首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hypothesis that commercial whaling caused a sequential megafaunal collapse in the North Pacific Ocean by forcing killer whales to eat progressively smaller species of marine mammals is not supported by what is known about the biology of large whales, the ecology of killer whales, and the patterns of ecosystem change that took place in Alaska, British Columbia, and elsewhere in the world following whaling. A comparative analysis shows that populations of seals, sea lions, and sea otters increased in British Columbia following commercial whaling, unlike the declines noted in the Gulf of Alaska and Aleutian Islands. The declines of seals and sea lions that began in western Alaska around 1977 were mirrored by increases in numbers of these species in British Columbia. A more likely explanation is that the seal and sea lion declines and other ecosystem changes in Alaska stem from a major oceanic regime shift that occurred in 1977. Killer whales are unquestionably a significant predator of seals, sea lions, and sea otters—but not because of commercial whaling.  相似文献   

2.
3.
Right whales (Eubalaena spp.) were the focus of worldwide whaling activities from the 16th to the 20th century. During the first part of the 19th century, the southern right whale (E. australis) was heavily exploited on whaling grounds around New Zealand (NZ) and east Australia (EA). Here we build upon previous estimates of the total catch of NZ and EA right whales by improving and combining estimates from four different fisheries. Two fisheries have previously been considered: shore-based whaling in bays and ship-based whaling offshore. These were both improved by comparison with primary sources and the American offshore whaling catch record was improved by using a sample of logbooks to produce a more accurate catch record in terms of location and species composition. Two fisheries had not been previously integrated into the NZ and EA catch series: ship-based whaling in bays and whaling in the 20th century. To investigate the previously unaddressed problem of offshore whalers operating in bays, we identified a subset of vessels likely to be operating in bays and read available extant logbooks. This allowed us to estimate the total likely catch from bay-whaling by offshore whalers from the number of vessels seasons and whales killed per season: it ranged from 2,989 to 4,652 whales. The revised total estimate of 53,000 to 58,000 southern right whales killed is a considerable increase on the previous estimate of 26,000, partly because it applies fishery-specific estimates of struck and loss rates. Over 80% of kills were taken between 1830 and 1849, indicating a brief and intensive fishery that resulted in the commercial extinction of southern right whales in NZ and EA in just two decades. This conforms to the global trend of increasingly intense and destructive southern right whale fisheries over time.  相似文献   

4.
《Anthrozo?s》2013,26(3):287-300
ABSTRACT

Mainland Portugal is not renowned for having been a whaling nation of significance. However, preliminary studies have brought to light enough historical references to suggest that whaling occurred from at least the 13th century, and the present work identifies 38 historical sources documenting whale use or whaling on the Portuguese coast between 1201 and 1728. A peak of whale-related sources occurred during the 13th and 14th centuries, and almost all Portuguese accounts are contemporary to those found from the French and Spanish Basque countries, such that the beginning of the whaling activity seems to be coeval. No geographical cluster of whaling activities can be established—they seem to have been unevenly scattered along the entire coastline. Nor can a chronological north–south movement of coastal whaling activities be discerned. The geographical and chronological patterns give support to the assumption that whaling was not introduced to Portugal by the Basques, who are known to have spread westward from the French Labourd (11th century), via Golf of Biscay, to Asturias, and southward to Galicia (14th century). Rather, Portuguese whale use seems to have originated independently of Basque influence. Several of the sources specify “black whales” as the target species. This is consistent with modern knowledge about the distribution and migration patterns of North Atlantic right whales during Basque medieval and early modern whaling. The Portuguese sources are not clear as to numbers of whales taken, nor to the whaling technology used, but the activity was sufficiently well organized and developed to warrant the levying of tithes in the feudal system of 13th-century Portugal.  相似文献   

5.
The worldwide distribution of blue whales (Balaenoptera musculus) has not prevented this species from becoming endangered due to twentieth century whaling. In Australia there are two known feeding aggregations of blue whales, which most likely are the pygmy subspecies (B. m. brevicauda). It is unknown whether individuals from these feeding aggregations belong to one breeding stock, or multiple breeding stocks that either share or occupy separate feeding grounds. This was investigated using ten microsatellite loci and mitochondrial DNA control region sequences (N = 110). Both sets of markers revealed no significant genetic structure, suggesting that these whales are likely to belong to the same breeding stock.  相似文献   

6.

Background

Humans have reduced the abundance of many large marine vertebrates, including whales, large fish, and sharks, to only a small percentage of their pre-exploitation levels. Industrial fishing and whaling also tended to preferentially harvest the largest species and largest individuals within a population. We consider the consequences of removing these animals on the ocean''s ability to store carbon.

Methodology/Principal Findings

Because body size is critical to our arguments, our analysis focuses on populations of baleen whales. Using reconstructions of pre-whaling and modern abundances, we consider the impact of whaling on the amount of carbon stored in living whales and on the amount of carbon exported to the deep sea by sinking whale carcasses. Populations of large baleen whales now store 9.1×106 tons less carbon than before whaling. Some of the lost storage has been offset by increases in smaller competitors; however, due to the relative metabolic efficiency of larger organisms, a shift toward smaller animals could decrease the total community biomass by 30% or more. Because of their large size and few predators, whales and other large marine vertebrates can efficiently export carbon from the surface waters to the deep sea. We estimate that rebuilding whale populations would remove 1.6×105 tons of carbon each year through sinking whale carcasses.

Conclusions/Significance

Even though fish and whales are only a small portion of the ocean''s overall biomass, fishing and whaling have altered the ocean''s ability to store and sequester carbon. Although these changes are small relative to the total ocean carbon sink, rebuilding populations of fish and whales would be comparable to other carbon management schemes, including ocean iron fertilization.  相似文献   

7.
Modern whaling in Britain and the north-east Atlantic Ocean   总被引:1,自引:0,他引:1  
Modern whaling, using an explosive harpoon fired from a steam catcher-boat to kill the fast-swimming rorquals, began from shore whaling stations in northern Norway in the 1860s. It spread to Iceland, the Faeroe Islands and Spitsbergen, before reaching the British Isles in 1903.
Whaling took place from four stations in the Shetland Islands, one in the Outer Hebrides, and two in Ireland, before the First World War. Fin whales were the main species caught but Blue, Humpback, Sei, Right, Sperm and Bottle-nosed whales were also taken. Four stations re-opened in 1920, but from 1923 onwards only two continued to operate and whaling ceased in 1929, though the Hebridean station worked again for two seasons in 1950–1951.
The species composition of catches at the Hebridean and Irish stations was very similar and different from that of the stations in the Shetland Islands where few Blue whales and Right whales were taken. There is evidence that Fin whales were being overfished on the Shetland Islands whaling grounds at an early date, and that Blue whales and Right whales, but not Fin whales, declined in numbers on the Hebridean grounds.
The history of modern whaling in the north-east North Atlantic region as a whole indicates that the stocks of Blue, Humpback and Right whales were not large enough to support continuous whaling on the scale which took place there. The development of whaling since 1945 supports the view that there are separate populations of Fin whales in the region. The numbers of this species have declined on the whaling grounds of the Faeroe Islands and western Norway, and possibly also of north Norway, but not on the Icelandic grounds where there is no evidence of overfishing.  相似文献   

8.
Populations of sea otters, seals and sea lions have collapsed across much of southwest Alaska over the past several decades. The sea otter decline set off a trophic cascade in which the coastal marine ecosystem underwent a phase shift from kelp forests to deforested sea urchin barrens. This interaction in turn affected the distribution, abundance and productivity of numerous other species. Ecological consequences of the pinniped declines are largely unknown. Increased predation by transient (marine mammal-eating) killer whales probably caused the sea otter declines and may have caused the pinniped declines as well. Springer et al. proposed that killer whales, which purportedly fed extensively on great whales, expanded their diets to include a higher percentage of sea otters and pinnipeds following a sharp reduction in great whale numbers from post World War II industrial whaling. Critics of this hypothesis claim that great whales are not now and probably never were an important nutritional resource for killer whales. We used demographic/energetic analyses to evaluate whether or not a predator–prey system involving killer whales and the smaller marine mammals would be sustainable without some nutritional contribution from the great whales. Our results indicate that while such a system is possible, it could only exist under a narrow range of extreme conditions and is therefore highly unlikely.  相似文献   

9.
We report the results of molecular monitoring of 'whalemeat' markets in the Republic of (South) Korea based on nine systematic surveys from February 2003 to February 2005. As Korea has no programme of commercial or scientific whaling and there is a closure on the hunting of dolphins and porpoises, the only legal source of these products was assumed to be incidental fisheries mortalities ('bycatch') as reported by the government to the International Whaling Commission. Species identification of 357 products using mitochondrial DNA control region or cytochrome b sequences and the web-based programme DNA-surveillance revealed three species of baleen whales (North Pacific minke, common form Bryde's and humpback), three species of beaked whales (Cuvier's, Stejneger's and Blainville's), seven species of dolphins (short-finned pilot, false killer and killer whales; Risso's, bottlenose, common and Pacific white-sided dolphins) and two species of porpoises (harbour and finless). Comparison of market products with official records revealed a number of discrepancies. Of the eight species identified on the markets in 2003, three were not reported in official records for that year. Of the 11 species identified in 2004, five were not reported as bycatch, although one species, a humpback whale, was reported as 'stranded'. We also found significant inconsistencies in the expected frequencies of products from most species, including a large over-representation of finless porpoises and false killer whales. We suggest ways in which market surveys could be improved to provide better information on the magnitude of fisheries bycatch and other illegal, unregulated and unreported (IUU) exploitation of wildlife.  相似文献   

10.
Data recorded from 24,862 whales killed by British Columbia coastal whaling stations between 1908 and 1967 revealed trends in the abundance, sex ratios, age structure, and distribution of sperm ( Physeter macrocephalus ), fin ( Balaenoptera physalus ), sei ( Balaenoptera borealis ), humpback ( Megaptera novaeangliae ), and blue ( Balaenoptera musculus ) whales. The catch data were analyzed using annual and monthly mean values. Monthly and annual variation in whaling effort was deduced from accounts of the history of British Columbia coastal whaling, and biases arising from changes in effort were considered in the interpretation of the results. During the later years of whaling (1948-1967), the mean lengths of captured whales declined significantly and pregnancy rates dropped to near zero in fin, sei, and blue whales. Monthly patterns in numbers killed revealed a summer migration of sei and blue whales past Vancouver Island, and confirms anecdotal suggestions that local populations of fin and humpback whales once spent extended periods in the coastal waters of British Columbia. Furthermore, the data strongly suggest that sperm whales mated (April-May) and calved (July-August) in British Columbia's offshore waters. The historic whaling records reveal much about the migratory behavior and distribution of the large whales species as they once were, and may continue to be, in the northeastern Pacific. Verifying the persistence of these trends in the remnant populations is a necessary and logical next step.  相似文献   

11.
Whales are unique among vertebrates because of the enormous oil reserves held in their soft tissue and bone. These ‘biofuel’ stores have been used by humans from prehistoric times to more recent industrial-scale whaling. Deep-sea biologists have now discovered that the oily bones of dead whales on the seabed are also used by specialist and generalist scavenging communities, including many unique organisms recently described as new to science. In the context of both cetacean and deep-sea invertebrate biology, we review scientific knowledge on the oil content of bone from several of the great whale species: Balaenoptera musculus, Balaenoptera physalus, Balaenoptera borealis, Megaptera novaeangliae, Eschrichtius robustus, Physeter macrocephalus and the striped dolphin, Stenella coeruleoalba. We show that data collected by scientists over 50 years ago during the heyday of industrial whaling explain several interesting phenomena with regard to the decay of whale remains. Variations in the lipid content of bones from different parts of a whale correspond closely with recently observed differences in the taphonomy of deep-sea whale carcasses and observed biases in the frequency of whale bones at archaeological sites.  相似文献   

12.
Logbooks ( n = 317) from whaling expeditions made in the North Atlantic during the 19th century were examined to investigate activity in the Gibraltar Straits grounds. At least forty expeditions of whaling vessels from European and American ports visited the area. In all cases the main target was the sperm whale, but pilot whales, dolphins, sea turtles, and even a blue whale were also taken. Whaling effort concentrated on the Atlantic side of the Straits; only two expeditions ventured into the Mediterranean Sea, obtaining negligible catches. The whaling season extended during spring and summer and peaked in June–July. This seasonality appeared not to be governed by changes in whale density but by the trade winds necessary to sail southward or westward to cross the Atlantic. Searching effort continued while trying out, but the rate of sighting cetaceans was about half that of searching periods. However, the rate of sighting or capturing a sperm whale remained unchanged during processing, probably because the gregarious habits of the species produced clumping of catches. For every whale secured, 1.31 whales were struck. After correcting for struck but lost whales and for "gammed" vessels, the minimum number of removals of sperm whales during 1862–1889 is estimated at 237.  相似文献   

13.
Ecosystem-based management (EBM) of marine resources attempts to conserve interacting species. In contrast to single-species fisheries management, EBM aims to identify and resolve conflicting objectives for different species. Such a conflict may be emerging in the northeastern Pacific for southern resident killer whales (Orcinus orca) and their primary prey, Chinook salmon (Oncorhynchus tshawytscha). Both species have at-risk conservation status and transboundary (Canada-US) ranges. We modeled individual killer whale prey requirements from feeding and growth records of captive killer whales and morphometric data from historic live-capture fishery and whaling records worldwide. The models, combined with caloric value of salmon, and demographic and diet data for wild killer whales, allow us to predict salmon quantities needed to maintain and recover this killer whale population, which numbered 87 individuals in 2009. Our analyses provide new information on cost of lactation and new parameter estimates for other killer whale populations globally. Prey requirements of southern resident killer whales are difficult to reconcile with fisheries and conservation objectives for Chinook salmon, because the number of fish required is large relative to annual returns and fishery catches. For instance, a U.S. recovery goal (2.3% annual population growth of killer whales over 28 years) implies a 75% increase in energetic requirements. Reducing salmon fisheries may serve as a temporary mitigation measure to allow time for management actions to improve salmon productivity to take effect. As ecosystem-based fishery management becomes more prevalent, trade-offs between conservation objectives for predators and prey will become increasingly necessary. Our approach offers scenarios to compare relative influence of various sources of uncertainty on the resulting consumption estimates to prioritise future research efforts, and a general approach for assessing the extent of conflict between conservation objectives for threatened or protected wildlife where the interaction between affected species can be quantified.  相似文献   

14.
American whalemen sailed out of ports on the east coast of the United States and in California from the 18(th) to early 20(th) centuries, searching for whales throughout the world's oceans. From an initial focus on sperm whales (Physeter macrocephalus) and right whales (Eubalaena spp.), the array of targeted whales expanded to include bowhead whales (Balaena mysticetus), humpback whales (Megaptera novaeangliae), and gray whales (Eschrichtius robustus). Extensive records of American whaling in the form of daily entries in whaling voyage logbooks contain a great deal of information about where and when the whalemen found whales. We plotted daily locations where the several species of whales were observed, both those caught and those sighted but not caught, on world maps to illustrate the spatial and temporal distribution of both American whaling activity and the whales. The patterns shown on the maps provide the basis for various inferences concerning the historical distribution of the target whales prior to and during this episode of global whaling.  相似文献   

15.
Yankee whalers of the 19th century had major impacts on populations of large whales, but these leviathans were not the only taxa targeted. Here, we describe the “collateral damage,” the opportunistic or targeted taking of nongreat whale species by the American whaling industry. Using data from 5,064 records from 79 whaling logs occurring between 1840 and 1901, we show that Yankee whalers captured 5,255 animals across three large ocean basins from 32 different taxonomic categories, including a wide range of marine and terrestrial species. The taxa with the greatest number of individuals captured were walruses (Odobenus rosmarus), ducks (family Anatidae), and cod (Gadus sp.). By biomass, the most captured species were walruses, grampus (a poorly defined group within Odontoceti), and seals (family Otariidae). The whalers captured over 2.4 million kg of nongreat whale meat equaling approximately 34 kg of meat per ship per day at sea. The species and areas targeted shifted over time in response to overexploitation of whale populations, with likely intensive local impacts on terrestrial species associated with multiyear whaling camps. Our results show that the ecosystem impacts of whaling reverberated on both marine and coastal environments.  相似文献   

16.
Killer whales (Orcinus orca) are increasing in occurrence and residence time in the eastern Canadian Arctic (ECA) in part due to a decrease in sea ice associated with global climate change. Killer whales prey on bowhead whales (Balaena mysticetus) of the Eastern Canada-West Greenland (EC-WG) population, but their patterns of predation pressure and effect on the EC-WG population’s ability to recover from historical whaling remain unknown. We analyzed photographs of individual bowhead whale flukes from five regions within the EC-WG population’s geographic range (Cumberland Sound, Foxe Basin, Isabella Bay, Repulse Bay and Disko Bay), taken during 1986 and from 2007 to 2012, to estimate the occurrence of rake marks (parallel scars caused by killer whale teeth). Of 598 identified whales, 10.2 % bore rake marks from killer whales. A higher occurrence of rake marks was found in Repulse and Disko Bays, where primarily adult bowhead whales occur seasonally, than in Foxe Basin, where juveniles and females with calves occur. Older bowheads, which have had greater exposure time to killer whales due to their age, had higher occurrences of rake marks than juveniles and calves, which may indicate that younger whales do not survive killer whale attacks. A high proportion of adult females also had rake marks, perhaps due to protecting their calves from killer whale predation. In order to quantify the effect of killer whales on EC-WG population recovery, further research is needed on the relationship between the occurrence of rake marks and bowhead adult, calf, and juvenile mortality in the ECA, as well as more information about Arctic killer whale ecology.  相似文献   

17.
Whale and Man The history of the interaction between man and whale is changeful. As in the past, also today, these gentle giants provide enough material for tales and modern mysteries. The excessive whaling of the past century almost led to extinction of several baleen whale species. Whaling distinguishs between commercial, aboriginal subsistence and scientific whaling. Since the whaling moratorium of the International Whaling Commission came into effect 1986, the stocks of the great whales developed differently. We deliver insight into the history of whaling and demonstrate the current threats to cetaceans, bycatch, entanglement, ship strike, accidents, marine pollution and climate change. Whale‐watching is a fast growing section of tourism industry, however, this form of wildlife watching may have negative consequences for the whales.  相似文献   

18.
Killer whales (Orcinus orca) are widely distributed throughout the world's oceans, yet little has been documented about their stranding patterns. Knowledge of stranding patterns improves our ability to examine and sample carcasses and provides a foundation for understanding killer whale natural history, diet, reproduction, anthropogenic stressors, emerging diseases, and patterns of unusual mortality. We compiled published and unpublished killer whale stranding data to describe stranding patterns in the North Pacific Ocean. Between 1925 and 2011, 371 stranded killer whales were reported in Japan (20.4%), Russia (3.5%), Alaska (32.0%), British Columbia (27.4%), Washington (4.0%), Oregon (2.7%), California (5.1%), Mexico (3.8%), and Hawaii (0.8%). Strandings occurred at all times of year, but regionally specific seasonal differences were observed. Mortality and annual census data from Northern and Southern Resident populations were extrapolated to estimate that across the North Pacific, an average of 48 killer whales die annually. However, over the last two decades, an average of only 10 killer whale carcasses were recovered annually in this ocean, making each event a rare opportunity for study. Publication of a standardized killer whale necropsy protocol and dedicated funding facilitated the number of complete postmortem necropsies performed on stranded killer whales from 1.6% to 32.2% annually.  相似文献   

19.
Abstract

During the 19th century, sail whalers hunted right whales throughout the southern oceans north of 50 degrees. This review seeks to document the recovery of southern right whales by comparing the northernmost recent sightings with older sightings that survive “fossilised” in historical records of the sail whaling era. Despite a steady expansion northwards in recent years, the present distribution of right whales is still far short of that recorded by sail whalers over a century ago.  相似文献   

20.
Right whales off Namibia were severely depleted by early 19th century whaling, and rarely featured in modern whaling catches in the 1920s. Aerial surveys of the Namibian coastline from 1978 and onwards revealed increasing numbers of right whales, but few cow‐calf pairs. Aerial surveys off South Africa since 2009 showed a major decline in the availability of animals without calves. Twenty individual matches were made between 94 whales photographed off Namibia/Northern Cape in 2003–2012 and 1,677 photographed off South Africa in 1979–2012. Eight were adult females that calved in South African waters, but only one was also seen with a calf off Namibia. Twelve out of 13 individuals off Namibia with distinctive dorsal pigmentation were first seen as calves off South Africa. These results strongly indicate connectivity between the two regions, while the presence off Namibia of three adult females from the South African population in the season in which they are believed to conceive suggests that there is unlikely to be any genetic differentiation between the two areas. We conclude that the reappearance of right whales off Namibia represents range expansion from South Africa rather than the survival of a few remnants of an originally separate stock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号