首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Both inactivation of sulfobromophthalein transport in rat liver plasma membrane vesicles by sulfhydryl group reagents and subsequent reactivation by 2-mercaptoethanol are shown to be modulated by ligands to bilitranslocase. In particular, bilirubin, sulfobromophthalein and Thymol blue behave as negative effectors in the inactivation reaction and as positive effectors in the reactivation reaction. Kinetic data provide further evidence of the existence of two classes of sulfhydryl groups involved in transport activity. The effect brought about by remarkably low concentrations of bilirubin is in line with the physiological function of bilitranslocase as a bilirubin carrier.  相似文献   

2.
Bilitranslocase transport activity can be described as consisting of three functional fractions, which depend on two distinct classes of sulfhydryl groups, on the one hand, and on the guanido groups of arginine residues, on the other. Each fraction accounts for approx. 50% transport activity. The pattern of transport activity inhibition resulting from step-wise derivatization of these functional groups indicates that, in general, derivatization of arginine residues prevents that of one class of sulfhydryl groups and vice versa, indicating their close location in the protein. Nevertheless, under appropriate conditions, derivatization of both functional groups can be achieved; however, the inhibitory effect produced is not additive. Hence, these two fractions overlap functionally and are likely to belong to a common functional domain of the protein. On the contrary, the other class of sulfhydryl groups can be derivatized, regardless of the state of the arginine residues.  相似文献   

3.
Many secondary membrane transport systems contain reactive sulfhydryl groups. In this review the applications of SH reagents for analyzing the role of sulfhydryl groups in membrane transport systems will be discussed. First an overview will be given of the more important reagents, that have been used to study SH-groups in membrane transport systems, and examples will be given of transport proteins in which the role of cysteines have been analyzed. An important application of SH-reagents to label transport proteins using various SH-reagents modified with fluorescent- or spin-label moieties will be discussed. Two general models are shown which have been proposed to explain the role of sulfhydryl groups in some membrane transport systems.  相似文献   

4.
The transport of exogenously supplied fluorescent analogues of aminophospholipids from the outer to inner leaflet in red blood cells (RBC) is dependent upon the oxidative status of membrane sulfhydryls. Oxidation of a sulfhydryl on a 32-kDa membrane protein by pyridyldithioethylamine (PDA) has been previously shown [Connor & Schroit (1988) Biochemistry 27, 848-851] to inhibit the transport of NBD-labeled phosphatidylserine (NBD-PS). In the present study, other sulfhydryl oxidants were examined to determine whether additional sites are involved in the transport process. Our results show that diamide inhibits the transport of NBD-PS via a mechanism that is independent of the 32-kDa site. This is shown by the inability of diamide to block labeling of the 32-kDa sulfhydryl with 125I-labeled PDA and to protect against PDA-mediated inhibition of NBD-PS transport. diamide-mediated inhibition, but not PDA-mediated inhibition, could be reversed by reduction with cysteamine or endogenous glutathione. Similarly, treatment of RBC with 5,5'-dithiobis(2-nitrobenzoic acid), which depletes endogenous glutathione and induces oxidation of endofacial proteins [Reglinski et al. (1988) J. Biol. Chem. 263, 12360-12366], inhibited NBD-PS transport in a manner analogous to diamide. Once established, the asymmetric distribution of NBD-PS could not be altered by oxidation of either site. These data indicate that a second site critical to the transport of aminophospholipids resides on the endofacial surface and suggest that the transport of aminophospholipids across the bilayer membrane of RBC depends on a coordinated and complementary process between a cytoskeletal component and the 32-kDa membrane polypeptide; both must be operative for transport to proceed.  相似文献   

5.
Eosin-5-maleimide is impermeable to the inner mitochondrial membrane, exhibiting essentially no reactivity with matrix glutathione or with beta-hydroxybutyrate dehydrogenase located on the matrix surface of the inner membrane. In intact mitochondria, eosin-5-maleimide is unreactive with the ADP/ATP antiporter even under conditions which promote maximal labeling by N-[3H]ethylmaleimide (i.e., ADP present). However, eosin-5-maleimide readily labels the ADP/ATP antiporter in "inverted" inner membrane vesicles even in the presence of N-ethylmaleimide. Labeling is prevented if the vesicles are prepared from mitochondria pretreated with carboxyatractyloside. In contrast to the ADP/ATP antiporter, essential sulfhydryl groups of the Pi/H+ symporter are accessible to eosin-5-maleimide in intact mitochondria with optimal inhibition of phosphate transport being observed at 25 degrees C. Eosin-5-maleimide also prevents labeling of the Pi/H+ symporter by N-[3H]ethylmaleimide. These results show that essential sulfhydryl groups of the ADP/ATP antiporter and the Pi/H+ symporter have differing reactivities and locations in functionally intact mitochondria. With respect to eosin-5-maleimide, sulfhydryl groups of the ADP/ATP carrier occur in two distinct classes, both of which are inaccessible in intact mitochondria. Only one class, depending on conditions, can be exposed in submitochondrial particles. In contrast, sulfhydryl group(s) of the Pi/H+ symporter behave as a single reactive class which is readily accessible in mitochondria at 25 degrees C.  相似文献   

6.
Human erythrocyte membranes contain a major transmembrane protein, known as Band 3, that is involved in anion transport. This protein contains a total of five reactive sulfhydryl groups, which can be assigned to either of two classes on the basis of their susceptibility to release from the membrane by trypsin. Two of the groups are located in the region COOH-terminal to the extracellular chymotrypsin-sensitive site of the protein and remain with a membrane-bound 55,000-dalton fragment generated by trypsin treatment. The three sulfhydryl groups NH2-terminal to the extracellular chymotrypsin site are released from the cytoplasmic surface of the membrane by trypsin. All three groups are present in a 20,000-dalton tryptic fragment of Band 3. Two of these groups are located very close to the sites of trypsin cleavage that generate the 20,000-dalton fragment. The third reactve group is probably located about 15,000-daltons from the most NH2-terminal sulfhydryl group. Two other well defined fragments of the protein do not contain reactive sulfhydryl groups. They are a 23,000-dalton fragment derived from the NH2-terminal end that is also released by trypsin from the cytoplasmic surface of the membrane and a 19,000-dalton membrane-bound region of the protein that is produced by treatment with chymotrypsin in ghosts. The 20,000-dalton tryptic fragment may, therefore, constitute a sulfhydryl-containing domain of the Band 3 protein.  相似文献   

7.
Control of red cell urea and water permeability by sulfhydryl reagents   总被引:1,自引:0,他引:1  
The binding constant for pCMBS (p-chloromercuribenzenesulfonate) inhibition of human red cell water transport has been determined to be 160 +/- 30 microM and that for urea transport inhibition to be 0.09 +/- 0.06 microM, indicating that there are separate sites for the two inhibition processes. The reaction kinetics show that both processes consist of a bimolecular association between pCMBS and the membrane site followed by a conformational change. Both processes are very slow and the on rate constant for the water inhibition process is about 10(5) times slower than usual for inhibitor binding to membrane transport proteins. pCMBS binding to the water transport inhibition site can be reversed by cysteine while that to the urea transport inhibition site can not be reversed. The specific stilbene anion exchange inhibitor, DBDS (4,4'-dibenzamidostilbene-2,2'-disulfonate) causes a significant change in the time-course of pCMBS inhibition of water transport, consistent with a linkage between anion exchange and water transport. Consideration of available sulfhydryl groups on band 3 suggests that the urea transport inhibition site is on band 3, but is not a sulfhydryl group, and that, if the water transport inhibition site is a sulfhydryl group, it is located on another protein complexed to band 3, possibly band 4.5.  相似文献   

8.
The importance of sulfhydryl groups for hexose transport in undifferentiated L6 rat myoblasts was investigated. N-ethylmaleimide (NEM) and p-chloromer-curibenzenesulfonic acid (pCMBS) inhibited 2-deoxy-D-glucose (2-DOG) transport in a time and concentration-dependent manner. The inhibition produced by both reagents was virtually complete within 5 min, although neither reagent inhibited transport more than 70–80% regardless of the concentrations or incubation times used. Furthermore, the inhibition of 2-DOG transport by pCMBS or NEM could not be prevented by simultaneous preincubation of cells with 20 mM D-glucose or 20 mM 2-DOG. This suggests that sulfhydryl groups required for transport are separate from the hexose binding and transport site. By comparing the effects of the membrane impermeant pCMBS to those of the membrane permeant NEM, cell surface sulfhydryl groups were shown to be essential for hexose binding and transport. In contrast to the inhibition of 2-DOG transport, pCMBS and NEM had much less of an effect on 3-O-methyl-D-glucose (3-OMG) transport. For example, 1 mM NEM inhibited 2-DOG transport by 66%, whereas 3-OMG transport was inhibited by only 7%. This supports the suggestion that these hexose analogues may be transported by different carriers. Kinetic analysis of transport shows that treatment of cells with 1 mM NEM or 1 pCMBS results in inactivation of the high affinity 2-DOG transport system, whereas the low affinity transport system is unaffected. 3-OMG is preferentially transported by the low affinity system.  相似文献   

9.
The diversity of sulfhydryl groups in the human erythrocyte membrane   总被引:3,自引:0,他引:3  
Human bank blood erythrocytes were exposed to the mercurials p-chloromercuribenzoate (PCMB), chlormerodrin (CM), p-chloromercuribenzenesulfonate (PCMBS), and 1-bromomercuri-2-hydroxypropane (BMHP) for different time intervals, at different concentrations and in combination with n-ethylmaleimide (NEM) added before, and 2-mercaptoethylguanidine (MEG) and reduced glutathione (GSH) added after the mercurial. Binding patterns of the mercurials to the cells and effects on permeability of the cells were measured. The results indicate that the erythrocyte membrane contains multiple classes of sulfhydryl groups, alteration of which has a variety of effects on cell permeability. PCMB, chlormerodrin and PCMBS react with at least three classes of sulfhydryls, two of which are associated with the sodium-potassium barrier and, when altered, result in potassium loss, sodium accumulation and hemolysis. BMHP reacts with at least two classes of sulfhydryls, one of which is associated with permeability, and, when altered, results in hemolysis in isotonic solutions of choline chloride or lactose. The results provide additional insight into the structure and function of the erythrocyte membrane.  相似文献   

10.
The melibiose carrier from Escherichia coli is a galactoside-cation symporter. Based on both experimental evidence and hydropathy analysis, 12 transmembrane helices have been assigned to this integral membrane protein. Transmembrane helix 2 contains several charged and polar amino acids that have been shown to be essential for the cation-coupled transport of melibiose. Starting with the cysteine-less melibiose carrier, we have individually substituted cysteine for amino acids 39-66, which includes the proposed transmembrane helix 2. In the resulting derivative carriers, we measured the transport of melibiose, determined the effect of the hydrophilic sulfhydryl reagent, p-chloromercuribenzenesulfonic acid (PCMBS), on transport in intact cells and inside out vesicles, and examined the ability of melibiose to protect the carrier from inactivation by the sulfhydryl reagent. We found a set of seven positions in which the reaction with the sulfhydryl reagent caused partial or complete loss of carrier function measured in intact cells or inside-out vesicles. The presence of melibiose protected five of these positions from reaction with PCMBS. The reaction of two additional positions with PCMBS resulted in the partial loss of transport function only in inside-out vesicles. Melibiose protected these two positions from reaction with the reagent. Together, the PCMBS-sensitive sites and charged residues assigned to helix 2 form a cluster of amino acids that map in three rows with each row comprised of every fourth residue. This is the pattern expected of residues that are part of an alpha-helical structure and thus the rows are tilted at an angle of 25 degrees to the helical axis. We suggest that these residues line the path of melibiose and its associated cation through the carrier.  相似文献   

11.
Membrane destabilization in erythrocytes plays an important role in the premature hemolysis and development of anemia during visceral leishmaniasis (VL). Marked degradation of the anion channel protein band 3 is likely to allow modulation of anion flux across the red cell membrane in infected animals. The present study describes the effect of structural modification of band 3 on phosphate transport in VL using (31)P NMR. The result showed progressive decrease in the rate and extent of phosphate transport during the post-infection period. Interdependence between the intracellular ionic levels seems to be a determining factor in the regulation of anion transport across the erythrocyte membrane in control and infected conditions. Infection-induced alteration in band 3 made the active sites of transport more susceptible to binding with amino reactive agents. Inhibition of transport by oxidation of band 3 and subsequent reversal by reduction using dithiothreitol suggests the contribution of sulfhydryl group in the regulation of anion exchange across the membrane. Quantitation of sulfhydryl groups in the anion channel protein showed the inhibition to be closely related to the decrease of sulfhydryl groups in the infected hamsters. Downregulation of phosphate transport during leishmanial infection may be ascribed to the sulfhydryl modification of band 3 resulting in the impaired functioning of this protein under the diseased condition.  相似文献   

12.
The effect of several sulfhydryl-modifying reagents (HgCl2, p-chloromercuribenzenesulfonic acid (PCMBS), N-ethylmaleimide) on the renal organic anion exchanger was studied. The transport of p-amino[3H]hippurate, a prototypic organic anion, was examined employing brush-border membrane vesicles isolated from the outer cortex of canine kidneys. HgCl2, PCMBS and N-ethylmaleimide inactivated p-aminohippurate transport with IC50 values of 38, 78 and 190 microM. The rate of p-aminohippurate inactivation by N-ethylmaleimide followed apparent pseudo-first-order reaction kinetics. A replot of the data gave a linear relationship between the apparent rate constants and the N-ethylmaleimide concentration with a slope of 0.8. The data are consistent with a simple bimolecular reaction mechanism and imply that one molecule of N-ethylmaleimide inactivates one essential sulfhydryl group per active transport unit. Substrate (1 mM p-aminohippurate) affected the rate of the N-ethylmaleimide (1.3 mM) inactivation: the t1/2 values for inactivation in the presence and absence of p-aminohippurate were 7.4 and 3.7 min, respectively. The results demonstrate that there are essential sulfhydryl groups for organic anion transport in the brush-border membrane. Moreover, the ability of substrate to alter sulfhydryl reactivity suggests that the latter may play a dynamic role in the transport process.  相似文献   

13.
There are at least two different mechanisms for the transport of secretory proteins into the mammalian endoplasmic reticulum. Both mechanisms depend on the presence of a signal peptide on the respective precursor protein and involve a signal peptide receptor on the cis-side and signal peptidase on the trans-side of the membrane. Furthermore, both mechanisms involve a membrane component with a cytoplasmically exposed sulfhydryl. The decisive feature of the precursor protein with respect to which of the two mechanisms is used is the chain length of the polypeptide. The critical size seems to be around 70 amino acid residues (including the signal peptide). The one mechanism is used by precursor proteins larger than about 70 amino acid residues and involves two cytosolic ribonucleoparticles and their receptors on the microsomal surface. The other one is used by small precursor proteins and relies on the mature part within the precursor molecule and a cytosolic ATPase.  相似文献   

14.
The transport of two different classes of organic anions (cholephilic dyes; the sulfobromophthalein, BSP, and bile acids; taurocholate, TC) was investigated in the HepG2 cell line. At 37 degrees C, BSP uptake was found to be biphasic with an apparent saturative curve in the concentration range between 0-6 microM followed by a linear component up to 18 microM. Kinetic constant determination showed an apparent Km of 26.6 +/- 3.1 microM and a Vmax of 5.64 +/- 0.82 nmol BSP.min-1.mg prot-1. At 4 degrees C, uptake was linear. By subtracting this latter component from the total uptake, a saturable, carrier mediated uptake was found with an apparent Km of 3.6 +/- 1.0 microM BSP and a Vmax of 0.37 +/- 0.04 nmol BSP.min-1.mg prot-1 (m +/- SEM, n = 6). These values were fully comparable with those found in freshly isolated male hepatocyte. Immunoblot analysis of HepG2 cell plasma membrane revealed the presence of bilitranslocase when tested against a monospecific antibody against this carrier molecule. On the contrary, TC uptake was linear up to concentration of 100 microM TC. No difference was observed in the presence or absence of Na+. Immunoprecipitation analysis showed the absence of the putative carrier of TC. These data indicate that the HepG2 cell line expresses a functioning bilitranslocase-mediated system. Conversely, carrier mediated bile acid uptake is absent in line with the lack of expression of the carrier protein.  相似文献   

15.
Bilitranslocase is a plasma membrane carrier involved in the uptake of bilirubin and other organic anions from the blood into the liver cell. In the membrane, the carrier occurs as two interchangeable metastable forms, with high and low affinity for the substrates, respectively. The latter form can be specifically produced by either cysteine- or arginine modification. In liver plasma membrane vesicles, the serine-specific reagent phenylmethylsulphonyl fluoride is a partial inhibitor of bilitranslocase-mediated BSP transport rate. In this work, phenylmethyl-sulphonyl fluoride is shown to reduce the carrier maximal transport rate, without affecting its affinity for that substrate. In addition, it is found that the chemical modification caused by this reagent neither influences the equilibrium between the high- and the low-affinity forms nor prevents their free interconversion. From the effects of combined derivatizations of cysteine(s), arginine(s) and serine(s), it is concluded that the functionally relevant aminoacid residues lie in a close spatial arrangement. Also, in this study, the PMSF-modified serine(s) is shown to be involved in bilirubin binding by bilitranslocase.  相似文献   

16.
Bilitranslocase is a plasma membrane carrier involved in the uptake of bilirubin and other organic anions from the blood into the liver cell. In the membrane, the carrier occurs as two interchangeable metastable forms, with high and low affinity for the substrates, respectively. The latter form can be specifically produced by either cysteine- or arginine modification. In liver plasma membrane vesicles, the serine-specific reagent phenylmethylsulphonyl fluoride is a partial inhibitor of bilitranslocase-mediated BSP transport rate. In this work, phenylmethylsulphonyl fluoride is shown to reduce the carrier maximal transport rate, without affecting its affinity for that substrate. In addition, it is found that the chemical modification caused by this reagent neither influences the equilibrium between the high- and the low-affinity forms nor prevents their free interconversion. From the effects of combined derivatizations of cysteine(s), arginine(s) and serine(s), it is concluded that the functionally relevant aminoacid residues lie in a close spatial arrangement. Also, in this study, the PMSF-modified serine(s) is shown to be involved in bilirubin binding by bilitranslocase.  相似文献   

17.
The effect of N-ethylmaleimide (NEM), an irreversible sulfhydryl modifying reagent, on the transport of organic cations in the renal basolateral membrane was examined. The studies were conducted examining the exchange of [3H]tetraethylammonium (TEA) for unlabeled TEA in basolateral membrane vesicles isolated from the outer cortex of rabbit kidneys. NEM inactivated TEA transport in a dose-dependent fashion with an IC50 value of 260 microM. The rate of TEA transport inactivation followed apparent pseudo-first-order reaction kinetics. A replot of the data gave a linear relationship between the apparent rate constants and the NEM concentration with a slope of 4.0. The data imply that inactivation involves the binding of at least four molecules of NEM per active transport unit. This is most consistent with the presence of four sulfhydryl groups at this site. The substrate TEA displayed a dose-dependent enhancement of NEM inactivation, with 50% enhancement occurring at 365 microM TEA. Another organic cation, N1-methylnicotinamide, known to share a common transport mechanism with the TEA/TEA exchanger is also capable of increasing the reactivity of sulfhydryl groups to NEM. These results demonstrate that there are essential sulfhydryl groups for organic cation transport in the basolateral membrane. In addition, the capability of organic cations to alter the susceptibility to sulfhydryl modification suggests that these groups may have a dynamic role in the transport process.  相似文献   

18.
19.
LamB protein is involved in the transport of maltose across the outer membrane and constitutes the receptor for phage lambda. In this study we characterized six previously described anti-LamB monoclonal antibodies (mAbs). Four of these, the E-mAbs, recognized determinants that were exposed at the cell surface, whereas the other two, the I-mAbs, recognized determinants which were not exposed. Competition experiments demonstrated that the domains recognized by these two classes of mAbs were completely distinct. In addition, the E-mAbs prevented LamB from neutralizing phage lambda in vitro and protected LamB against proteolytic degradation, whereas the I-mAbs had no such effects. The E-mAbs have been shown previously to constitute two classes: some E-mAbs inhibit maltose transport in vivo, and others do not. Immunoelectron microscopy demonstrated that the I-mAbs also define at least two types of determinants. One of these, which is accessible in membrane fragments from a mutant (lpp) devoid of lipoprotein but not in membrane fragments from an lpp+ strain, probably corresponds to a region of LamB that is involved in the interactions with peptidoglycan. The other determinant, which is fully accessible in LamB-peptidoglycan complexes and in LamB-containing phospholipid vesicles but only slightly accessible in membrane fragments from an lpp mutant, is probably located very close to the inner surface of the outer membrane. LamB also contains at least one additional determinant, which (i) is exposed at the inner surface of the membrane, (ii) is accessible to antibodies in membrane fragments from an lpp+ strain, and (iii) may be involved in the interaction of LamB with the periplasmic maltose-binding protein.  相似文献   

20.
A series of amphiphilic polymethylenecarboxymaleimides has been synthesized for use as sulfhydryl reagents applicable to membrane proteins. Physical properties of the compounds which are relevant to their proposed mode of action have been determined. By comparing rates of reaction in aqueous and aprotic solvents, the compounds have been shown to react exclusively with the thiolate ion. The effects of the reagents on three membrane-associated proteins are reported, and in two cases a comparative study has been made of the effects on the proteins in the absence of membranes. A mechanism is proposed whereby the reagents are anchored at the lipid/water interface by the negatively charged carboxyl group, thus siting the reactive maleimide in a plane whose depth is defined by the length of the reagent. Supporting evidence for this model is provided by the inability of the reagents to traverse membranes, and variation of their inhibitory potency with chain length when the proteins are embedded in the membrane, but not when extracted into solution. As examples of general use of the reagents to probe sulfhydryl groups in membrane proteins, the reagents have been used to (a) determine the depths in the membrane at which two populations of sulfhydryl groups occur in the mitochondrial phosphate transporter; (b) locate a single sulfhydryl associated with the active site ofD--hydroxybutyrate dehydrogenase in the inner mitochondrial membrane; (c) examine sulfhydryl groups in theD-3-glyceraldehyde phosphate dehydrogenase associated with the human red blood cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号