manner coupled to translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号