首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Low-pH-induced fusion of liposomes with rat liver endoplasmic reticulum was evidenced. Fusion was inactivated by treatment of microsomes with trypsin or EEDQ (N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline), indicating the involvement of a protein. The protein was purified 555-fold by chromatographic steps. The identification and purification to homogeneity was obtained by electroelution from a slab gel, which gave a still active protein of about 50 kDa. The protein promoted the fusion of liposomes; laser light scattering showed an increase of mean radius of vesicles from 60 up to about 340 nm. Fusion was studied as mass action kinetics, describing the overall fusion as a two-step sequence of a second order aggregation followed by a first order fusion of liposomes. For phosphatidylcholine containing liposomes aggregation was not rate-limiting at pH 5.0 and fusion followed first order kinetics with a rate constant of 13 · 10−3 sec−1. For phosphatidylethanolamine/phosphatidic acid liposomes aggregation was rate-limiting; however, the overall fusion was first order process, suggesting that fusogenic protein influences both aggregation and fusion of liposomes. The protein binds to the lipid bilayer of liposomes, independently of pH, probably by a hydrophobic segment. Exposed carboxylic groups might be able to trigger pH-dependent aggregation and fusion. It is proposed that the protein inserted in the lipid bilayer bridges with an adjacent liposome forming a fused doublet. Since at endoplasmic reticulum level proton pumps are operating to generate a low-pH environment, the membrane bound fusogenic protein may be responsible for both aggregation and fusion of neighboring membranes and therefore could operate in the exchange of lipidic material between intracellular membranes. Received: 25 August 1997/Revised: 28 April 1998  相似文献   

2.
Fusogenic protein (FP) is a glycoprotein ( approximately 50 kDa), previously purified by us from rat liver endoplasmic reticulum, which explicates fusogenic activity at acidic pH in vitro. To suggest a possible role of FP in membrane fusion, the topology of the protein in the membrane and the conditions in which FP is operating in microsomes have been investigated. Anti-FP polyclonal antibodies inhibited pure FP activity, but not the protein activity in microsomes, suggesting interaction of antibodies with a part of FP concealed in intact membranes. FP activity in microsomes was lost after treatment with Pronase. Western blot analysis of Pronase-treated microsomes showed that the proteolysis removed a fragment ( approximately 5 kDa). This fragment is exposed on the outer surface of microsomes and involved in fusogenic activity, whereas the largest part of FP is embedded in microsomal vesicles. Therefore, FP can be affected by modifications on the cytosolic and luminal sides of microsomal membranes. Indeed, when microsomal lumen was acidified by H+-ATPase activity, binding and fusion of fluorescent labelled liposomes to microsomes occurred. Direct involvement of FP in the fusogenic event was observed by reconstituting pure FP in liposomes with a preformed H+ gradient. FP triggered a fusion process in response to the acidic interior of liposomes, despite an exterior 7.4 pH unable to promote fusogenic protein activity. As intracellular membrane fusion occurs at neutral pH involving the cytosolic sides of membranes, FP may participate in this event by exploiting the acidic pH formed in the lumen of endoplasmic reticulum through H+-translocating ATPase activity.  相似文献   

3.
The transport of various metabolically important substances along the endocytic and secretory pathways involves budding as well as fusion of vesicles with various intracellular compartments and plasma membrane. The membrane-membrane fusion events between various sub-compartments of the cell are believed to be mainly mediated by so-called “fusion proteins”. This study shows that beside the proteins, lipid components of membrane may play an equally important role in fusion and budding processes. Inside out (ISO) as well as right side out (RSO) erythrocyte vesicles were evaluated for their fusogenic potential using conventional membrane fusion assay methods. Both fluorescence dequenching as well as content mixing assays revealed fusogenic potential of the erythrocyte vesicles. Among two types of vesicles, ISO were found to be more fusogenic as compared to the RSO vesicles. Interestingly, ISO retained nearly half of their fusogenic properties after removal of the proteins, suggesting the remarkable role of lipids in the fusion process. In another set of experiments, fusogenic properties of the liposomes (subtilosome), prepared from phospholipids isolated from Bacillus subtilis (a lower microbe) were compared with those of erythrocyte vesicles. We have also demonstrated that various types of vesicles upon interaction with macrophages deliver encapsulated materials to the cytosol of the cells. Membrane-membrane fusion was also followed by the study, in which a protein synthesis inhibitor ricin A (that does not cross plasma membrane), when encapsulated in the erythrocyte vesicles or subtilosomes was demonstrated to gain access to the cytosol.  相似文献   

4.
Sea urchin egg cortices were used as an in vitro natural membrane model system to determine the effects of inhalation anesthetics on the Ca2+-regulated exocytotic fusion of cortical vesicles with the egg plasma membrane. When Ca2+ was either absent or present in amounts below the threshold for exocytosis, methoxyflurane, halothane, enflurane, isoflurane, chloroform and fluoroxene, at concentrations up to S mM, had no effect on the fusion of cortical vesicles with the plasma membrane. However, when Ca2+ was present at or above threshold levels for exocytosis, each of the tested anesthetics caused an inhibition of cortical vesicle fusion. Exocytosis was inhibited most effectively by methoxyflurane (55%), followed by halothane (30%), while fuoroxene consistently had the least effect (< 5%). These observations support the view that volatile anesthetics can impair the Ca2+-regulated fusogenic activities of natural membranes and are consistent with other data showing that inhalational agents inhibit secretory processes in intact cells.Abbreviations PIPES piperazine-N-N-bis (2-ethane sulfonic acid) - PMSF phenylmethylsulfonylfluoride - SW sea water - TAPS trishydroxymethyl-methylaminopropane sulfonic acid  相似文献   

5.
Data reported in the literature indicate that lipid movement between intracellular organelles can occur through contacts and close physical association of membranes (Vance, J.E. 1990. J Biol Chem 265: 7248-7256). The advantage of this mechanism is that the direct interaction of membranes provides the translocation event without the involvement of lipid-transport systems. However, pre-requisite for the functioning of this machinery is the presence of protein factors controlling membrane association and fusion. In the present work we have found that liposomes fuse to mitochondria at acidic pH and that the pre-treatment of mitochondria with pronase inhibits the fusogenic activity. Mixing of 14C-phosphatilyserine (PS) labeled liposomes with mitochondria at pH 6.0 results in the translocation of 14C-PS into mitochondria and in its decarboxylation to14 C-phosphatidylethanolamine through the PS decarboxylase activity localized on the outer surface of the inner mitochondrial membrane. Incorporation of 14C-PS is inhibited by the pre-treatment of mitochondria with pronase or with EEDQ, a reagent for the derivatization of the protonated form of carboxylic groups. These results indicate the presence of a protein associated with mitochondria which is able to trigger the fusion of liposomes to the mitochondrial membrane. A partial purification of a mitochondrial fusogenic glycoprotein is described in this work. The activity of the fusogenic protein appears to be dependent on the extent of protonation of the residual carboxylic groups and is influenced by the glucidic moiety, as demonstrated by its interaction with Concanavalin A. The purifed protein is able to promote the recover of the14 C-PS import from liposomes to pronase-treated mitochondria. Therefore, the protein is candidate to be an essential component in the machinery for the mitochondrial import of PS. (Mol Cell Biochem 175: 71–80, 1997)  相似文献   

6.
Phospholipid diversity: correlation with membrane-membrane fusion events   总被引:1,自引:0,他引:1  
The transport of various metabolically important substances along the endocytic and secretory pathways involves budding as well as fusion of vesicles with various intracellular compartments and plasma membrane. The membrane-membrane fusion events between various sub-compartments of the cell are believed to be mainly mediated by so-called "fusion proteins". This study shows that beside the proteins, lipid components of membrane may play an equally important role in fusion and budding processes. Inside out (ISO) as well as right side out (RSO) erythrocyte vesicles were evaluated for their fusogenic potential using conventional membrane fusion assay methods. Both fluorescence dequenching as well as content mixing assays revealed fusogenic potential of the erythrocyte vesicles. Among two types of vesicles, ISO were found to be more fusogenic as compared to the RSO vesicles. Interestingly, ISO retained nearly half of their fusogenic properties after removal of the proteins, suggesting the remarkable role of lipids in the fusion process. In another set of experiments, fusogenic properties of the liposomes (subtilosome), prepared from phospholipids isolated from Bacillus subtilis (a lower microbe) were compared with those of erythrocyte vesicles. We have also demonstrated that various types of vesicles upon interaction with macrophages deliver encapsulated materials to the cytosol of the cells. Membrane-membrane fusion was also followed by the study, in which a protein synthesis inhibitor ricin A (that does not cross plasma membrane), when encapsulated in the erythrocyte vesicles or subtilosomes was demonstrated to gain access to the cytosol.  相似文献   

7.
We have investigated the contribution of various phospholipids to membrane fusion induced by divalent cations. Fusion was followed by means of a new fluorescence assay monitoring the mixing of internal aqueous contents of large (0.1 μm diameter) unilamellar liposomes. The rate and extent of fusion induced by Ca2+ in mixed phosphatidylserine/phosphatidylcholine vesicles were lower compared to those in pure phosphatidylserine vesicles. The presence of 50% phosphatidylcholine completely inhibited fusion, although the vesicles aggregated upon Ca2+ addition. When phosphatidylserine was mixed with phosphatidylethanolamine, however, rapid fusion could be induced by Ca2+ even in mixtures that contained only 25% phosphatidylserine. Phosphatidylethanolamine also facilitated fusion by Mg2+ which could not fuse pure phosphatidylserine vesicles. In phosphatidylserine/phosphatidylethanolamine/phosphatidylcholine mixtures, in which the phosphatidylcholine content was kept at 25%, phosphatidylethanolamine could not substitute for phosphatidylserine, and the fusogenic capacity of Mg2+ was abolished by the presence of merely 10% phosphatidylcholine. The initial rate of release of vesicle contents was slower than the rate of fusion in all the mixtures used. The presence of phosphate effected a considerable decrease in the threshold concentration of Ca2+ and also enhanced  相似文献   

8.
Two new activators of (1,3)--glucan synthase fromSaccharomyces cerevisiae were identified, and a procedure for preparing enriched enzyme fractions by removal of peripheral membrane proteins and entrapped soluble proteins was developed. Microsomal enzyme activity, known to be enhanced by bovine serum albumin (BSA), was stimulated threefold by both -lactoglobulin and Brij-35. Both apparently substituted for BSA, since no synergistic effects were observed with activators added in combination. Successive washings of microsomal fractions with the detergents Brij-35 and Tergitol NP-40 to remove peripheral and vesicle-entrapped proteins yielded particulate fractions five-fold enriched in glucan synthase activity. GTP, an important effector of glucan synthase, improved purification of the enzyme during detergent extractions. Various membrane fractions were photolabeled with 5[32P]N3UDP-Glc or 8N3[32P]GTP, and potential UDP-Glc and GTP-binding polypeptides were identified. However, further enrichment will be required to determine which of these might represent subunits of the yeast glucan synthase complex.  相似文献   

9.
Hasan N  Corbin D  Hu C 《PloS one》2010,5(12):e14238

Background

Intracellular vesicle fusion is mediated by the interactions of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins on vesicles (v-SNAREs) and on target membranes (t-SNAREs). The vesicle-associated membrane proteins (VAMPs) are v-SNAREs that reside in various post-Golgi vesicular compartments. To fully understand the specific role of each VAMP in vesicle trafficking, it is important to determine if VAMPs have differential membrane fusion activities.

Methodology/Principal Findings

In this study, we developed a cell fusion assay that quantifies SNARE-mediated membrane fusion events by activated expression of β-galactosidase, and examined fusogenic pairings between the seven VAMPs, i.e., VAMPs 1, 2, 3, 4, 5, 7 and 8, and two plasma membrane t-SNARE complexes, syntaxin1/SNAP-25 and syntaxin4/SNAP-25. VAMPs 1, 2, 3, 4, 7 and 8 drove fusion efficiently, whereas VAMP5 was unable to mediate fusion with the t-SNAREs. By expressing VAMPs 1, 3, 4, 7 and 8 at the same level, we further compared their membrane fusion activities. VAMPs 1 and 3 had comparable and the highest fusion activities, whereas VAMPs 4, 7 and 8 exhibited 30–50% lower fusion activities. Moreover, we determined the dependence of cell fusion activity on VAMP1 expression level. Analysis of the dependence data suggested that there was no cooperativity of VAMP proteins in the cell fusion reaction.

Conclusions/Significance

These data indicate that VAMPs have differential membrane fusion capacities, and imply that with the exception of VAMP5, VAMPs are essentially redundant in mediating fusion with plasma membrane t-SNAREs.  相似文献   

10.
The aim of this study was to investigate the fusogenic properties of poly(ethylene glycol) (PEG)ylated dioleoylphosphatidylethanolamine/cholesteryl hemisuccinate (DOPE/CHEMS) liposomes. These pH-sensitive liposomes were prepared by incorporating two different PEG lipids: distearoylphosphatidylethanolamine (DSPE)-PEG???? was mixed with the liposomal lipids using the conventional method, whereas sterol-PEG???? was inserted into the outer monolayer of preformed vesicles. Both types of PEGylated liposomes were characterized and compared for their entrapment efficiency, zeta potential and size, and were tested in vitro for pH sensitivity by means of proton-induced leakage and membrane fusion activity. To mimic the routes of intracellular delivery, fusion between pH-sensitive liposomes and liposomes designed to simulate the endosomal membrane was studied. Our investigations confirmed that DOPE/CHEMS liposomes were capable of rapidly releasing calcein and of fusing upon acidification. However, after incorporation of DSPE-PEG???? or sterol-PEG???? into the membrane, pH sensitivity was significantly reduced; as the mol ratio of PEG-lipid was increased, the ability to fuse was decreased. Comparison between two different PEGylated pH-sensitive liposomes showed that only vesicles containing 0.6 mol% sterol-PEG???? in the outer monolayer were still capable of fusing with the endosome-like liposomes and showing leakage of calcein at pH 5.5.  相似文献   

11.
Abstract

Based on the concept of rational membrane design it is proposed how to develop liposomes suitable for the targeting in vitro and in vivo. Such targeting can rely on the chemical or physical 'pointers'. Hyperthermia is a particularly convenient example of the latter, suggesting that thermolabile fusogenic liposomes should be devised and used for the agent delivery into cells. The resulting efficacy depends on the extent to which the phase characteristics of the fusogenic lipid membrane are made to fit the delivery-triggering signal: increasing the temperature and/or lowering the pH-value in the investigated system are most useful for this purpose, the role of membrane defects, such as may arise during the liposome manufacturing process or in the vicinity of lipid phase transitions also being of extreme importance. Thermolabile fusogenic liposomes prepared from the stoichiometric 1/2 mixture of diacylphos-?hatidylcholines with appropriate fatty acids implement these requirements. 'heir temperature dependence permitting physical targeting and their pH-dependence being suitable for the 'chemical targeting' to the acidic surrounding. Dipalmitoylphosphatidylcholine/elaidic acid mixture is, perhaps, the best such combination for the use in vivo. The efficacy of fusion between the corresponding lipid vesicles and cells in vitro as well as the delivery of radioactive labels into the heated tumours (but not in the normal muscle tissue with the inpenetrable micro-vasculature) provide compelling evidence for this.  相似文献   

12.
Summary The fusion of cytochrome oxidase liposomes with liposomes reconstituted with mitochondrial hydrophobic protein is dependent on the presence of an acidic phospholipid in the liposomes and on the addition of Ca++ ions. Liposomes which have grown, by fusion, to diameters in excess of 1000 Å lose the ability to fuse further, unless an osmotic gradient across the liposome membrane is established, with the internal osmotic pressure higher than the external. At a given Ca++ concentration, the extent to which this second fusion step takes place is determined by the ratio of internal to external osmolarity. Single-walled liposomes with diameters exceeding 1 m have been produced by this technique. The data suggest that the thermodynamic driving force for the Ca++-induced fusion is an excess surface free energy which can be supplied by membrane curvature or transmembrane osmotic gradients.  相似文献   

13.
14.
Summary The purified (H+ATPase from corn roots plasma membrane inserted spontaneously into preformed bilayer from soybean lipids. The yield of the protein insertion, as measured from its H+-pumping activity, increased as a function of lipids and protein concentrations. In optimum conditions, all the (H+)ATPase molecules were closely associated with liposomes, exhibiting a high H+-pumping activity (150,000% quenching· min–1·mg–1 protein of the probe 9-amino-6-chloro-2-methoxyacridine). The insertion was achieved within a few seconds. No latency of the (H+)ATPase hydrolytic activity was revealed when lysophosphatidylcholine was added to permeabilize the vesicles. This indicated that the (H+)ATPase molecules inserted unidirectionally, the catalytic sites being exposed outside the vesicles (inside-out orientation), and thus freely accessible to Mg-ATP. The nondelipidated (H+)ATPase could also functionally insert into bilayer from PCPEPG or PCPEPI, due to the presence of both hydrophobic defects promoted by PE, and negative phospholipids specifically required by the (H+)ATPase from corn roots. The detergent octylglucoside facilitated the delipidated (H+)ATPase reinsertion probably by promoting both a proper protein conformation and hydrophobic defects in the bilayer. Lysophosphatidylcholine facilitated the delipidated protein insertion only when hydrophobic defects were already present, and thus seemed only capable to ensure a proper protein conformation  相似文献   

15.
The membrane-interacting abilities of three sequences representing the putative fusogenic subdomain of the Ebola virus transmembrane protein have been investigated. In the presence of calcium, the sequence EBOGE (GAAIGLAWIPYFGPAAE) efficiently fused unilamellar vesicles composed of phosphatidylcholine, phosphatidylethanolamine, cholesterol, and phosphatidylinositol (molar ratio, 2:1:1:0.5), a mixture that roughly resembles the lipid composition of the hepatocyte plasma membrane. Analysis of the lipid dependence of the process demonstrated that the fusion activity of EBOGE was promoted by phosphatidylinositol but not by other acidic phospholipids. In comparison, EBOEA (EGAAIGLAWIPYFGPAA) and EBOEE (EGAAIGLAWIPYFGPAAE) sequences, which are similar to EBOGE except that they bear the negatively charged glutamate residue at the N terminus and at both the N and C termini, respectively, induced fusion to a lesser extent. As revealed by binding experiments, the glutamate residue at the N terminus severely impaired peptide-vesicle interaction. In addition, the fusion-competent EBOGE sequence did not associate significantly with vesicles lacking phosphatidylinositol. Tryptophan fluorescence quenching by vesicles containing brominated phospholipids indicated that the EBOGE peptide penetrated to the acyl chain level only when the membranes contained phosphatidylinositol. We conclude that binding and further penetration of the Ebola virus putative fusion peptide into membranes might be governed by the nature of the N-terminal residue and by the presence of phosphatidylinositol in the target membrane. Moreover, since insertion of such a peptide leads to membrane destabilization and fusion, the present data would be compatible with the involvement of this sequence in Ebola virus fusion.Ebola virus belongs to the Filoviridae family (23). This human pathogen occasionally causes epidemics of African hemorrhagic fever with a high rate of mortality (8, 23, 37). Little is known about the viral infectivity mechanism, and there is no specific treatment for Ebola virus hemorrhagic fever as yet. The most prominent pathology of Ebola virus infection includes necrosis of liver parenchyma as a direct consequence of virus replication (23). Ebola virus virions are composed of a helical nucleocapsid containing one linear, negative-sense, single-stranded RNA and surrounded by a lipidic envelope derived from the host cell plasma membrane (8, 23). The envelope contains solely one type of highly glycosylated protein (Ebola GP) arranged into oligomers, most probably trimers, which constitute the spikes that protrude from the virion surface (8, 30, 38, 39).The mode of entry of Ebola virus into target cells remains unknown. However it seems likely that the single surface protein Ebola GP is responsible for both receptor binding and membrane fusion during entry into the host cells. Homology analysis of its coding gene-derived sequence has identified several structural features that Ebola GP shares with other envelope fusion proteins derived from oncogenic retroviruses (12, 39). Just recently a detailed analysis has detected a high degree of structural homology between Ebola GP and the Rous sarcoma virus transmembrane protein (12). Several structural elements that might be involved in the ectodomain fusogenic function are shared by these viruses. In particular, there exists in both viruses an amino acid region bounded by cysteines that has at its center a sequence of approximately 16 uncharged and hydrophobic residues. Its location with respect to the viral membrane, the presence of a canonical fusion tripeptide (YFG in Ebola virus), and the fact that this sequence exhibits a high degree of identity among the Filoviridae members suggest that this region might constitute in Ebola virus the fusion peptide that is critical for virion-membrane fusion in the Retroviridae and other families (11, 40, 41).According to the most widely accepted mechanistic model proposed for the initial phase of the viral fusion process, activation of the viral spikes induces the exposure of previously buried hydrophobic fusion peptides in the vicinity of the target cell (5, 43). Further interaction of the viral fusion peptides with the cell membrane would depend mainly on the capacity for binding of these peptides to the membrane lipid components and could eventually trigger the process that brings about the actual merging of the viral and cell membranes via a currently unknown mechanism (41). This fact has justified the development of in vitro studies on the membrane-destabilizing effects of fusion peptides by using representative synthetic peptides of different viruses and model membranes (7, 15, 19, 29).The membrane environment into which the fusion peptide should partition obviously plays an important role in the process. Previous work from this laboratory has focused on the effect of the target membrane composition on viral fusion. Reports from this and other laboratories indicate the existence of conformational changes induced by lipidic components in the membrane-bound human immunodeficiency virus type 1 (HIV-1) fusion peptide (25, 28, 29), and we have identified a fusogenic conformation of the peptide represented by an extended β-type structure (25, 26, 28). The fusogenic interaction of the HIV-1 fusion peptide is, moreover, sensitive to factors that affect gp41 activity in vivo (27). Modulation of viral fusion by lipids has also been observed for complete virions and reconstituted systems fusing with model membranes (6, 24, 42). These observations indicate that enveloped viruses may optimize host interactions during the entry process, not only at the level of the selective binding to cell receptors but also at the level of the envelope fusion and subsequent capsid penetration.Our primary objective in this study was to confirm that the proposed fusogenic sequence for Ebola virus might interact with membranes, destabilize them, and eventually induce fusion. Because Ebola virus infects and replicates very efficiently in the liver, we initially employed as target membranes large unilamellar vesicles (LUV) made of a lipidic mixture that represents the hepatocyte plasma membrane composition (18). Our results demonstrate that this Ebola virus peptide interacts with phosphatidylinositol (PI)-containing membranes and induces vesicle fusion. Moreover, we show that the sequence lacking the negatively charged Glu residue at the N terminus interacts more efficiently with membranes. These data suggest that, similarly to the HIV-1 fusion peptide (2628), the Ebola virus peptide segment under study may be important in viral fusion in vivo.  相似文献   

16.
Summary Rat brain microsomal membranes were found to contain high-affinity binding sites for the alkaloid ryanodine (k d 3nm.B max 0.6 pmol per mg protein). Exposure of planar lipid bilayers to microsomal membrane vesicles resulted in the incorporation, apparently by bilayer-vesicle fusion, of at least two types of ion channel. These were selective for Cl and Ca2+, respectively. The reconstituted Ca2+ channels were functionally modified by 1 m ryanodine, which induced a nearly permanently open subconductance state. Unmodified Ca2+ channels had a slope conductance of almost 100 pS in 54mm CaHEPES and a Ca2+/TRIS+ permeability ratio of 11.0. They also conducted other divalent cations (Ba2+>Ca2+>Sr2+>Mg2+) and were markedly activated by ATP and its nonhydrolysable derivative AMPPCP (1mm). Inositol 1,4,5-trisphosphate (1–10 m) partially activated the same channels by increasing their opening rate. Brain microsomes therefore contain ryanodine-sensitive Ca2+ channels, sharing some of the characteristics of Ca2+ channels from striated but not smooth muscle sarcoplasmic reticulum. Evidence is presented to suggest they were incorporated into bilayers following the fusion of endoplasmic reticulum membrane vesicles, and their sensitivity to inositol trisphosphate may be consistent with a role in Ca2+ release from internal membrane stores.  相似文献   

17.
The [3H]Tyramine (TY) binding site is proposed as a high affinity marker of the membrane carrier for dopamine (DA) in synaptic vesicles from DA-rich brain regions. Under precise assay conditions, there is neither a consistent association of TY with the neuronal, cocaine-sensitive DA transporter, nor with mitochondrial or microsomal targets. TY-labeled sites have a high affinity for selected toxins such as the Parkinsonian agent MPP+ (1-methyl-4-phenylpyridinium ion), or drugs such as diphenylalkylamine Ca2+-channel antagonists. The MPP+/TY site interaction, which in the striatum leads to depletion of vesicular DA, occurs in dopaminergic as well as in noradrenergic regions, though with different kinetic profiles. TY-labeled carriers for DA and noradrenaline (NA) in respective vesicles seem to be different entities, which might result in a region-specific rate of toxin sequestration and/or release from heterogeneous vesicles. Whereas MPP+ is a potent competitive-type inhibitor of [3H]TY binding, prenylamine-like Ca2+-channel antagonists can compete with TY for the vesicle site, in a tetrabenazine- or reserpine-like manner, and also inhibit TY binding thanks to the extra-channel directed impairment of membrane bioenergetics they are proposed to provoke. This follows from the generally-accepted assumption that similar mechanisms are operational for secretory organelles in adrenals and CNS, and from the marked sensitivity of TY binding to miscellaneous energy-disrupting agents. A model is therefore proposed, depicting the TY-, DA- or MPP+-labeled, vesicle carrier, as a dimeric protein which may switch from the cytoplasm-oriented, recognition state, to the vesicle-oriented, transport state, thanks to the establishment of an H+-ATPase-supported, membrane protein electrochemical gradient.  相似文献   

18.
We have studied the internalization of targeted fusogenic liposome content to leukemic T cells (CEM) in vitro. We describe a method for the covalent coupling of T101 antibody to the surface of liposomes and the incorporation of fusogenic viral protein into the liposome membrane. Hygromycin B, an impermeant inhibitor of protein synthesis, was encapsulated in the targeted fusogenic liposomes and delivered directly to the cytoplasm of leukemic T cells by fusion between the two membranes. The cytotoxic effect was measured by [3H]thymidine incorporation. We show that CEM are rapidly and specifically killed by the drug encapsulated in the targeted fusogenic liposomes. This effect is due to the binding of the liposome by means of the antibody and then to the fusion of the liposome with the targeted cell membrane, mediated by F protein.  相似文献   

19.
Zhang C  Li A  Gao S  Zhang X  Xiao H 《PloS one》2011,6(6):e21233
Efficient membrane fusion has been successfully mimicked in vitro using artificial membranes and a number of cellular proteins that are currently known to participate in membrane fusion. However, these proteins are not sufficient to promote efficient fusion between biological membranes, indicating that critical fusogenic factors remain unidentified. We have recently identified a TIP30 protein complex containing TIP30, acyl-CoA synthetase long-chain family member 4 (ACSL4) and Endophilin B1 (Endo B1) that promotes the fusion of endocytic vesicles with Rab5a vesicles, which transport endosomal acidification enzymes vacuolar (H+)-ATPases (V-ATPases) to the early endosomes in vivo. Here, we demonstrate that the TIP30 protein complex facilitates the fusion of endocytic vesicles with Rab5a vesicles in vitro. Fusion of the two vesicles also depends on arachidonic acid, coenzyme A and the synthesis of arachidonyl-CoA by ACSL4. Moreover, the TIP30 complex is able to transfer arachidonyl groups onto phosphatidic acid (PA), producing a new lipid species that is capable of inducing close contact between membranes. Together, our data suggest that the TIP30 complex facilitates biological membrane fusion through modification of PA on membranes.  相似文献   

20.
Enveloped virus glycoproteins exhibit membrane fusion activity. We have analysed whether the G protein of vesicular stomatitis virus, reconstituted into liposomes, is able to fuse nucleated cells in a pH-dependent fashion. Proteoliposomes produced by octylglucoside dialysis did not exhibit cell fusion activity of the G protein. However, by making use of n-dodecyl octaethylene monoether (C12E8) as the solubilizing agent and by removal of the detergent in two steps, we were able to produce fusogenic G protein liposomes. These G protein liposomes fuse to the BHK-21 cell surface at pH 5.7-6.0 with an efficiency of fusion comparable with that of the parent virus. Physical and chemical analysis revealed that the fusogenic liposomes exhibited a protein to lipid weight ratio of 0.67 and showed an average diameter of 130 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号