首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
The aim of this study was the evaluation of membrane permeability of callus cells of several Polish meadow fescue cultivars, which were treated with toxins of two leaf spot pathogens Bipolaris sorokiniana and Drechslera dictyoides. Fungus metabolites were obtained by the method described by Lepoivre et al. (1986). Calli of cultivars ‘Skrzeszowicka’, ‘Skawa’, ‘Westa’, POB 282, POB 383, KOA 186 have been selected on medium with metabolites for two weeks. Next the conductivity test of electrolyte leakage and of total ion contents in the examined tissue was done. On the base of this data the membrane permeability coefficients for each cultivar were calculated. Toxins of B. sorokiniana damaged the cell membranes more strongly than metabolites of D. dictyoides. The significant differences of several objects sensitivity to the influence of B. sorokiniana metabolites were stated. These differences were not observed in the case of the influence of D. dictyoides metabolites on the examined tissue.  相似文献   

2.
Calli of spring barley (Hordeum vulgare L.) and meadow fescue (Festuca pratensis Huds.) were treated with metabolites of Bipolaris sorokiniana and then the level of soluble carbohydrates was estimated. Fructose and glucose occurred in the greatest amount in non-treated calli (control). Control tissue of both species responded to a change in culture conditions with fluctuation in the sugar level. Calli treated with fungal phytotoxins demonstrated rapid decrease in sugar content 1, 3 and 24 hrs after elicitation. Fescue calli, as less susceptible, showed moderate increase in carbohydrate level, yet it was still significantly lower than that in control. In barley very small amount of carbohydrates was observed as soon as 24 hrs after elicitation. In the elicited tissue of both species rapid increase in soluble carbohydrate level was noted in the 10th hour. It is suggested that a defence response of barley and fescue takes place in two phases. The 1st phase occurred between the 1st and the 10th hour after elicitation with phytotoxins and it seems to be an adaptation time to this stress factor. This stage is typical for both studied species. The 2nd phase was observed after 10 hrs of pathogenesis. Its course may reflect a various sensitivity degree of both species to B. sorokiniana metabolites.  相似文献   

3.
The presented work was conducted on seedlings of spring barley and meadow fescue which differ in the degree of sensitivity to leaf spot pathogen Bipolaris sorokiniana (Sacc.) Shoem. The seedling reaction to inoculation with mycelium and conidia was examined in glasshouse conditions on the basis of respiration intensity and heat production. The leaf respiration was measured using Clark-type electrode, while heat emission was evaluated by means of isotermic microcalorimeter. The measurements were performed after 1, 3, 6, 10, 24, 48, 72, 168 and 240 hours since the inoculation moment. Leaves of meadow fescue were characterized by the most intense respiration at the 6th hour, while barley leaves at the 24th and 72nd hour after inoculation. In the case of meadow fescue the greatest heat production was noted in the period between 24 and 168 hours after inoculation. Simultaneously, at the 48th hour the smallest rate of respiration was observed. Barley leaves emitted the greatest amount of heat only in the first 3 hours of the pathogenesis. In these hours the smallest respiration rate was noted. The observed, opposing reaction of respiration intensity and heat emission in the infected seedlings of both species may illustrate a disorder in metabolic processes in plants during pathogenesis. The plants studied differed in the time of their reaction to pathogen attack: barley responded earlier in heat production, while fescue extended respiration rate in the first hours after inoculation. This is clearly observable, when coefficients of metabolic inefficiency (heat rates per mole O2) are compared. In the case of barley the highest rates were noticed just after inoculation, whereas in fescue at the 48th hour. In both species attack of pathogen caused high metabolic efficiency.  相似文献   

4.
A non-sporulating isolate of Alternaria brassicae, inoculated on callus culture of Brassica juncea cv. Kranti, colonized the callus and produced spores. When captafol, a fungicide, was added (100 mg/l) to the callus culture medium, if effectively checked fungal contamination and saprophytic growth of A. brassicae on culture medium, without adversely affecting callus growth or establishment of dual culture.  相似文献   

5.
接种炭疽菌前与苹果果实品种的病情指数呈正相关的生化物质是果实中的可溶性总糖含量(r=0.9978),负相关的生化物质是果实中的木质素(r=-0.9811)和绿原酸含量(r=-0.9939),接种前果实的总酸含量与品种的病情指数无关;接种后48和96 h的寄主体内可溶性总糖和有机酸含量有增有减,病情指数不同的品种变幅不同,接种96 h后果实中总酸含量与品种的病情指数呈现负相关(r=-0.9412),木质素和绿原酸含量都呈上升趋势,抗病品种的增幅高于感病品种。  相似文献   

6.
Polysaccharides (pectin and intracellular and extracellular arabinogalactans) were isolated from campion callus culture cultivated on medium with varied concentrations of pectinase and beta-galactosidase. A decrease in contents of arabinose residues in pectin and arabinogalactans and of galactose residues in arabinogalactans was associated with an increase in the activities of alpha-L-arabinofuranosidase and beta-galactosidase upon addition of pectinase into the medium. Pectinase destroyed the high-molecular-weight (more than 300 kD) fraction of pectin and decreased the content of galacturonic acid residues. alpha-L-Arabinofuranosidase transformed arabinogalactan into galactan, and galactan was destroyed under the influence of galactosidase. The contents of arabinogalactan and/or galactan in the cells were decreased, and it was released into the culture medium. Pectin samples with low contents of arabinose and galactose in the side chains and galactan samples were obtained from the callus grown on the medium with beta-galactosidase. Cultivation of the plant cells on medium containing carbohydrases resulted in modification of pectin and arabinogalactan of the cell walls.  相似文献   

7.
Uptake kinetics of arsenate were determined in arsenate tolerant and non-tolerant clones of the grassDeschampsia cespitosa under differing root phosphorus status to investigate the mechanism controlling the suppression of arsenate influx observed in tolerant clones. Influx was always lower in tolerants compared to non-tolerants. Short term influx of arsenate by the high affinity uptake system in both tolerant clones was relatively insensitive to root phosphorus status. This was in contrast to the literature where the regulation of the phosphate (arsenate) uptake system is normally much more responsive to plant phosphorus status. The low affinity uptake system in both tolerant and non-tolerant clones, unlike the high affinity uptake system, was more closely regulated by root phosphate status and was repressed to a much greater degree under increasing root phosphorus levels than the high affinity system.  相似文献   

8.
选择烟台海岸沙地抗沙埋强的单叶蔓荆(Vitex trifolia var.simplicifolia)为试材,在自然环境条件下根据单叶蔓荆匍匐茎长度进行了轻度(1/3茎长)、中度(2/3茎长)和重度半埋以及全埋处理。在沙埋20d后,测定了不同沙埋处理下匍匐茎各段上匍匐茎长度、枝条高度、不定根长度,以及可溶性糖、淀粉、纤维素含量,以探讨单叶蔓荆碳水化合物变化和转化在其耐沙埋中作用。结果显示,在轻度、中度半埋和全埋下单叶蔓荆匍匐茎长度均显著大于对照,被沙埋匍匐茎处有大量不定根生成;同时,可溶性糖和淀粉含量增高和纤维素含量下降,尤其是生长最快的匍匐茎顶部(如轻度半埋),茎中可溶性糖较低、淀粉增加最多,纤维素最低。但是被重度半埋和全埋的匍匐茎生长较少,茎中纤维素含量较多、淀粉含量较少。研究表明,沙埋是一种胁迫,它损伤叶片、扰乱碳水化合物代谢平衡。但它又是胁迫信号使植物产生适应性反应,它使未遭沙埋的匍匐茎顶端通过加速碳水化合物转化、分解纤维素、提高淀粉和可溶性糖含量,为顶端生长提供能量和营养,以加速匍匐茎快速生长摆脱沙埋。同时沙埋部位枝叶通过分解其纤维素,产生更多的可溶性糖和淀粉为匍匐茎不定根生长提供能量。因此,沙埋后匍匐茎内碳水化合物的转化是其快速生长和摆脱沙埋的能量来源而在其适应沙埋生长中起重要作用。单叶蔓荆对沙埋的适应性反应表现了其具有表型可塑性特性,该特性是其沙埋后维护匍匐茎顶部快速生长、不定根形成、碳水化合物转化以及具有较高抗沙埋能力的关键。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号