首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
A role for the exosome in the in vivo degradation of unstable mRNAs   总被引:1,自引:0,他引:1  
In mammals, the mRNAs encoding many proteins involved in inflammation bear destabilizing AU-rich elements (AREs) in the 3'-untranslated region. The exosome, a complex of 3' --> 5' exonucleases, is rate limiting in the destruction of such mRNAs in a mammalian in vitro system, but a role in vivo has not been demonstrated. The phenomenon of ARE-mediated degradation also occurs in the protist parasite Trypanosoma brucei. Messenger RNAs with 3'-untranslated region U-rich elements, which strongly resemble AREs, are extremely unstable in the trypanosome form that parasitizes mammals. The first step in degradation of these mRNAs in vivo is rapid destruction of the 3'-untranslated region; subsequently the mRNA is destroyed by exonucleases acting in both 5' --> 3' and 3' --> 5' directions. We here investigated the roles of three subunits of the trypanosome exosome complex, RRP45, RRP4, and CSL4, in this process, depleting the individual subunits in vivo by inducible RNA interference. RRP45 depletion, which probably disrupts exosome integrity, caused a delay in the onset of degradation of the very unstable RNAs, but did not affect degradation of more stable species. Depletion of RRP4 or CSL4 does not affect the stability of the residual exosome and did not change mRNA degradation kinetics. We conclude that the exosome is required for the initiation of rapid degradation of unstable mRNAs in trypanosomes.  相似文献   

6.
7.
8.
9.
Ulbert S  Eide L  Seeberg E  Borst P 《DNA Repair》2004,3(2):145-154
Base excision repair (BER) is an evolutionarily conserved system which removes altered bases from DNA. The initial step in BER is carried out by DNA glycosylases which recognize altered bases and cut the N-glycosylic bond between the base and the DNA backbone. In kinetoplastid flagellates, such as Trypanosoma brucei, the modified base beta-D-glucosyl-hydroxymethyluracil (J) replaces a small percentage of thymine residues, predominantly in repetitive telomeric sequences. Base J is synthesized at the DNA level via the precursor 5-hydroxymethyluracil (5-HmU). We have investigated whether J in DNA can be recognized by DNA glycosylases from non-kinetoplastid origin, and whether the presence of J and 5-HmU in DNA has required modifications of the trypanosome BER system. We tested the ability of 15 different DNA glycosylases from various origins to excise J or 5-HmU paired to A from duplex oligonucleotides. No excision of J was found, but 5-HmU was excised by AlkA and Mug from Escherichia coli and by human SMUG1 and TDG, confirming previous reports. In a combination of database searches and biochemical assays we identified several DNA glycosylases in T. brucei, but in trypanosome extracts we detected no excision activity towards 5-HmU or ethenocytosine, a product of oxidative DNA damage and a substrate for Mug, TDG and SMUG1. Our results indicate that trypanosomes have a BER system similar to that of other organisms, but might be unable to excise certain forms of oxidatively damaged bases. The presence of J in DNA does not require a specific modification of the BER system, as this base is not recognized by any known DNA glycosylase.  相似文献   

10.
The genome of the kinetoplastid parasite Trypanosoma brucei encodes four homologs of the Saccharomyces cerevisiae 5'-->3' exoribonucleases Xrn1p and Xrn2p/Rat1p, XRNA, XRNB, XRNC, and XRND. In S. cerevisiae, Xrn1p is a cytosolic enzyme involved in degradation of mRNA, whereas Xrn2p is involved in RNA processing in the nucleus. Trypanosome XRND was found in the nucleus, XRNB and XRNC were found in the cytoplasm, and XRNA appeared to be in both compartments. XRND and XRNA were essential for parasite growth. Depletion of XRNA increased the abundances of highly unstable developmentally regulated mRNAs, perhaps by delaying a deadenylation-independent decay pathway. Degradation of more stable or unregulated mRNAs was not affected by XRNA depletion although a slight decrease in average poly(A) tail length was observed. We conclude that in trypanosomes 5'-->3' exonuclease activity is important in degradation of highly unstable, regulated mRNAs, but that for other mRNAs another step is more important in determining the decay rate.  相似文献   

11.
12.
13.
14.
15.
Messenger RNA degradation in Saccharomyces cerevisiae   总被引:3,自引:0,他引:3  
The analysis of 17 functional mRNAs and two recombinant mRNAs in the yeast Saccharomyces cerevisiae suggests that the length of an mRNA influences its half-life in this organism. The mRNAs are clearly divisible into two populations when their lengths and half-lives are compared. Differences in ribosome loading amongst the mRNAs cannot account for this division into relatively stable and unstable populations. Also, specific mRNAs seem to be destabilized to differing extents when their translation is disrupted by N-terminus-proximal stop codons. The analysis of a mutant mRNA, generated by the fusion of the yeast PYK1 and URA3 genes, suggests that a destabilizing element exists within the URA3 sequence. The presence of such elements within relatively unstable mRNAs might account for the division between the yeast mRNA populations. On the basis of these, and other previously published observations, a model is proposed for a general pathway of mRNA degradation in yeast. This model may be relevant to other eukaryotic systems. Also, only a minor extension to the model is required to explain how the stability of some eukaryotic mRNAs might be regulated.  相似文献   

16.
17.
18.
RNA interference of Sm proteins in Trypanosoma brucei demonstrated that the stability of the small nuclear RNAs (U1, U2, U4, U5) and the spliced leader RNA, but not U6 RNA, were affected upon Sm depletion (Mandelboim, M., Barth, S., Biton, M., Liang, X. H., and Michaeli, S. (2003) J. Biol. Chem. 278, 51469-51478), suggesting that Lsm proteins that bind and stabilize U6 RNA in other eukaryotes should exist in trypanosomes. In this study, we identified seven Lsm proteins (Lsm2p to Lsm8p) and examined the function of Lsm3p and Lsm8p by RNA interference silencing. Both Lsm proteins were found to be essential for U6 stability and mRNA decay. Silencing was lethal, and cis- and trans-splicing were inhibited. Importantly, silencing also affected the level of U4.U6 and the U4.U6/U5 tri-small nuclear ribonucleoprotein complexes. The presence of Lsm proteins in trypanosomes that diverged early in the eukaryotic lineage suggests that these proteins are highly conserved in both structure and function among eukaryotes. Interestingly, however, Lsm1p that is specific to the mRNA decay complex was not identified in the genome data base of any kinetoplastidae, and the Lsm8p that in other eukaryotes exclusively functions in U6 stability was found to function in trypanosomes also in mRNA decay. These data therefore suggest that in trypanosomes only a single Lsm complex may exist.  相似文献   

19.
The salivarian trypanosome Trypanosoma brucei infects mammals and is transmitted by tsetse flies. The mammalian ‘bloodstream form’ trypanosome has a variant surface glycoprotein coat and relies on glycolysis while the procyclic form from tsetse flies has EP protein on the surface and has a more developed mitochondrion. We show here that the mRNA for the procyclic-specific cytosolic phosphoglycerate kinase PGKB, like that for EP proteins, contains a regulatory AU-rich element (ARE) that destabilises the mRNA in bloodstream forms. The human HuR protein binds to, and stabilises, mammalian mRNAs containing AREs. Expression of HuR in bloodstream-form trypanosomes resulted in growth arrest and in stabilisation of the EP, PGKB and pyruvate, phosphate dikinase mRNAs, while three bloodstream-specific mRNAs were reduced in abundance. The synthesis and abundance of unregulated mRNAs and proteins were unaffected. Our results suggest that regulation of mRNA stability by AREs arose early in eukaryotic evolution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号