首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Very little is known about the genes and mechanisms affecting skin lightening in Asian populations. In this study, two coding SNPs, c.G1129A (R163Q) at the MC1R (melanocortin 1 receptor) gene and c.A1962G (H615R) at the OCA2 (oculocutaneous albinism type II) gene, were investigated in a total of 1,809 individuals in 16 populations from various areas. The Q163 and R615 alleles prevailed almost exclusively in East and Southeast Asian populations. Wright’s F ST was 0.445 for R163Q and 0.385 for H615R among the 16 populations. The frequency of the Q163 allele was higher in Northeast Asians than in Southeast Asians. The frequency of the R615 allele was highest in South China and unlikely to be associated with levels of ultraviolet radiation. This allele may be a good marker to study the genetic affinity among East Asians because of its restricted distribution and marked difference in allele frequency.  相似文献   

2.
Melanocortin-1 receptor (MC1R) is a highly polymorphic gene. The variety of the variants is dependent on the ethnic background of the individual. In Caucasians, specific variants, such as Arg151Cys, Arg160Trp, and Asp294His, are strongly associated with red hair, skin cancer and pigmented lesions. In Asians, there is no report so far indicating an association such as that observed in Caucasians. Here, we performed an association study on melanogenic phenotypes in 245 Japanese individuals. We focused on freckles and solar lentigines as melanogenic phenotypes. The 92Met allele and the 163Arg allele were positively associated with freckles and severe solar lentigines; the 163Gln allele showed a negative association. Those subjects who were homozygous for both the 92Met and 163Arg alleles had a highly elevated risk of developing freckles (OR: 7.92; 95% CI: 1.52-39.6) and severe solar lentigines (OR: 4.08; 95% CI: 1.34-13.1). Our study is the first report to show a clear association of MC1R variants on melanogenic phenotypes in Asians and also indicates the importance of Arg163Gln. In vitro studies by other groups demonstrated that Val92Met impaired MC1R function but Arg163Gln did not. Based on these in vitro studies, we believe that the result we observed for Val92Met could be attributed to impaired MC1R function, while, for Arg163Gln, other factors, e.g. effect of other loci, need to be considered.  相似文献   

3.
肤色、黑色素皮质素受体1和紫外线   总被引:2,自引:1,他引:1  
吕雪梅  施鹏  张亚平 《遗传》2002,24(5):563-570
近期的研究表明,哺乳动物黑素细胞中黑色素皮质素受体1(MC1R)对调节棕黑色素和红黄色素的合成起关键的作用。MC1R基因的变异与动物的皮毛、人的皮肤和头发颜色差异密切相关。对小鼠的遗传学研究显示,MC1R是独特的、双功能控制受体。它由α-促黑色素皮质激素激活,其拮抗物为agouti蛋白,二者的共同作用导致哺乳动物表皮颜色的变异。另外,人类皮肤的色素沉着是决定于皮肤对外辐射的反应,以及由此引发皮肤癌的重要因素。MC1R变异与黑色素癌易感性相关。 Genotype,Melanocortin 1 Receptor and Ultrviolet Radiation Lü Xue-mei,SHI Peng,ZHANG Ya-ping Lab of Cellular & Molecular Evolution,Kunming Institute of Zoology,the Chinese Academy of Sciences,Kunming 650223,China Abstract:Recent work on the melanocortin 1 receptor (MC1R) suggests that MC1R plays a central role in regulation of eumelanin (brwon/black melanins) and phaeomelanin (red/yellow melanins) synthesis within the mammalian melanocyte.In the mouse,genetic studies show that the MC1R appears to be a unique,bifunctionally controlled receptor,activated by α–MSH and antagonized by agouti,both of which contribute to the variability seen in mammalian coat color.Variants of this receptor are associated with different animal's coat,human skin and hair colors.In addition,cutaneous pigmentation is a major determinant of the cutaneous response to ultraviolet radiation,and consequently of the risk of developing skin cancer.MC1R variants are a risk factor for melanoma susceptibility. Key words:Melanocortin-1 receptor gene; MC1R variants; ultraviolet radiation; skin and hair colors; skin cancer  相似文献   

4.
Melanocortin-1 receptor gene variants in four Chinese ethnic populations   总被引:9,自引:0,他引:9  
INTRODUCTIONThe variation in human hall and skin color in~ geographic regions of the world is the result Of differences in two Principal forms Of melanin,the red-yellow phaeomelalilns and the bldebrowneUmelanins, which are present in the epidermallayer of hUman skin and hair[1, 2]. The type ofmelanin Produced is under the control of two genes,identified initially by the mouse mutation, extension and agouti. The eXtension gene is expressedin melanocytes, Producillg the melanocyte stimul…  相似文献   

5.
Variations in vertebrate skin and hair color are due to varied amounts of eumelanin (brown/black) and phaeomelanin (red/yellow) produced by the melanocytes. The melanocortin 1 receptor (MC1R) is a regulator of eumelanin and phaeomelanin production in the melanocytes, and MC1R mutations causing coat color changes are known in many vertebrates. We have sequenced the entire coding region of the MC1R gene in Black-boned, Nanping indigenous and Romney Marsh sheep populations and found two silent mutation sites of A12G and G144C, respectively. PCR-RFLP of G144C showed that frequency of allele G in Black-boned, Nanping indigenous and Romney Marsh sheep was 0.818, 0.894 and 0, respectively. Sheep with GG genotype had significantly higher (P < 0.05) tyrosinase activity than sheep with CC genotype in the all investigated samples. Moreover, there was significant effect of MC1R genotype on coat color, suggesting that MC1R gene could affect coat color but not black traits. There would be merit in further studies using molecular techniques to elucidate the cause of black traits in these Black-boned sheep.  相似文献   

6.
K D Makova  M Ramsay  T Jenkins  W H Li 《Genetics》2001,158(3):1253-1268
An approximately 6.6-kb region located upstream from the melanocortin 1 receptor (MC1R) gene and containing its promoter was sequenced in 54 humans (18 Africans, 18 Asians, and 18 Europeans) and in one chimpanzee, gorilla, and orangutan. Seventy-six polymorphic sites were found among the human sequences and the average nucleotide diversity (pi) was 0.141%, one of the highest among all studies of nuclear sequence variation in humans. Opposite to the pattern observed in the MC1R coding region, in the present region pi is highest in Africans (0.136%) compared to Asians (0.116%) and Europeans (0.122%). The distributions of pi, theta, and Fu and Li's F-statistic are nonuniform along the sequence and among continents. The pattern of genetic variation is consistent with a population expansion in Africans. We also suggest a possible phase of population size reduction in non-Africans and purifying selection acting in the middle subregion and parts of the 5' subregion in Africans. We hypothesize diversifying selection acting on some sites in the 5' and 3' subregions or in the MC1R coding region in Asians and Europeans, though we cannot reject the possibility of relaxation of functional constraints in the MC1R gene in Asians and Europeans. The mutation rate in the sequenced region is 1.65 x 10(-9) per site per year. The age of the most recent common ancestor for this region is similar to that for the other long noncoding regions studied to date, providing evidence for ancient gene genealogies. Our population screening and phylogenetic footprinting suggest potentially important sites for the MC1R promoter function.  相似文献   

7.
There are two chemically distinct types of melanin: the red-yellow phaeomelanins and the brown-black eumelanins. While both melanins have been detected in human epidermis and cultured melanocytes, it is unknown how the phaeomelanin/eumelanin ratio in human melanocytes maintained in vitro relates to that in the epidermis from which they were isolated. This study uses high-performance liquid chromatography to quantify the eumelanin and phaeomelanin contents of epidermis and/or cultured melanocytes from 12 Europeans with lightly pigmented skin and 9 non-Europeans with more deeply pigmented skin. Epidermis from non-Europeans contained the highest levels of both eumelanin and phaeomelanin and had the lowest phaeomelanin/eumelanin ratios. In contrast, while cultured melanocytes from non-Europeans also had higher levels of eumelanin and phaeomelanin than melanocytes from Europeans, there was no difference in the phaeomelanin/eumelanin ratios in the two groups. However, the phaeomelanin/eumelanin ratios were higher in the cultured melanocytes than in the corresponding epidermis so that while eumelanin was the predominant melanin in the epidermis, phaeomelanin was the major melanin in the cultured melanocytes. These observations may have important implications for the use of cultured human melanocytes in the study of melanogenesis in man.  相似文献   

8.
We have examined the frequency of SNP polymorphisms within the melanocortin‐1 receptor (MC1R) and agouti signaling protein (ASIP) genes in 114 Korean vitiligo patients and 111 normal controls to assess the association of these loci with vitiligo risk. Using direct sequencing techniques, we found the following five MC1R coding region SNPs: Arg67Gln (G200A), Val92Met (G274A), Ile120Thr (T359C), Arg160Arg (C478A), and Gln163Arg (A488G). Of these, the most common were Val92Met at 14% in patients vs. 9% in controls (P = 0.17) and Gln163Arg at 17% in patients vs. 17% in controls (P = 0.84). Presence of the A allele of Val92Met (G274A) was higher in vitiligo patients {P = 0.12, odds ratio (OR) [95% confidence interval (CI)] = 1.68 (0.86–3.25)}. The other three variants showed a frequency <5% of both patients and controls. The ASIP 3′UTR genotype (g.8818A‐G) was also assessed in the same subjects. The frequency of the G allele of 3′UTR in ASIP was 17% in vitiligo and 12% in controls [P = 0.14, OR (95% CI) = 1.49 (0.87–2.54)]. Carriage of the G allele was higher in vitiligo patients [P = 0.17, OR (95% CI) = 1.50 (0.83–2.72)], and those who also carried MC1R Val92Met were more prone to vitiligo [eight of 111 patients vs. four of 111 in controls, P = 0.14, OR (95% CI) = 2.75 (0.71–8.69)]. None of these associations, however, reached statistical significance.  相似文献   

9.
Recent population studies have demonstrated an association with the red‐hair and fair‐skin phenotype with variant alleles of the melanocortin‐1 receptor (MC1R) which result in amino acid substitutions within the coding region leading to an altered receptor activity. In particular, Arg151Cys, Arg160Trp and Asp294His were the most commonly associated variants seen in the south‐east Queensland population with at least one of these alleles found in 93% of those with red hair. In order to study the individual effects of these variants on melanocyte biology and melanocytic pigmentation, we established a series of human melanocyte strains genotyped for the MC1R receptor which included wild‐type consensus, variant heterozygotes, compound heterozygotes and homozygotes for Arg151Cys, Arg160Trp, Val60Leu and Val92Met alleles. These strains ranged from darkly pigmented to amelanotic, with all strains of consensus sequence having dark pigmentation. UV sensitivity was found not to be associated with either MC1R genotype or the level of pigmentation with a range of sensitivities seen across all genotypes. Ultrastructural analysis demonstrated that while consensus strains contained stage IV melanosomes in their terminal dendrites, Arg151Cys and Arg160Trp homozygote strains contained only stage II melanosomes. This was despite being able to show expression of tyrosinase and tyrosinase‐related protein‐1 markers, although at reduced levels and an ability to convert exogenous 3,4‐dihydroxyphenyl‐alanine (DOPA) to melanin in these strains.  相似文献   

10.
The melanocortin 1 receptor is a G-protein-coupled receptor that acts as a control point for control of the eumelanin/phaeomelanin ratio in mouse hair. MC1 receptor loss of function mutations lead to an increase in the ratio of phaeomelanin/eumelanin in many mammals resulting in yellow or red coat colours. We have previously shown that several common point mutations in the human MC1 receptor are overrepresented in North European redheads and in individuals with pale skin. In order to determine the functional significance of these changes we have carried out transfection and binding studies. Expression of the Val60Leu, Arg142His, Arg151Cys, Arg160Trp, and Asp294His receptors in COS 1 cells revealed that these receptors were unable to stimulate cAMP production as strongly as the wild type receptor in response to alpha-melanocyte-stimulating hormone stimulation. None of the mutant receptors displayed complete loss of alphaMSH binding, with only the Arg142His and Asp294His displaying a slight reduction in binding affinity.  相似文献   

11.
Newton RA  Smit SE  Barnes CC  Pedley J  Parsons PG  Sturm RA 《Peptides》2005,26(10):1818-1824
Alpha-melanocyte-stimulating hormone (alpha-MSH) activates the melanocortin-1 receptor (MC1R) on melanocytes to promote a switch from red/yellow pheomelanin synthesis to darker eumelanins via positive coupling to adenylate cyclase. The human MC1R locus is highly polymorphic with the specific variants associated with red hair and fair skin (RHC phenotype) postulated to be loss-of-function receptors. We have examined the ability of MC1R variants to activate the cAMP pathway in stably transfected HEK293 cells. The RHC associated variants, Arg151Cys, Arg160Trp and Asp294His, demonstrated agonist-mediated increases in cAMP and phosphorylation of cAMP-responsive element-binding protein (CREB). Whereas the Asp294His variant showed severely impaired functional responses, the Arg151Cys and Arg160Trp variants retained considerable signaling capacity. Melanoma cells homozygous for either the Arg151Cys variant or consensus sequence both elicited CREB phosphorylation in response to alpha-MSH in the presence of IBMX. The common RHC alleles, Arg151Cys, Arg160Trp and Asp294His, are neither complete loss-of-function receptors nor are they functionally equivalent.  相似文献   

12.
MC1R and the response of melanocytes to ultraviolet radiation   总被引:5,自引:0,他引:5  
The constitutive color of our skin plays a dramatic role in our photoprotection from solar ultraviolet radiation (UVR) that reaches the Earth and in minimizing DNA damage that gives rise to skin cancer. More than 120 genes have been identified and shown to regulate pigmentation, one of the key genes being melanocortin 1 receptor (MC1R) that encodes the melanocortin 1 receptor (MC1R), a seven-transmembrane G protein-coupled receptor expressed on the surface of melanocytes. Modulation of MC1R function regulates melanin synthesis by melanocytes qualitatively and quantitatively. The MC1R is regulated by the physiological agonists alpha-melanocyte-stimulating hormone (alphaMSH) and adrenocorticotropic hormone (ACTH), and antagonist agouti signaling protein (ASP). Activation of the MC1R by binding of an agonist stimulates the synthesis of eumelanin primarily via activation of adenylate cyclase. The significance of cutaneous pigmentation lies in the photoprotective effect of melanin, particularly eumelanin, against sun-induced carcinogenesis. Epidermal melanocytes and keratinocytes respond to UVR by increasing their expression of alphaMSH and ACTH, which up-regulate the expression of MC1R, and consequently enhance the response of melanocytes to melanocortins. Constitutive skin pigmentation dramatically affects the incidence of skin cancer. The pigmentary phenotype characterized by red hair, fair complexion, inability to tan and tendency to freckle is an independent risk factor for all skin cancers, including melanoma. The MC1R gene is highly polymorphic in human populations, and allelic variation at this locus accounts, to a large extent, for the variation in pigmentary phenotypes and skin phototypes (SPT) in humans. Several allelic variants of the MC1R gene are associated with the red hair and fair skin (RHC) phenotype, and carrying one of these variants is thought to diminish the ability of the epidermis to respond to DNA damage elicited by UVR. The MC1R gene is considered a melanoma susceptibility gene, and its significance in determining the risk for skin cancer is of tremendous interest.  相似文献   

13.
The melanocortin 1 receptor (MC1R): more than just red hair   总被引:14,自引:0,他引:14  
The melanocortin 1 receptor, a seven pass transmembrane G protein coupled receptor, is a key control point in melanogenesis. Loss-of-function mutations at the MC1R are associated with a switch from eumelanin to phaeomelanin production, resulting in a red or yellow coat colour. Activating mutations, in animals at least, lead to enhanced eumelanin synthesis. In man, a number of loss-of-function mutations in the MC1R have been described. The majority of red-heads (red-haired persons) are compound heterozygotes or homozygotes for up to five frequent loss-of-function mutations. A minority of redheads are, however, only heterozygote. The MC1R is, therefore, a major determinant of sun sensitivity and a genetic risk factor for melanoma and non-melanoma skin cancer. Recent work suggests that the MC1R also shows a clear heterozygote effect on skin type, with up to 30% of the population harbouring loss-of-function mutations. Activating mutations of the MC1R in man have not been described. The MC1R is particularly informative and a tractable gene for studies of human evolution and migration. In particular, study of the MC1R may provide insights into the lightening of skin colour observed in most European populations. The world wide pattern of MC1R diversity is compatible with functional constraint operating in Africa, whereas the greater allelic diversity seen in non-African populations is consistent with neutral predictions rather than selection. Whether this conclusion is as a result of weakness in the statistical testing procedures applied, or whether it will be seen in other pigment genes will be of great interest for studies of human skin colour evolution.  相似文献   

14.
15.
16.
To elucidate the molecular basis of the interaction of the native dodecapeptide gamma-MSH with the melanocortin receptors, we performed a structure-activity study in which we systematically replaced l-Ala in each position of this peptide. Here we report the binding affinity and agonist potency on human MC3R, MC4R and MC5R. Intracellular cAMP concentration was measured on CHO cells, and binding assays were carried out using membranes prepared from these cell lines which stably express hMC3R, hMC4R and hMC5R. Our results indicate that the last four amino acids in the C-terminal region of gamma-MSH are not important determinants of biological activity and selectivity at human melanocortin receptors. Interesting results were obtained when l-Ala was substituted for His6, Phe7, Arg8 and Trp9. For these peptides, the affinity and activity at all three human receptors (MC3R, MC4R and MC5R) decreased significantly, demonstrating that the His-Phe-Arg-Trp sequence in gamma-MSH is important for activity at these three melanocortin receptors. Similar results were obtained when Met3 was replaced with l-Ala, suggesting the importance of this position in the interaction with all three receptors. This study highlights the role played by the His-Phe-Arg-Trp sequence in receptor binding and in agonist activity of gamma-MSH.  相似文献   

17.
The melanocortin receptor MC1 is expressed on melanocytes and is an important control point for melanogenesis and other responses. Alpha-MSH, which is considered to be the major ligand at the human melanocortin (MC)1 receptor (hMC1R), is produced from proopiomelanocortin (POMC) in the pituitary and in the skin by melanocytes and keratinocytes. Other POMC peptides are also produced in the skin and their concentrations exceed those of alpha-MSH by several fold. One of the most abundant is ACTH1-17. We have shown that adrenocorticotrophic hormone (ACTH)1-17 is more potent than alpha-MSH in stimulating melanogenesis in human melanocytes and unlike alpha-MSH produces a biphasic dose response curve. In this study we have examined the ability of ACTH1-17 to function as a ligand at the hMC1R. Competitive binding assays with [125I]Nle4 DPhe7 alpha-MSH as labelled ligand were carried out in HEK 293 cells transfected with the hMC1R. ACTH1-17 showed high affinity for the hMC1R with a Ki value of 0.21 +/- 0.03 nM which was slightly higher than that of 0.13 +/- 0.005 nM for alpha-MSH. ACTH1-17 was, however, more potent than alpha-MSH in increasing cAMP and IP3 production in the transfected cells. Our results demonstrate that ACTH1-17 is a potent agonist at the hMC1R. It is therefore possible that ACTH1-17, which is found in the skin in greater concentrations than alpha-MSH, has an important role in the regulation of human melanocytes and other cell types that express the hMC1R.  相似文献   

18.
The alpha-melanocyte-stimulating hormone (alphaMSH) receptor (MC1R) is a major determinant of mammalian skin and hair pigmentation. Binding of alphaMSH to MC1R in human melanocytes stimulates cell proliferation and synthesis of photoprotective eumelanin pigments. Certain MC1R alleles have been associated with increased risk of melanoma. This can be theoretically considered on two grounds. First, gain-of-function mutations may stimulate proliferation, thus promoting dysplastic lesions. Second, and opposite, loss-of-function mutations may decrease eumelanin contents, and impair protection against the carcinogenic effects of UV light, thus predisposing to skin cancers. To test these possibilities, we sequenced the MC1R gene from seven human melanoma cell (HMC) lines and three giant congenital nevus cell (GCNC) cultures. Four HMC lines and two GCNC cultures contained MC1R allelic variants. These were the known loss-of-function Arg142His and Arg151Cys alleles and a new variant, Leu93Arg. Moreover, impaired response to a superpotent alphaMSH analog was demonstrated for the cell line carrying the Leu93Arg allele and for a HMC line homozygous for wild-type MC1R. Functional analysis in heterologous cells stably or transiently expressing this variant demonstrated that Leu93Arg is a loss-of-function mutation abolishing agonist binding. These results, together with site-directed mutagenesis of the vicinal Glu94, demonstrate that the MC1R second transmembrane fragment is critical for agonist binding and maintenance of a resting conformation, whereas the second intracellular loop is essential for coupling to the cAMP system. Therefore, loss-of-function, but not activating MC1R mutations are common in HMC. Their study provides important clues to understand MC1R structure-function relationships.  相似文献   

19.
Exposure of cultured human melanocytes to ultraviolet radiation (UV) results in DNA damage. In melanoma, UV‐signature mutations resulting from unrepaired photoproducts are rare, suggesting the possible involvement of oxidative DNA damage in melanocyte malignant transformation. Here we present data demonstrating immediate dose‐dependent generation of hydrogen peroxide in UV‐irradiated melanocytes, which correlated directly with a decrease in catalase activity. Pretreatment of melanocytes with α‐melanocortin (α‐MSH) reduced the UV‐induced generation of 7,8‐dihydro‐8‐oxyguanine (8‐oxodG), a major form of oxidative DNA damage. Pretreatment with α‐MSH also increased the protein levels of catalase and ferritin. The effect of α‐MSH on 8‐oxodG induction was mediated by activation of the melanocortin 1 receptor (MC1R), as it was absent in melanocytes expressing loss‐of‐function MC1R, and blocked by concomitant treatment with an analog of agouti signaling protein (ASIP), ASIP‐YY. This study provides unequivocal evidence for induction of oxidative DNA damage by UV in human melanocytes and reduction of this damage by α‐MSH. Our data unravel some mechanisms by which α‐MSH protects melanocytes from oxidative DNA damage, which partially explain the strong association of loss‐of‐function MC1R with melanoma.  相似文献   

20.
Akey JM  Wang H  Xiong M  Wu H  Liu W  Shriver MD  Jin L 《Human genetics》2001,108(6):516-520
The melanocortin-1 receptor (MC1R) and P gene product are two important components of the human pigmentary system that have been shown to be associated with red hair/fair skin and cause type II oculocutaneous albinism, respectively. However, their contribution to inter-individual variation at the population level is not well defined. To this end, we genotyped 3 single nucleotide polymorphisms (SNPs) in the MC1R gene (Arg67Gln, Gln163Arg, Val92Met) and 2 SNPs in the P gene (IVS 13-15 and Gly780Gly) in 184 randomly ascertained Tibetan subjects, whose skin color was measured as a quantitative trait by reflective spectroscopy. Single locus analyses failed to demonstrate an association between any of the 5 SNPs and skin pigmentation. However, when an epistatic model was applied to the data, a significant gene-gene interaction was identified between Val92Met in MCIR and IVS13-15 in the P gene (F=2.43; P=0.0105). We also discuss the possible mechanisms of how gene interactions arise in signal transduction pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号