首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The degree of ploidy in the interphase nuclei was determined in the connective zone of the rat's placenta on days 13 and 14 of embryo development. On day 13, the ploidy in the majority of nuclei was 2c or 4c; on day 14, the 4c nuclei were dominating, the share of 8c nuclei increasing. The number of Barr's bodies in each nucleus of the placental connective zone tends to increase with the increase in ploidy level. This is an evidence of a "genuine polyploidy" as a mechanism of the initial polyploidization of the given cell population.  相似文献   

2.
Using cytofluorimetry and absorptional cytophotometry, hepatocyte DNA and total protein contents were measured in intact and cirrhotic rats in 1, 3 and 6 months after partial hepatectomy (PH). It has been found that within one month of intact rat liver regeneration the level of hepatocyte ploidy rised by 25% to remain elevated for the next 6 months. This was due mainly to reducing the number of cells with diploid nuclei (2c 2-fold, 2c x 2 - 6.6-fold) and to rising the number of octaploid hepatocytes. In cirrhotic animals the ploidy level in hepatocytes increased in 3 months after PH, and decreased by 15% in 6 months. The number of hepatocytes with diploid nuclei (2c and 2c x 2) increased within 3-6 months in both control and cirrhotic rats. The protein content per diploid hepatocyte rised by 30% within 3-6 months of liver regeneration after PH. Special calculations have shown that within 3 months after PH the increase in the liver mass of control and cirrhotic rats was due completely to hepatocyte DNA synthesis, i. e. proliferation and polyploidization. Within the next 3 months of liver regeneration after PH, the contribution of polyploidization to liver mass increase was negative because of depolyploidization of liver parenchyma cell population. At this time hypertrophy was the main process determining the liver mass increase.  相似文献   

3.
Summary The development of liver ploidy in mice aged up to 24 months was investigated by flow cytometry in four mouse strains. A mathematical procedure was applied for correction of flow cytometry histograms. In two of the mouse strains, C3H and DBA, both cellular and nuclear ploidy proceed in the same way. The octoploid cell with two tetraploid nuclei is the most numerous cell type in adulthood. On the other hand, strain NZB and the out-bred strain NMRI show at the corresponding age a higher proportion of diploid cells with strikingly low proportions of 4c cells. In addition, high values of 16c cells and nuclei are present in NMRI. In all strains the proportion of binucleate hepatocytes is in the same range (60%). However, the strains differ in ploidy classes of binucleate cells. Development of liver polyploidization does not depend on life span of the specific strain.  相似文献   

4.
Mouse liver regeneration after partial hepatectomy results in sharp changes of ploidy classes towards the increase of high ploidy cells and the decrease low ploidy ones. These changes retain during three months. Each following partial hepatectomy (till 3 times) intensifies the hepatocyte polyploidy with appearance of cells with 32--64 ploidy nuclei. The cell polyploidization stimulated by repeated regenerations is similar to that observed in normal postnatal liver growth.  相似文献   

5.
Methodological approaches to kinetics of cell polyploidization in the rat liver parenchyma are discussed. Different ways of hepatocyte polyploidization in the course of postnatal liver growth have been assessed. The intensities of hepatocyte transitions from one ploidy class to another were determined. On the basis of literary experimental data the following is summarized: With the increase in the animal age, there is a decrease in hepatocyte transition from one ploidy class to and ther; in young animals the intensity of formation of tetraploid hepatocytes through the stage of binuclear cells (2c----2c X 2----4c) is 0.39-0.55 within two weeks, the intensity of direct transitions (2c----4c) being 0.00-0.19 within the same time. The intensity of entering to DNA synthesis is reduced with the increase in hepatocyte ploidy levels; in this case the coefficient of the reducing of mitotic activity is calculated as 0.10-0.22, and 0.01-0.05 for 4c- and 8c-hepatocytes, resp. The factors stimulating proliferation in the liver increase the intensity of the direct cell transition (2c----4c) by several times which can exceed the intensity of transition through the binuclear cell stage.  相似文献   

6.
Phenobarbital was given to male rats as a single injection and as repetitive injections for 7 days. The effects of treatment on the lysosomal hydrolases acid phosphatase, cathepsin D, and aryl sulfatase were analyzed at different intervals ranging from 1 to 15 days after seven injections, and from 1 to 48 h after a single injection. In both cases, microsomal protein and NADPH-cytochrome c reductase were measured to ensure proper induction. After a single injection, a slight decrease in hydrolytic activities was observed. Repetitive administration of phenobarbital gave rise to a marked decrease of lysosomal enzyme activities 1 day after cessation of treatment. This decrease was followed by a continuous increase in activity up to day 3 and 4. One or 2 weeks after treatment, enzyme activities declined to control values. The increase in activity of lysosomal hydrolytic enzymes was correlated with the onset of induced autophagy of endoplasmic reticulum membranes described as occurring in liver upon cessation of phenobarbital exposure. It is concluded that phenobarbital treatment per se decreases lysosomal enzyme activities, whereas the induced autophagy following cessation of exposure is associated with enhanced levels of lysosomal hydrolases in rat liver.  相似文献   

7.
Summary Suspensions of intact liver cells were prepared from 36 male NMRI mice of different age after perfusion of the liver with ice-cold calcium- and magnesium-free phosphate buffer (CMF). The suspensions of the isolated hepatocytes were smeared on slides, fixed, hydrolized and stained by fluorescent acriflavine-Schiff-Feulgen reaction. The number of nuclei per cell was determined in a phase-contrast microscope. Quantitative fluorescent cytophotometric measurements of nuclear Feulgen-DNA were performed on individual nuclei. At the age of 0.5 month, 55% of the hepatocytes were found to be mononuclear, 45% binuclear. In the animal groups aged 1 month, 1.5 months, 3 months, 6 months and 12 months, the percentage of binuclear hepatocytes remained constant at about 80%. Very few liver cells with 3 or 4 nuclei were detected. Feulgen-DNA-measurements revealed a predominance of 2c and 4c nuclei at ages 1 month and 1.5 months with logarithmic increase of 8c nuclei and a decrease of the 2c nuclei. From 1.5 months on 16c nuclei were found, which never exceeded 8%. When total DNA-ploidy of the hepatocytes was calculated similar kinetics at a higher ploidy level were observed. 2c hepatocytes existed in small percentages at very young ages up to 1.5 months, but were also occasionally found in older animals. With increasing age the number of 16c hepatocytes increased logarithmically with a concomitant decrease of the 4c hepatocytes. The percentage of 8c liver cells remained more or less constant. Few hepatocytes with a 32c total DNA content were found in mice aged 3 months and older. In one-year-old mice the mean DNA-ploidy was calculated to be 5.8c per liver nucleus and 10.0c per whole hepatocyte.Supported by Deutsche Forschungsgemeinschaft, Grant No Bo 395/5  相似文献   

8.
It is well known that polyploidization of cardiomyocytes (CMC) is an essential component of heart growth in the warm-blooded vertebrates. Using the Feulgen cytophotometry of alkali-dissociated cells, we determined the ploidy in CMC of the lower vertebrates: lamprey Lampetra fluviatilis (Cyclostomata), skate Bathyraja maculata (Chondrostei), sterlet Acipenser ruthenus, and Russian sturgeon Acipenser güldenst?dti (Ganoids), as well as paradise fish Macropodus opercularis, Amur sleeper Perccottus glehni, and Atlantic salmon Salmo solar (Teleostei). The data obtained have demonstrated a wide variety in CMC ploidy of both cyclostomata and fishes. About 85% of the lamprey CMC contain 2 or more (up to 17) nuclei per cell; with 90 and 10% of the nuclei being, respectively, diploid and tetraploid. Hearts of the skate and sturgeons contain mononucleated diploid CMC. In the perch-like fishes, mononucleated diploid and mononucleated tetraploid CMC make, respectively, 95 and 5%. The salmon heart contains near 50% of mononucleated diploid CMC, 13% of mononucleated tetra- and octaploid CMC, the rest CMC being multinucleated (up to 6 nuclei per cell). In all the examined species, the increased nuclear ploidy is accompanied with a significant increase in the nuclear volume. The number of nucleoli per nucleus does not correlate with the nuclear ploidy level. Evolutionary aspects of CMC polyploidy in chordates are discussed.  相似文献   

9.
Morphofunctional changes in hepatocytes of 10-14-day old rats were followed in norm and after experimental infection with different doses of oocysts of Cryptosporidium parvum. The liver index (ratio between the liver and body masses) varied with the intensity of invasion on the background of slowing down up to the total cessation of animal growth rates, and all this obviously pointed to severe pathology. In the infected rats, some cytological indices were shifted compared to the norm: protein amount and the average number of genomes per hepatocyte were seen to increase, the normal ratio between cells with different ploidy levels being violated. The particular correlation analysis was employed to distinguish between the ontogenetic (animal growth related) and pathologic (related to the infection intensity) polyploidization and hypertrophy in hepatocytes. In 10-14-day old rats, the former is affected primarily by the increase in the share of multinuclear hepatocytes, whereas the latter is accomplished by the increase in the number of cells with polyploid nuclei (4c and 4c x 2 cells). In the heavily infected rats, the ontogenetic polyploidy was almost totally suppressed due, presumably, to their growth rate inhibition, the rise in hepatocyte ploidy resulting form the obvious pathological changes in the liver. In the infected rats, the ontogenetic hypertrophy of hepatic parenchymatous cells was not manifested, and the observed protein accumulation in hepatocytes also resulted from the pathological changes in the liver. It is obvious that changes in cell hypertrophy (protein content) may serve as a more susceptible tool that readily perceives the host's stress experienced due to the parasitic infection (cryptosporidiosis), than cell ploidy: the levels of the respective responses of these two parameters differing by 4 times. However, due to the known reversible nature of hypertrophy, it cannot be used for the aims of a long-term prediction about the future mode of liver functioning in the animal that survived cryptosporidiosis. Unlike, such a parameter as frequencies of hepatocytes with different ploidy levels is much more useful in this respect.  相似文献   

10.
The processes of polyploidization in normal human liver parenchyma from 155 individuals aged between 1 day and 92 years were investigated by Feulgen-DNA cytophotometry. It was shown that polyploid hepatocytes appear in individuals from 1 to 5 years old. Up to the age of 50 years the accumulation rate of binucleate and polyploid cells is very slow, but subsequently hepatocyte polyploidization is intensified, and in patients aged 86–92 years the relative number of cells with polyploid nuclei is about 27%. Only a few hepatocytes in the normal human liver reach 16C and 8C×2 ploidy levels for mononucleate and binucleate cells respectively. Using a mathematical modeling method, it was shown that during postnatal liver growth the polyploidization process in human liver is similar to that in the rat, and that polyploid cells are formed mainly from binucleate cells. As in rats, prior to an increase in ploidy level, diploid human hepatocytes can pass several times through the usual mitotic cycles maintaining their initial ploidy level. After birth, only one in ten hepatocytes starting DNA synthesis enters the polyploidization process. At maturity about 60% of 2C-hepatocytes starting DNA synthesis divide by conventional mitosis, the rest dividing by acytokinetic mitosis leading to the formation of binucleate cells. During ageing the probability of hepatocyte polyploidization increases and in this period there are two polyploid or binucleate cells for every diploid dividing by conventional mitosis.  相似文献   

11.
With the aid of cytofluorimetry and interference microscopy, the ploidy level and the hepatocyte ploidy class distribution were studied and the dry mass of hepatocytes was measured in hepatocytes in liver of Chinese hamsters Cricetulus griseus and of Balb/c mice before and one month after partial hepatectomy. The mean ploidy level in hepatocytes of the Chinese hamster normal liver amounted to 2.35 ± 0.03 c. The modal class was mononuclear hepatocytes with diploid nuclei (82.4 ± 1.3%). The mean dry mass of hepatocytes amounted to 605.2 ± 4.8 pg. In the process of liver regeneration in the Chinese hamsters, the ratio of ploidy classes and the hepatocyte dry mass did not change. After a similar liver resection in the mice, a significant polyploidization of liver parenchyma occurred. The mean ploidy level in hepatocytes rose by 32%. Instead of 4cx2-hepatocytes, the modal class became mononuclear octaploid cells the relative portion of which increased, on average, by five times. The portion of binuclear hepatocytes with octaploid nuclei in mouse liver rose by more than five times. Thus, in the Chinese hamsters Cricetulus griseus, unlike mice, regeneration of liver occurred exclusively at the expense of proliferation of hepatocytes.  相似文献   

12.
A method for investigating weakly-proliferating cell populations of liver parenchyma on the basis of a quantitative analysis of hepatocyte polyploidization during postnatal development is described. The method uses a mathematical model which characterizes the hepatocyte polyploidization process, and incorporates data concerning the time course for relative frequencies of hepatocytes in different ploidy classes. As a result of these measurements and calculations for rat liver, transition rates of hepatocytes (the relative number of cells during a given time unit) from one ploidy class to another, and a coefficient for the reduction of hepatocyte mitotic activity with an increase in its ploidy class were obtained. Calculated curves show a good correspondence with the real process of hepatocyte frequency changes as they relate to changes in the age of the animals. To check this method, experiments investigating time changes of autoradiographic label content in the different ploidy classes of hepatocytes were carried out. By mathematically modeling the label diluting process resulting from cell proliferation and polyploidization, transition rates of hepatocytes were calculated, and they reflect values calculated from the model according to changes in occurrence frequencies.  相似文献   

13.
14.
The phenobarbital induced shift from G0 to G1 cell cycle phases was analyzed in freshly isolated cultured rat hepatocytes by image analysis. Nuclei in situ in monolayers or in an isolated state were stained with quinacrine dihydrochloride. Fluorescence intensity and fluorescence area were recorded in controls and after treatment with phenobarbital (1.5 or 3 mM, 48 h). Reproducible measurements were obtained with the aid of an elaborate background correction and image enhancement procedure and by the construction of individual measuring masks for each nucleus. A complete statistical analysis revealed that in both preparations (isolated nuclei and monolayer cultures, treated and untreated), individual ploidy classes were distinguishable by fluorescence area measurements. Within each ploidy class, the area is modified by the cell density: with increasing cell density the area occupied by a single cell decreases. After phenobarbital treatment, a decrease in size, due to the higher cell density after the mitotic stimulus of the test compound and a decrease in total fluorescence, due to the G0-G1 cell cycle phase shift was recorded. In monolayer cultures, but not in isolated nuclei, two populations of nuclei were discernible suggesting two cell populations, one responding to treatment and one refractive.  相似文献   

15.
Age-related alterations in the size of human hepatocytes   总被引:2,自引:0,他引:2  
Age-related alterations in the size of human hepatocytes (both mononuclear and binucleate forms), were studied in histological sections and in separated cells and nuclei using cytophotometrical and microspectrophotometrical methods. The following results were obtained: 1. The volume of nuclear DNA increased in proportion to nuclear size. The increase occurred in a group pattern reflecting nuclear polyploidization. 2. Cell size increased in proportion to nuclear size. Tetraploid cells (4C) were roughly two times greater than diploid cells (2C). 3. In most of the binucleate cells examined, the ploidy class of the two nuclei in a binucleate cell was observed to be equal. Heterogeneity of the ploidy class among the nuclei of a binucleate cell was present in less than 1% of total binucleate cells examined. The nuclear DNA volume of individual nuclei in binucleate cells appeared to be the same as that of mononuclear cells. 4. The cell size of binucleate cells corresponded with that of mononuclear cells whose ploidy class was the same as the sum of the ploidy classes of two nuclei of a binucleate cell. 5. The incidence of binucleate cells in the lobular periphery was about 4 to 6% in the third decade, and increased slightly with age up to 5 to 7% in the tenth decade. 6. The incidence of binucleate cells in the liver at different ages followed a similar pattern to that observed in mononuclear cells whose ploidy class was half of the sum of ploidy classes of the two nuclei of the binucleate cell.  相似文献   

16.
T G Zybina 《Tsitologiia》1987,29(9):1012-1019
Polyploidization peculiarities of tertiary giant trophoblast cells during their active detaching from the ectoplacental cone and migrating into decidua basalis are investigated. On the 12th day of gestation, the ploidy of the majority of cell nuclei varies within 4-8c, although there are a few 16c and 32c nuclei. On the 13th and 14th days of gestation, the ploidy level of tertiary giant trophoblast cells enhances; 8c and 16c nuclei prevail, the percentage of 32c nuclei increases, 64c nuclei arising. The ploidy level of tertiary giant cell coincides with the average and/or maximum ploidy degree of precursor cell populations. The significance of polyploidy as indispensable condition of differentiation of the trophoblast cells that actively invade into maternal tissues is discussed.  相似文献   

17.
Using cytofluorimetry and interferometry, hepatocyte DNA, dry mass and distribution of hepatocyte ploidy classes were measured in hamsters Cricetulus griseus in 1 month after partial hepatoctomy. Ploidy of normal liver hepatocyte was 2.35 +/- 0.03 (mean +/- SD) c. Modal ploidy class was presented by mononuclear hepatocytes with diploid nuclei (82.4 +/- 1.3 %). Hepatocyte dry mass was 605.2 +/- 4.8 pg. One month after partial hepatectomy the distribution of ploidy classes and dry mass of hepatocyte did not change. A similar hepatectomy in mice resulted in significant polyploidization of liver parenchyma: the middle level of hepatocyte ploidy increased by 32% and mononuclear octaploid cells, the number of which increased 5-fold, composed modal ploidy class in place of 4cx2-hepatocytes predominated in control mice. The number of 8cx2-hepatocytes in the liver of mice creased by more than 5-fold. Thus, in contrast with mice, in hamsters Cricetulus griseus an increase in the liver mass followed partial hepatectomy depended completely on hepatocyte proliferation.  相似文献   

18.
Age-dependent polyploidization of cultured chick embryo fibroblasts was quantitated using flow microfluorometry. The results confirm the previous observation that ploidy classes developing as a function of fibroblast population doubling are defined as 2nC. Immediately after isolation from embryos, the proportion of 2C nuclei was 95.2–35.7%, decreasing with advancing in vitro age. The proportion of 4C nuclei was only 3.8% at the onset of culture, increasing to 34.5% in senescent cells. The proportion of nuclei 8C and greater increased during the last stage of culture, the highest ploidy class being 128C. On the basis of the polyploidization index, which indicates relative DNA content/cell, chick cells were shown to be considerably polyploidized when they stopped growing.  相似文献   

19.
T G Zybina  E V Zybina 《Tsitologiia》1989,31(11):1292-1305
A cytomorphological study was made of silver stained nucleoli in interphasic nuclei of trophoblast cells from the rat placenta connective zone, in addition to calculation of Ag-positive spherules in the nucleoli. The prevalent number of Ag-positive nucleolar spherules in the nuclei was 6, corresponding to the number of nucleolar organizers (NOR's) in the diploid chromosome complement of the rat. The mean number of Ag-positive spherules in the nucleoli progressively increase in the course of polyploidization from 2c to 32c; variability of the spherule number also increasing. The mean area of nucleoli is found to increase in proportion to the ploidy degree. A high correlation is found between the number of Ag-positive spherules and the area of nucleoli in the nucleus (r = 0.78). This appropriateness is exhibited at all the ploidy levels. The number of Ag-spherules and the area of nucleoli are found to depend slightly on the number of nucleoli. The possibility to use the number of Ag-positive spherules as a criterion of the activity of the NOR in interphasic nuclei is discussed.  相似文献   

20.
Polyploidization frequently precedes tumorigenesis but also occurs during normal development in several tissues. Hepatocyte ploidy is controlled by the PIDDosome during development and regeneration. This multi‐protein complex is activated by supernumerary centrosomes to induce p53 and restrict proliferation of polyploid cells, otherwise prone for chromosomal instability. PIDDosome deficiency in the liver results in drastically increased polyploidy. To investigate PIDDosome‐induced p53‐activation in the pathogenesis of liver cancer, we chemically induced hepatocellular carcinoma (HCC) in mice. Strikingly, PIDDosome deficiency reduced tumor number and burden, despite the inability to activate p53 in polyploid cells. Liver tumors arise primarily from cells with low ploidy, indicating an intrinsic pro‐tumorigenic effect of PIDDosome‐mediated ploidy restriction. These data suggest that hyperpolyploidization caused by PIDDosome deficiency protects from HCC. Moreover, high tumor cell density, as a surrogate marker of low ploidy, predicts poor survival of HCC patients receiving liver transplantation. Together, we show that the PIDDosome is a potential therapeutic target to manipulate hepatocyte polyploidization for HCC prevention and that tumor cell density may serve as a novel prognostic marker for recurrence‐free survival in HCC patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号