首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deciphering how Listeria monocytogenes exploits the host cell machinery to invade mammalian cells during infection is a key issue for the understanding how this food-borne pathogen causes a pleiotropic disease ranging from gastro-enteritis to meningitis and abortions. Using multidisciplinary approaches, essentially combining bacterial genetics and cell biology, we have identified two bacterial proteins critical for entry into target cells, InlA and InlB. Their cellular ligands have been also identified: InlA interacts with the adhesion molecule E-cadherin, while InlB interacts with the receptor for the globular head of the complement factor C1q (gC1q-R), with the hepatocyte growth factor receptor (c-Met) and with glycosaminoglycans (including heparan sulphate). The dynamic interaction between these cellular receptors and the actin cytoskeleton is currently under investigation. Several intracellular molecules have been recognized as key effectors for Listeria entry into target cells, including catenins (implicated in the connection of E-cadherin to actin) and the actin depolymerising factor/cofilin (involved in the rearrangement of the cytoskeleton in the InlB-dependent internalisation pathway). At the organism level, species specificity has been discovered concerning the interaction between InlA and E-cadherin, leading to the generation of transgenic mice expressing the human E-cadherin, in which the critical role of InlA in the crossing of the intestinal barrier has been clearly determined. Listeria appears as an instrumental model for addressing critical questions concerning both the complex process of bacterial pathogenesis and also fundamental molecular processes, such as phagocytosis.  相似文献   

2.
Many bacterial pathogens that invade non-phagocytic cells first interact with host cell surface receptors. Adhesion to the host cell is followed by the activation of specific host signalling pathways that mediate bacterial internalization. The food-borne Gram-positive bacterium Listeria monocytogenes makes use of two surface proteins, internalin (InlA) and InlB to engage in a species-specific manner the adhesion molecule E-cadherin and the hepatocyte growth factor receptor Met, respectively, to induce its internalization. After entry, Listeria has the capacity to spread from cell to cell and disseminate to its target organs after breaching the intestinal, blood–brain and placental barriers in human. InlA but not InlB is critical for the crossing of the intestinal barrier, whereas the conjugated action of both InlA and InlB mediates the crossing of the placental barrier. Here we review the InlA–E-cadherin interaction, the signalling downstream of this interaction, the molecular mechanisms involved in bacterial internalization and the role of InlA–E-cadherin interaction in the breaching of host barriers and the progression to listeriosis. Together, this review illustrates how in vitro data were validated by epidemiological approaches and in vivo studies using both natural hosts and genetically engineered animal models, thereby elucidating key issues of listeriosis pathophysiology.  相似文献   

3.
Listeria monocytogenes is a food-borne pathogen able to invade non-phagocytic cells. InlA, a L. monocytogenes surface protein, interacts with human E-cadherin to promote bacterial entry. L. monocytogenes internalization is a dynamic process involving co-ordinated actin cytoskeleton rearrangements and host cell membrane remodelling at the site of bacterial attachment. Interaction between E-cadherin and catenins is required to promote Listeria entry, and for the establishment of adherens junctions in epithelial cells. Although several molecular factors promoting E-cadherin-mediated Listeria internalization have been identified, the proteins regulating the transient actin polymerization required at the bacterial entry site are unknown. Here we show that the Arp2/3 complex acts as an actin nucleator during the InlA/E-cadherin-dependent internalization. Using a variety of approaches including siRNA, expression of dominant negative derivatives and pharmacological inhibitors, we demonstrate the crucial role of cortactin in the activation of the Arp2/3 complex during InlA-mediated entry. We also show the requirement of the small GTPase Rac1 and that of Src-tyrosine kinase activity to promote Listeria internalization. Together, these data suggest a model in which Src tyrosine kinase and Rac1 promote recruitment of cortactin and activation of Arp2/3 at Listeria entry site, mimicking events that occur during adherens junction formation.  相似文献   

4.
Entry of the bacterial pathogen Listeria monocytogenes into mammalian cells   总被引:2,自引:0,他引:2  
The bacterial pathogen Listeria monocytogenes causes food-borne illnesses leading to meningitis or abortion. Listeria provokes its internalization ('entry') into mammalian cells that are normally non-phagocytic, such as intestinal epithelial cells and hepatocytes. Entry provides access to a nutrient-rich cytosol and allows translocation across anatomical barriers. Here I discuss the two major internalization pathways used by Listeria. These pathways are initiated by binding of the bacterial surface proteins InlA or InlB to their respective host receptors, E-cadherin or Met. InlA mediates traversal of the intestinal barrier, whereas InlB promotes infection of the liver. At the cellular level, both InlA- and InlB-dependent entry require host signalling that promotes cytoskeletal rearrangements and pathogen engulfment. However, many of the specific signalling proteins in the two entry routes differ. InlA-mediated uptake uses components of adherens junctions that are coupled to F-actin and myosin, whereas InlB-dependent entry involves cytosolic adaptors that bridge Met to regulators of F-actin, including phosphoinositide 3-kinase and activators of the Arp2/3 complex. Unexpectedly, entry directed by InlB also involves endocytic components. Future work on InlA and InlB will lead to a better understanding of virulence, and may also provide novel insights into the normal biological functions of E-cadherin and Met.  相似文献   

5.
Listeria monocytogenes uptake by nonphagocytic cells is promoted by the bacterial invasion proteins internalin and InlB, which bind to their host receptors E-cadherin and hepatocyte growth factor receptor (HGF-R)/Met, respectively. Here, we present evidence that plasma membrane organization in lipid domains is critical for Listeria uptake. Cholesterol depletion by methyl-beta-cyclodextrin reversibly inhibited Listeria entry. Lipid raft markers, such as glycosylphosphatidylinositol-linked proteins, a myristoylated and palmitoylated peptide and the ganglioside GM1 were recruited at the bacterial entry site. We analyzed which molecular events require membrane cholesterol and found that the presence of E-cadherin in lipid domains was necessary for initial interaction with internalin to promote bacterial entry. In contrast, the initial interaction of InlB with HGF-R did not require membrane cholesterol, whereas downstream signaling leading to F-actin polymerization was cholesterol dependent. Our work, in addition to documenting for the first time the role of lipid rafts in Listeria entry, provides the first evidence that E-cadherin and HGF-R require lipid domain integrity for their full activity.  相似文献   

6.
The bacterium Listeria monocytogenes has the unusual capacity to enter and to multiply in nonphagocytic cells. Bacterially induced phagocytosis is triggered mainly by the two surface proteins internalin (also called InlA) and InlB, which interact with host cell receptors and either mimic or act in place of the normal cellular ligands. Internalin interacts specifically with human E-cadherin, whereas InlB activates the tyrosine kinase receptor Met and also interacts with the ubiquitous receptor gC1qR and proteoglycans. Signals induced by crosstalk between the bacterium and the host cell allow internalization, which is a prelude to intracellular multiplication, actin-based movement and spread of the bacterium from cell to cell. Manipulating the bacterial invasion proteins offers us an unprecedented tool with which to understand the complex phenomenon of phagocytosis.  相似文献   

7.
Internalization of Listeria monocytogenes into non-phagocytic cells is mediated by the interactions between the two bacterial invasion proteins InlA (internalin) and InlB and their cellular surface receptors E-cadherin and c-Met. To get an insight into all the cellular components necessary for uptake and early intracellular life, we undertook a global proteomic characterization of the early listerial phagosome in the human epithelial cell line LoVo. First, we proceeded to an immunocytochemical characterization of intracellular marker recruitment to phagosomes containing latex beads coated with InlA or InlB. E-cadherin and c-Met were, as expected, rapidly recruited to the phagosomal formation site. Phagosomes subsequently acquired the early endosomal antigen 1 (EEA1) and the lysosomal-associated membrane protein 1 (LAMP1), while presenting a more delayed enrichment of the lysosomal hydrolase cathepsin D. Early phagosomes devoid of lysosomal, endoplasmic reticulum and Golgi enzymatic activities could then be isolated by subcellular fractionation of LoVo cells. Two-dimensional gel electrophoresis (2DPAGE) revealed differences between the protein profiles of InlA- or InlB-phagosomes and those of early/late endosomes or lysosomes of naive LoVo cells. One major protein specifically recruited on the InlB-phagosomes was identified by mass spectrometry as MSF, a previously reported member of the septin family of GTPases. MSF forms filaments that co-localize with the actin cytoskeleton in resting cells and it is recruited to the entry site of InlB-coated beads. These results suggest that MSF is a putative effector of the InlB-mediated internalization of L. monocytogenes into host cells.  相似文献   

8.
Species specificity of the Listeria monocytogenes InlB protein   总被引:2,自引:0,他引:2  
InlA and InlB mediate L. monocytogenes entry into eukaryotic cells. InlA is required for the crossing of the intestinal and placental barriers. InlA uses E-cadherin as receptor in a species-specific manner. The human E-cadherin but not the mouse E-cadherin is a receptor for InlA. In human cells, InlB uses Met and gC1qR as receptors. By studying the role of InlB in vivo, we found that activation of Met by InlB is species-specific. In mice, InlB is important for liver and spleen colonization, but not for the crossing of the intestinal epithelium. Strikingly, the virulence of a DeltainlB deletion mutant is not attenuated in guinea pigs and rabbits. Guinea pig and rabbit cell lines do not respond to InlB, although expressing Met and gC1qR, but support InlB-mediated responses upon human Met gene transfection, indicating that InlB does not recognize or stimulate guinea pig and rabbit Met. In guinea pig cells, the effect of human Met gene transfection on InlB-dependent entry is increased upon cotransfection with human gc1qr gene, showing the additive roles of gC1qR and Met. These results unravel a second L. monocytogenes species specificity critical for understanding human listeriosis and emphasize the need for developing new animal models for studying InlA and InlB functions in the same animal model.  相似文献   

9.
P Cossart  M Lecuit 《The EMBO journal》1998,17(14):3797-3806
Although <50 kb of its 3.3 megabase genome is known, Listeria monocytogenes has received much attention and an impressive amount of data has contributed in raising this bacterium among the best understood intracellular pathogens. The mechanisms that Listeria uses to enter cells, escape from the phagocytic vacuole and spread from one cell to another using an actin-based motility process have been analysed in detail. Several bacterial proteins contributing to these events have been identified, including the invasion proteins internalin A (InlA) and B (InlB), the secreted pore-forming toxin listeriolysin O (LLO) which promotes the escape from the phagocytic vacuole, and the surface protein ActA which is required for actin polymerization and bacterial movement. While LLO and ActA are critical for the infectious process and are not redundant with other listerial proteins, the precise role of InlA and InlB in vivo remains unclear. How InlA, InlB, LLO or ActA interact with the mammalian cells is beginning to be deciphered. The picture that emerges is that this bacterium uses general strategies also used by other invasive bacteria but has evolved a panel of specific tools and tricks to exploit mammalian cell functions. Their study may lead to a better understanding of important questions in cell biology such as ligand receptor signalling and dynamics of actin polymerization in mammalian cells.  相似文献   

10.
Listeria monocytogenes surface proteins internalin (Inl)A and InlB interact with the junctional protein E-cadherin and the hepatocyte growth factor (HGF) receptor Met, respectively, on the surface of epithelial cells to mediate bacterial entry. Here we show that InlA triggers two successive E-cadherin post-translational modifications, i.e. the Src-mediated tyrosine phosphorylation of E-cadherin followed by its ubiquitination by the ubiquitin-ligase Hakai. E-cadherin ubiquitination induces the recruitment of clathrin that is required for optimal bacterial internalization. We also show that the initial clustering of E-cadherin at the bacterial entry site requires caveolin, a protein normally involved in clathrin-independent endocytosis. Strikingly clathrin and caveolin are also recruited at the site of entry of E-cadherin-coated sepharose beads and functional experiments demonstrate that these two proteins are required for bead entry. Together these results not only document how the endocytosis machinery is recruited and involved in the internalization of a zippering bacterium, but also strongly suggest a functional link between E-cadherin endocytosis and the formation of adherens junctions in epithelial cells.  相似文献   

11.
E-cadherin mediates the formation of adherens junctions between epithelial cells. It serves as a receptor for Listeria monocytogenes, a bacterial pathogen that enters epithelial cells. The L. monocytogenes surface protein, InlA, interacts with the extracellular domain of E-cadherin. In adherens junctions, this ectodomain is involved in homophilic interactions whereas the cytoplasmic domain binds beta-catenin, which then recruits alpha-catenin. alpha-catenin binds to actin directly, or indirectly, thus linking E-cadherin to the actin cytoskeleton. Entry of L. monocytogenes into cells and adherens junction formation are dynamic events that involve actin and membrane rearrangements. To understand these processes better, we searched for new ligands of alpha-catenin. Using a two-hybrid screen, we identified a new partner of alpha-catenin: ARHGAP10. This protein colocalized with alpha-catenin at cell-cell junctions and was recruited at L. monocytogenes entry sites. In ARHGAP10-knockdown cells, L. monocytogenes entry and alpha-catenin recruitment at cell-cell contacts were impaired. The GAP domain of ARHGAP10 has GAP activity for RhoA and Cdc42. Its overexpression disrupted actin cables, enhanced alpha-catenin and cortical actin levels at cell-cell junctions and inhibited L. monocytogenes entry. Altogether, our results show that ARHGAP10 is a new component of cell-cell junctions that controls alpha-catenin recruitment and has a key role during L. monocytogenes uptake.  相似文献   

12.
The bacterial surface protein InlB mediates internalisation of Listeria monocytogenes into human cells through interaction with the host receptor tyrosine kinase, Met. InlB‐mediated entry requires localised polymerisation of the host actin cytoskeleton. Apart from actin polymerisation, roles for other host processes in Listeria entry are unknown. Here, we demonstrate that exocytosis in the human cell promotes InlB‐dependent internalisation. Using a probe consisting of VAMP3 with an exofacial green fluorescent protein tag, focal exocytosis was detected during InlB‐mediated entry. Exocytosis was dependent on Met tyrosine kinase activity and the GTPase RalA. Depletion of SNARE proteins by small interfering RNA demonstrated an important role for exocytosis in Listeria internalisation. Depletion of SNARE proteins failed to affect actin filaments during internalisation, suggesting that actin polymerisation and exocytosis are separable host responses. SNARE proteins were required for delivery of the human GTPase Dynamin 2, which promotes InlB‐mediated entry. Our results identify exocytosis as a novel host process exploited by Listeria for infection.  相似文献   

13.
Internalin B (InlB) is a protein present on the surface of Listeria monocytogenes that mediates bacterial entry into mammalian cells. It is thought that InlB acts by binding directly to the hepatocyte growth factor (HGF) receptor, present on the surface of host cells. Binding of InlB to the HGF receptor results in mitogen-activated protein (MAP) kinase and phosphoinositide 3-kinase activation, followed by changes in the organization of the actin cytoskeleton. Here we have compared signaling by HGF and InlB. Whereas stimulation with equivalent concentrations of HGF and InlB elicits similar activation of the HGF receptor, we observed striking differences in downstream activation of MAP kinase. InlB leads to a greater activation of the Ras-MAP kinase pathway than does HGF. The leucine-rich repeat region, which was previously shown to be sufficient for binding and activation of the HGF receptor, lacks the ability to super-activate the Ras-MAP kinase pathway. Analysis of a series of deletion mutants suggests that it is the B repeat region between the leucine-rich repeat and GW domains that endows InlB with an increased ability to turn on the Ras-MAP kinase pathway. These unexpected observations suggest that HGF and InlB use alternative mechanisms to turn on cellular signaling pathways.  相似文献   

14.
The Listeria monocytogenes InlB protein is a 630-amino-acid surface protein that mediates entry of the bacterium into a wide variety of cell types, including hepatocytes, fibroblasts and epithelial cells such as Vero, HEp-2 and HeLa cells. Invasion stimulates host proteins tyrosine phosphorylation, PI 3-kinase activity and rearrangements in the actin cytoskeleton. We previously showed that InlB is sufficient for entry of InlB-coated latex beads into cells and recent results indicate that purified InlB can stimulate PI 3-kinase activity and is thus the first bacterial agonist of this lipid kinase. In this study, we identified the region of InlB responsible for entry and stimulation of signal transduction events. Eight monoclonal antibodies directed against InlB were raised and, of those, five inhibited bacterial entry. These five antibodies recognized epitopes within the leucine-rich repeat (LRR) region and/or the inter-repeat (IR) region. InlB-staphylococcal protein A (SPA) fusion proteins and recombinant InlB derivatives were generated and tested for their capacity to mediate entry into cultured mammalian cells. All the InlB derivatives that carried the amino-terminal 213-amino-acid LRR region conferred invasiveness to the normally non-invasive bacterium L. innocua or to inert latex beads and the corresponding purified polypeptides inhibited bacterial entry. In addition, the 213-amino-acid LRR region was able to stimulate PI 3-kinase activity and changes in the actin cytoskeleton (membrane ruffling). These properties were not detected with purified internalin, another invasion protein of L. monocytogenes that displays LRRs similar to those of InlB. Taken together, these results show that the first 213 amino acids of InlB are critical for its specific properties.  相似文献   

15.
Bacterial pathogens have developed a variety of strategies to induce their own internalization into mammalian cells which are normally nonphagocytic. The Gram-positive bacterium Listeria monocytogenes enters into many cultured cell types using two bacterial surface proteins, InlA (internalin) and InlB. In both cases, entry takes place after engagement of a receptor and induction of a series of signaling events.  相似文献   

16.
InlB is a Listeria monocytogenes protein promoting entry in non-phagocytic cells, and has been shown recently to activate the hepatocyte growth factor receptor (HGFR or Met). The N-terminal domain of InlB (LRRs) binds and activates Met, whereas the C-terminal domain of InlB (GW modules) mediates loose attachment of InlB to the listerial surface. As HGF activation of Met is tightly controlled by glycosaminoglycans (GAGs), we tested if GAGs also modulate the Met-InlB interactions. We show that InlB-dependent invasion of non-phagocytic cells decreases up to 10 times in the absence of GAGs, and that soluble heparin releases InlB from the bacterial surface and promotes its clustering. Furthermore, we demonstrate that InlB binds cellular GAGs by its GW modules, and that this interaction is required for efficient InlB-mediated invasion. Therefore, GW modules have an unsuspected dual function: they attach InlB to the bacterial surface and enhance entry triggered by the LRRs domain. Our results thus provide the first evidence for a synergy between two host factor-binding domains of a bacterial invasion protein, and reinforce similarities between InlB and mammalian growth factors.  相似文献   

17.

Background  

Internalin A (InlA) is a critical virulence factor which mediates the initiation of Listeria monocytogenes infection by the oral route in permissive hosts. The interaction of InlA with the host cell ligand E-cadherin efficiently stimulates L. monocytogenes entry into human enterocytes, but has only a limited interaction with murine cells.  相似文献   

18.
Shen Y  Naujokas M  Park M  Ireton K 《Cell》2000,103(3):501-510
The Listeria monocytogenes surface protein InlB promotes bacterial entry into mammalian cells. Here, we identify a cellular surface receptor required for InlB-mediated entry. Treatment of mammalian cells with InlB protein or infection with L. monocytogenes induces rapid tyrosine phosphorylation of Met, a receptor tyrosine kinase (RTK) for which the only known ligand is Hepatocyte Growth Factor (HGF). Like HGF, InlB binds to the extracellular domain of Met and induces "scattering" of epithelial cells. Experiments with Met-positive and Met-deficient cell lines demonstrate that Met is required for InlB-dependent entry of L. monocytogenes. InlB is a novel Met agonist that induces bacterial entry through exploitation of a host RTK pathway.  相似文献   

19.
InlB is a Listeria monocytogenes protein that promotes entry of the bacterium into mammalian cells by stimulating tyrosine phosphorylation of the adaptor proteins Gab1, Cbl and Shc, and activation of phosphatidyl- inositol (PI) 3-kinase. Using affinity chromatography and enzyme-linked immunosorbent assay, we demonstrate a direct interaction between InlB and the mammalian protein gC1q-R, the receptor of the globular part of the complement component C1q. Soluble C1q or anti-gC1q-R antibodies impair InlB-mediated entry. Transient transfection of GPC16 cells, which are non-permissive to InlB-mediated entry, with a plasmid-expressing human gC1q-R promotes entry of InlB-coated beads. Furthermore, several experiments indicate that membrane recruitment and activation of PI 3-kinase involve an InlB-gC1q-R interaction and that gC1q-R associates with Gab1 upon stimulation of Vero cells with InlB. Thus, gC1q-R constitutes a cellular receptor involved in InlB-mediated activation of PI 3-kinase and tyrosine phosphorylation of the adaptor protein Gab1. After E-cadherin, the receptor for internalin, gC1q-R is the second identified mammalian receptor promoting entry of L. monocytogenes into mammalian cells.  相似文献   

20.
Listeria monocytogenes (Lm) invades the host intestine using listerial invasion proteins, internalins. The in vivo role of internalin A (InlA) and internalin B (InlB) is reported here. Intragastric (i.g.) administration and ligated loop assays with ΔinlB-Lm demonstrated that a lack of InlB significantly attenuates the invasive ability of Lm into various organs. On the other hand, InlA(m)-Lm expressing a mutant InlA with two substitutions, S192N and Y369S, which has been reported to increase the affinity of InlA to mouse E-cadherin, resulted in little increase in intestinal infection according to both ligated loop and i.g. infection assays. Lm preferentially enters ileal Peyer's patch (PP) via M cells and ΔinlB-Lm showed severely reduced ability to invade though these cells. The present results reveal the importance of InlB, which accelerates listerial invasion into M cells on ileal PPs in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号