首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To identify clinically relevant parameters of red blood cell (RBC) aggregation, we examined correlations of aggregation parameters with C-reactive protein and fibrinogen in unstable angina (UA), acute myocardial infarction (AMI), and bacterial infection (BI). Aggregation parameters were derived from the distribution of RBC population into aggregate sizes (cells per aggregate) and changing of the distribution by flow-derived shear stress. Increased aggregation was observed in the following order: UA, AMI, and BI. The best correlation was obtained by integration of large aggregate fraction as a function of shear stress. To differentiate plasmatic from cellular factors in RBC aggregation, we determined the aggregation in the presence and absence of plasma and formulated a "plasma factor" (PF) ranging from 0 to 1. In AMI the enhanced aggregation was entirely due to PF (PF = 1), whereas in UA and BI it was due to both plasmatic and cellular factors (0 < or = PF < or = 1). It is proposed that clinically relevant parameters of RBC aggregation should express both RBC aggregate size distribution and aggregate resistance to disaggregation and distinguish between plasmatic and cellular factors.  相似文献   

2.
A method based on dielectric properties of dispersed systems was applied to investigate the kinetics of RBC aggregation and the break-up of the aggregates. Experimentally, this method consists of measuring the capacitance at a frequency in the beginning of the beta-dispersion. Two experimental protocols were used to investigate the aggregation process. In the first case, blood samples were fully dispersed and then the flow was decreased or stopped to promote RBC aggregation. It was found that the initial phases of RBC aggregation are not affected by the shear rate. This finding indicates that RBC aggregation is a slow coagulation process. In the second case, RBCs aggregated under flow conditions at different shear rates and after the capacitance reached plateau levels, the flow was ceased. The steady-state capacitance of the quiescent blood and the kinetics of RBC aggregation after stoppage of shearing depend on the prior shear rate. To clarify the reasons for this effect, the kinetics of the disaggregation process was studied. In these experiments, time courses of the capacitance were recorded under different flow conditions and then a higher shear stress was applied to break up RBC aggregates. It was found that the kinetics of the disaggregation process depend on both the prior and current shear stresses. Results obtained in this study and their analysis show that the kinetics of RBC aggregation in stasis consists of two consecutive phases: At the onset, red blood cells interact face-to-face to form linear aggregates and then, after an accumulation of an appropriate concentration of these aggregates, branched rouleaux are formed via reactions of ends of the linear rouleaux with sides of other rouleaux (face-to-side interactions). Branching points are broken by low shear stresses whereas dispersion of the linear rouleaux requires significantly higher energy.  相似文献   

3.
Hydroxyethyl starch (HES) has often been used as a plasma expander, but questions still remain concerning the mechanisms by which it produces changes in the rheological properties of blood and erythrocyte (RBC) suspensions under various flow conditions. The present investigation has shown that the dynamic viscosity of HES (232,000 and 565,000 daltons) solutions rises in a nonlinear fashion with increasing HES concentration, and for a given concentration of HES exhibits Newtonian behavior at shear rates between 0.15 to 124 sec-1. At low (less than 0.9 sec-1) shear rates the apparent viscosity of a 40% RBC suspension increases with lower concentrations of HES because of RBC aggregation. At higher concentrations of HES, increases in suspension viscosity are due to an increase in the viscosity of the continuous phase since the RBC are largely disaggregated. At high (greater than 36 sec-1) shear rates the relative viscosity (eta/eta O) of RBC suspensions slowly decreases with increasing HES concentration. At low shear rates eta/eta O increases and then decreases with increasing HES concentration. Evidence of the concentration-dependent effects of HES on RBC aggregation is provided not only by the viscometric analysis but also from measurements of erythrocyte sedimentation rate (ESR) and the zeta sedimentation ratio (ZSR). HES is a more potent aggregating agent in phosphate buffered saline (PBS) than it is in plasma. Polymer size has only a slight effect on the extent of RBC aggregation produced, but does have a significant effect on the concentration of polymer at which maximum aggregation occurs. The viscosity-corrected electrophoretic mobility of RBC in HES rises monotonically with the concentration of HES in the suspending medium. Decreases in the extent of RBC aggregation with increasing polymer concentrations probably result from an increase in the electrostatic repulsive forces between the cells.  相似文献   

4.
The present study examined the effects of procaine hydrochloride (PRHCL), a cationic local anesthetic, on the aggregation behavior of human red blood cells (RBC); the effects of PRHCL on RBC suspension viscoelasticity, cell shape, volume and density were also investigated. Four indices of RBC aggregation, induced by autologous plasma or 3 g% dextran T70, were evaluated by a computerized light transmission method, and the viscous and elastic components of the complex viscosity were determined by oscillatory viscometry. Low concentrations of PRHCL (8 x 10(-5) to 8 x 10(-4) M) significantly (p less than 0.05 or better) reduced the extent of aggregation (maximal decrease of 22% at 8 x 10(-4) M), but did not alter the viscoelastic components, cell shape, volume or density. The anti-aggregating effect of PRHCL (8 x 10(-4) M) in plasma significantly (p less than 0.005) decreased with time; this temporal effect was abolished by addition of eserine (1 x 10(-4) M). High concentrations of PRHCL (8 x 10(-2) M) caused: 1) increased extent of aggregation and decreased strength of the aggregates (p less than 0.01 or better); 2) elevation of both viscoelastic components for cells in plasma or buffer; 3) a discocyte-stomatocyte shape change; 4) decreased cell density (p less than 0.001) without alteration of cell volume. Our results at low concentrations of PRHCL suggest a mechanism based on an increase of RBC negative surface potential; at the highest concentration, the effects are most likely due to altered cell shape and deformability, and to decreased RBC negative surface potential.  相似文献   

5.
Differences of red blood cell (RBC) aggregation among various mammalian species has been previously reported for whole blood, for RBC in autologous plasma, and for washed RBC re-suspended in polymer solutions. The latter observation implies the role of cellular factors, yet comparative studies of such factors are relatively limited. The present study thus investigated RBC aggregation and RBC electrophoretic mobility (EPM) for guinea pigs, rabbits, rats, humans and horses; RBC were re-suspended in isotonic 500 kDa dextran solutions for the EPM and aggregation measurements, with aggregation studies also done in autologous plasma. Salient results included: (1) species-specific RBC aggregation in both plasma and dextran (horse > human > rat > rabbit approximately = guinea pig) with a significant correlation between aggregation in the two media; (2) similar EPM values in PBS for rat, human and horse, a lower value for guinea pig, and a markedly reduced EPM for rabbit RBC; (3) EPM values in dextran with a rank order identical to that for cells in PBS; (4) relative EPM results indicating formation of a polymer-poor, low viscosity depletion layer at the RBC surface (greatest depletion for horse RBC). EPM-aggregation correlations were evident and generally consistent with the Depletion Model for aggregation, yet did not fully explain differences between species; additional studies at various ionic strengths and with various dextran fractions thus seem warranted.  相似文献   

6.
Koala, a marsupial, and echidna, a monotreme, are mammals native to Australia. Blood viscosity (62.5–1250 s?1), red blood cell (RBC) deformability, RBC aggregation, aggregability and surface charge, and hematological parameters were measured in blood samples from six koalas and six echidnas and compared to adult human blood. Koala had the largest RBC mean cell volume (107.7±2.6 fl) compared to echidna (81.3±2.6 fl) and humans (88.4±1.2 fl). Echidna blood exhibited the highest viscosity over the entire range of shear rates. Echidna RBC were significantly less deformable than koala RBC but more deformable than human RBC. Echidna RBC had significantly lower aggregability (i.e., aggregation in standardized dextran medium) than koala or human RBC, while aggregation in autologous plasma was similar for the three species. Erythrocyte surface charge as indexed by RBC electrophoretic mobility was similar for human and echidna cells but was 40% lower for koala RBC. Data obtained during this preliminary study indicate that koala and echidna have distinct hemorheological characteristics; investigation of these properties may reveal patterns relevant to specific behavioral and physiological features of these animals.  相似文献   

7.
Plasmatic proteins, namely fibrinogen and globulins, play a major role in red blood cell (RBC) aggregation which is accountable for the three-dimensional structure of blood. Consequently, blood rheological properties linked to this structure must be modified when the protein plasma content changes. This paper gives results and related comments on thixotropic properties of RBC suspensions (0.45 hematocrit) in isotonic solutions containing various amount of fibrinogen to which albumin is added. Thixotropic behavior of these RBC suspensions is studied with a low inertia coaxial cylinders viscometer at a shear rate step of Y = 1 s-1. Rheograms are interpreted in term of thixotropy coefficient. The main conclusion is that albumin improves RBC disaggregability of whole blood, resulting probably from a competitive effect between fibrinogen and albumin in the RBC aggregation process.  相似文献   

8.
RBC aggregation and viscoelasticity parameters were determined for 40% suspensions of washed cells in autologous plasma from elephant seals (ES), Mirounga angustirostris, ringed seals (RS), Phoca hispida, and swine, (SS), Sus scrofa. Interspecific comparisons including human (HS) blood data revealed unusual rheological properties of seal blood relative to that from pigs or man: 1) RBC aggregation extent, rate and sedimentation were lower for seals (AI = 0, ZSR = .40, ESR = 0 for RS blood) relative to humans; 2) Viscous (n') and elastic (n") components of complex viscosity (OCRD) were lower for both seal species relative to SS blood, but only at shear rates less than or equal to 10 sec-1 (P less than 0.05), while n"/n' ratios for RS blood were lower than HS blood at all shear rates (P less than 0.01); 3) Blood viscosity measurements for RS and SS blood from rotational viscometry (Contraves) were consistent with OCRD data; 4) Seal plasma fibrinogen levels were low compared to pigs or humans (RS fibrinogen = -43% v. HS and -57% v. SS; ES fibrinogen = -58% v. HS and -69% v. SS). Electrophoretic mobility of RS red cells was +25% relative to those of humans. These results demonstrate differences in hemorheological indices among mammalian species and suggest the value of comparative rheologic studies.  相似文献   

9.
Red blood cell (RBC) aggregation is becoming an important hemorheological parameter, which exhibits a unique temperature dependence. However, further investigation is still required for understanding the temperature-dependent characteristics of hemorheology that includes RBC aggregation. In the present study, blood samples were examined at 3, 10, 20, 30, and 37 °C. When the temperature decreases, the whole-blood and plasma viscosities increase, whereas the aggregation indices (AI, M, and b) yield contrary results. Since these contradictory results are known to arise from an increase in the plasma viscosity as the temperature decreases, aggregation indices that were corrected for plasma viscosity were examined. The corrected indices showed mixed results with the variation of the temperature. However, the threshold shear rate and the threshold shear stress increased as the temperature decreased, which is a trend that agrees with that of the blood viscosity. As the temperature decreases, RBC aggregates become more resistant to hydrodynamic dispersion and the corresponding threshold shear stress increases as does the blood viscosity. Therefore, the threshold shear stress may help to better clarify the mechanics of RBC aggregation under both physiological and pathological conditions.  相似文献   

10.
P Snabre  H Baümler  P Mills 《Biorheology》1985,22(3):185-195
The aggregation behaviour of normal and heat treated (48.4 degrees C, 48.8 degrees C, 49.5 degrees C) red blood cells (RBCs) suspended in dextran-saline solutions (Dx 70, Dx 173) was investigated by a laser light reflectometric method over a wide range of bridging energies. The characteristic times of rouleau formation were found to be increased after RBC heat treatment. The disaggregation shear stress is not significantly different between normal RBCs and heat treated RBCs. The loss of cell deformability is nevertheless shown to improve slightly the dissociation efficiency of the flowing liquid in a shear flow resulting in a small reduction of the disaggregation shear rate after heat treatment. Heat treatment is also shown to alter the structure of RBC network at equilibrium. These results indicate that heat induced alterations of erythrocytes only affects the mechanical properties of the cell membrane without significant changes in the macromolecular bridging energy.  相似文献   

11.
The normal transmyocardial tissue hematocrit distribution (i.e., subepicardial greater than subendocardial) is known to be affected by red blood cell (RBC) aggregation. Prior studies employing the use of infused large macromolecules to increase erythrocyte aggregation are complicated by both increased plasma viscosity and dilution of plasma. Using a new technique to specifically alter the aggregation behavior by covalent attachment of Pluronic F-98 to the surface of the RBC, we have determined the effects of only enhanced aggregation (i.e., Pluronic F-98-coated RBCs) versus enhanced aggregation with increased plasma viscosity (i.e., an addition of 500 kDa dextran) on myocardial tissue hematocrit in rapidly frozen guinea pig hearts. Although both approaches equally increased aggregation, tissue hematocrit profiles differed markedly: 1) when Pluronic F-98-coated cells were used, the normal transmyocardial gradient was abolished, and 2) when dextran was added, the hematocrit remained at subepicardial levels for about one-half the thickness of the myocardium and then rapidly decreased to the control level in the subendocardial layer. Our results indicate that myocardial hematocrit profiles are sensitive to both RBC aggregation and to changes of plasma viscosity associated with increased RBC aggregation. Furthermore, they suggest the need for additional studies to explore the mechanisms affecting RBC distribution in three-dimensional vascular beds.  相似文献   

12.
Staphylococcus aureus infection begins when bacterial cells circulating in blood adhere to components of the extracellular matrix or endothelial cells of the host and initiate colonization. S. aureus is known to exhibit extensive interactions with platelets. S. aureus is also known to bind to red blood cells (RBCs) in the presence of plasma proteins, such as fibrinogen and IgG. Herein we report a new binding mechanism of S. aureus to RBC independent of those plasma proteins. To characterize the new adhesion mechanism, we experimentally examine the binding kinetics and molecular constituents mediating the new adhesive interactions between S. aureus and RBCs under defined shear conditions. The results demonstrate that the receptors for fibrinogen (clumping factor A) and IgG (protein A) of S. aureus are not involved in the adhesion. S. aureus binds to RBCs with maximal adhesion at the shear rate 100 s–1 and decreasing adhesion with increasing shear. The heteroaggregates formed after shear are stable when subjected to the shear rate 2,000 s–1, indicating that intercellular contact time rather than shear forces controls the adhesion at high shear. S. aureus binding to RBC requires plasma, and 10% plasma is sufficient for maximal adhesion. Plasma proteins involved in the cell-cell adhesion, such as fibrinogen, fibronectin, von Willebrand factor, IgG, thrombospondin, laminin, and vitronectin are not involved in the observed adhesion. The extent of heteroaggregation is dramatically reduced on RBC treatment with trypsin, chymotrypsin, or neuraminidase, suggesting that the receptor(s) mediating the heteroaggregation process is a sialylated glycoprotein on RBC surface. Adhesion is divalent cation dependent and also blocked by heparin. This work demonstrates a new mechanism of S. aureus-RBC binding under hydrodynamic shear conditions via unknown RBC sialoglycoprotein(s). The binding requires plasma protein(s) other than fibrinogen or IgG and does not involve the S. aureus adhesins clumping factor A or protein A. adhesion; red blood cell  相似文献   

13.
The reversible aggregation of red blood cells (RBC) into linear and three-dimensional structures continues to be of basic science and clinical interest: RBC aggregation affects low shear blood viscosity and microvascular flow dynamics, and can be markedly enhanced in several clinical states. Until fairly recently, most research efforts were focused on relations between suspending medium composition (i.e., protein levels, polymer type and concentration) and aggregate formation. However, there is now an increasing amount of experimental evidence indicating that RBC cellular properties can markedly affect aggregation, with the term "RBC aggregability" coined to describe the cell's intrinsic tendency to aggregate. Variations of aggregability can be large, with some changes of aggregation substantially greater than those resulting from pathologic states. The present review provides a brief overview of this topic, and includes such areas as donor-to-donor variations, polymer-plasma correlations, effects of RBC age, effects of enzymatic treatment, and current developments related to the mechanisms involved in RBC aggregation.  相似文献   

14.
The role of red blood cell (RBC) aggregation as a determinant of in vivo blood flow is still unclear. This study was designed to investigate the influence of a well-controlled enhancement of RBC aggregation on blood flow resistance in an isolated-perfused heart preparation. Guinea pig hearts were perfused through a catheter inserted into the root of the aorta using a pressure servo-controlled pump system that maintained perfusion pressures of 30 to 100 mmHg. The hearts were beating at their intrinsic rates and pumping against the perfusion pressure. RBC aggregation was increased by Pluronic (F98) coating of RBC at a concentration 0.025 mg/ml, corresponding to about a 100% increment in RBC aggregation as measured by erythrocyte sedimentation rate. Isolated heart preparations were perfused with 0.40 l/l hematocrit unmodified guinea pig blood and with Pluronic-coated RBC suspensions in autologous plasma. At high perfusion pressures there were no significant differences between the flow resistance values for the two perfusates, with differences in flow resistance only becoming significant at lower perfusion pressures. These results can be interpreted to reflect the shear dependence of RBC aggregation: higher shear forces associated with higher perfusion pressures should have dispersed RBC aggregates resulting in blood flow resistances similar to control values. Experiments repeated in preparations in which the smooth muscle tone was inhibited by pre-treatment with papaverine indicated that significant effects of enhanced RBC aggregation could be detected at higher perfusion pressures, underlining the compensatory role of vasomotor control mechanisms.  相似文献   

15.
The effects of enhanced red blood cell (RBC) aggregation on nitric oxide (NO)-dependent vascular control mechanisms have been investigated in a rat exchange transfusion model. RBC aggregation for cells in native plasma was increased via a novel method using RBCs covalently coated with a 13-kDa poloxamer copolymer (Pluronic F-98); control experiments used RBCs coated with a nonaggregating 8.4-kDa poloxamer (Pluronic F-68). Rats exchange transfused with aggregating RBC suspensions demonstrated significantly enhanced RBC aggregation throughout the 5-day follow-up period, with mean arterial blood pressure increasing gradually over this period. Arterial segments ( approximately 300 microm in diameter) were isolated from gracilis muscle on the fifth day and mounted between two glass micropipettes in a special chamber equipped with pressure servo-control system. Dose-dependent dilation by ACh and flow-mediated dilation of arterial segments pressurized to 30 mmHg and preconstricted to 45-55% of the original diameter by phenylephrine were significantly blunted in rats with enhanced RBC aggregation. Both responses were totally abolished by nonspecific NO synthase (NOS) inhibitor (Nomega-nitro-l-arginine methyl ester) treatment of arterial segments, indicating that the responses were NO related. Additionally, expression of endothelial NOS protein was found to be decreased in muscle samples obtained from rats exchanged with aggregating cell suspensions. These results imply that enhanced RBC aggregation results in suppressed expression of NO synthesizing mechanisms, thereby leading to altered vasomotor tonus; the mechanisms involved most likely relate to decreased wall shear stresses due to decreased blood flow and/or increased axial accumulation of RBCs.  相似文献   

16.
The reversible aggregation of red blood cells (RBC) into linear and three-dimensional structures continues to be of basic science and clinical interest: RBC aggregation affects low shear blood viscosity and microvascular flow dynamics, and can be markedly enhanced in several clinical states. Until fairly recently, most research efforts were focused on relations between suspending medium composition (i.e., protein levels, polymer type and concentration) and aggregate formation. However, there is now an increasing amount of experimental evidence indicating that RBC cellular properties can markedly affect aggregation, with the term "RBC aggregability" coined to describe the cell's intrinsic tendency to aggregate. Variations of aggregability can be large, with some changes of aggregation substantially greater than those resulting from pathologic states. The present review provides a brief overview of this topic, and includes such areas as donor-to-donor variations, polymer-plasma correlations, effects of RBC age, effects of enzymatic treatment, and current developments related to the mechanisms involved in RBC aggregation.  相似文献   

17.
Red blood cell (RBC) aggregation and blood viscosity are important determinants of in vivo blood flow dynamics and, in marine mammals, these parameters may impact diving physiology by altering blood oxygen delivery during the diving response. Weddell seals are superb divers and exhibit age-related patterns in blood oxygen chemistry and diving ability. By contrast, bowhead whales are not long duration divers, and little is known of their blood properties relative to diving. The present study was designed to compare rheological characteristics of blood from Weddell seal pups, Weddell seal adults, and from adult bowhead whales: blood viscosity and RBC aggregation in plasma and in polymer solutions (i.e., RBC "aggregability") were measured. Salient findings included: (1) significant 4- to 8-fold greater aggregation in blood from adult seals compared with pups and human subjects; (2) 2-to 8-fold greater aggregation in bowhead whale blood compared with human blood; (3) compared to human red cells, enhanced RBC aggregability of RBC from adult seals and whales as determined by their greater aggregation in polymer solutions; (4) increasing RBC aggregation and aggregability of seal pup blood over a seven day period following birth; (5) significantly greater blood viscosity for adult seals compared with pups at both native and standardized hematocrits. These results indicate that, for both species, hemorheological parameters differ markedly from those of humans, and suggest progressive changes with seal age; the physiological implications of these differences have yet to be fully defined.  相似文献   

18.
Although the study of red blood cell (RBC) aggregation continues to be of basic science and clinical interest, aggregation standards for calibration do not exist, and most aggregation studies report data in terms of arbitrary units: quantitative comparisons between studies are thus essentially precluded. However, use of low shear viscometry plus the Casson equation provides a yield shear stress that has defined units and is known to reflect RBC aggregation. Employing human RBC-plasma suspensions exhibiting a wide range of aggregation, the present study examined relations between yield shear stress values and aggregation indices obtained using the Myrenne aggregometer: the latter approach uses a light-transmission technique and provides an "M" index at stasis and an "M1" at very low shear. Our results for normal controls and for angina patients without coronary artery disease indicate highly significant correlations (p<0.001) between the yield stress and both M and M1. Thus, within the range of aggregation studied, these findings lend support to the rheological validity of the Myrenne approach; extension of our findings to intensely aggregating RBC suspensions may require additional validation studies.  相似文献   

19.
20.
K M Jan 《Biorheology》1986,23(2):91-98
Red blood cell (RBC) aggregation in heparin-saline solution was quantified by microscopic observation. The adsorption isotherms of heparin onto normal and neuraminidase-treated RBC surfaces were determined by radioactive heparin labeled with 125I-Bolton-Hunter Reagent. RBC aggregation by heparin requires the presence of sialic acids at cell surface and was enhanced by reduction of ionic strength of the suspending medium. Adsorption of heparin onto RBC surface was increased by removal of sialic acids. These findings not only serve to elucidate the basic mechanism of cell-cell interaction mediated by negatively charged macromolecules, but also provide experimental evidence for the possible conformational change of macromolecules at the charged surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号