首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characteristics of Non-opioid β-Endorphin Receptor   总被引:4,自引:0,他引:4  
Tritium-labeled selective agonist of non-opioid beta-endorphin receptor, the decapeptide immunorphine ([3H]SLTCLVKGFY) with specific activity of 24 Ci/mmol has been prepared. By its use, non-opioid beta-endorphin receptors were revealed and characterized on mouse peritoneal macrophages and rat myocardium, spleen, adrenal, and brain membranes. The non-opioid beta-endorphin receptor of macrophages has in addition to immunorphine (Kd of the [3H]immunorphine-receptor complex was 2.4 +/- 0.1 nM) and beta-endorphin (Ki of the [3H]immunorphine specific binding was 2.9 +/- 0.2 nM) a high affinity for Fc-fragment of human IgG1, pentarphine (VKGFY), cyclopentarphine [cyclo(VKGFY)], and [Pro3]pentarphine (VKPFY) (Ki values were 0.0060 +/- 0.0004, 2.7 +/- 0.2, 2.6 +/- 0.2, and 2.8 +/- 0.2 nM, respectively) and is insensitive to naloxone and [Met5]enkephalin (Ki > 100 microM). Treatment of macrophages with trypsin resulted in the loss of their ability for the specific binding of [3H]immunorphine. Values of the specific binding of 8.4 nM [3H]immunorphine to rat adrenal, spleen, myocardium, and brain membranes were determined to be 1146.0 +/- 44.7, 698.6 +/- 28.1, 279.1 +/- 15.4, and 172.2 +/- 1.8 fmol/mg protein, respectively. Unlabeled beta-endorphin, pentarphine, [Pro3]pentarphine, cyclopentarphine, cyclodipentarphine [cyclo(VKGFYVKGFY)], and Fc-fragment of IgG1 inhibited the binding of [3H]immunorphine to membranes from these organs. No specific binding of [3H]immunorphine to rat liver, lung, kidney, and intestine membranes was found.  相似文献   

2.
Abstract

Rat C6 glioma cells have both β1- and β2-adrenergic receptors in ~ 7:3 ratio. When the cells were exposed to the β-adrenergic agonist isoproterenol, there was a rapid sequestration of up to 50% of the surface receptor population over a 30-min period as measured by the loss of binding of the hydrophilic ligand [3H] CGP-12177 to intact cells. Using the β2-selective antagonist CGP 20712A to quantify the proportion of the two subtypes, it was found that although both β1 and β2 receptors were sequestered, the latter were sequestered initially twice as fast as the former. More prolonged agonist exposure led to a down-regulation of ~ 90% of the total receptor population by 6 h as measured by the loss of binding of the more hydrophobic ligand [125I] iodocyanopindolol to cell lysates. The two subtypes, however, underwent down-regulation with similar kinetics. Treatment of the cells with agents that raise cyclic AMP levels such as cholera toxin and forskolin resulted in a slower, but still coordinated down-regulation of both subtypes. Thus, there appears to be both independent and coordinate regulation of endogenous β1-and β2-adrenergic receptors in the same cell line.  相似文献   

3.
4.
Abstract

(±)125 I-cyanopindolol (±) I CYP) was used to characterize β-adrenoceptors on rat lung and cerebral cortex membranes. The affinity of (±) ICYP was higher for lung (Kd = 64.3 pM) at 37°C. The association reaction of (±) ICYP was faster with lung (k+1 = 1.52 × 109 M?1.min?1) than with cerebral cortex β-adrenoceptors (k+1 = 1.75 × 108 M?1.min?1). In both tissues, the dissociation reaction followed a biphasic process with a fast (t ½ = 15.4 min and 5.6 min for lung and cerebral cortex respectively) and a slow component (t ½ = 474 min and 255 min for lung and cerebral cortex respectively). The thermodynamic parameters for (±) ICYP - β-adrenoceptors binding have been determined from kinetics and equilibrium studies, for the two tissues, at several temperatures between 0° and 44° C. For lung and cerebral cortex, Arrhenius plots were linear with different energies of activation. Van't Hoff plot was not linear for lung and the standard enthalpy and entropy changes of (±) ICYP - β-adrenoceptors interaction decreased linearly with temperature : the binding occured with a negative heat capacity change (ΔCp° = -368.9 cal. moles?1. K?1) at 25° C. Thermodynamic and kinetic results show that binding of (±) ICYP to lung β-adrenoceptors could involve two successive equilibria with a conformational change of the β-adrenergic receptor.  相似文献   

5.
Prolonged hypoxic/ischemic stress may cause cortical injury and clinically manifest as a neurological disability. Activation of the δ-opioid receptor (DOR) may induce cortical protection against hypoxic/ischemic insults. However, the mechanisms underlying DOR protection are not clearly understood. We have recently found that DOR activation modulates the expression of microRNAs (miRNAs) in the kidney exposed to hypoxia, suggesting that DOR protection may involve a miRNA mechanism. To determine if the miRNAs expressed in the cortex mediated DOR neuroprotection, we examined 19 miRNAs that were previously identified as hypoxia- and DOR-regulated miRNAs in the kidney, in the rat cortex treated with UFP-512, a potent and specific DOR agonist under hypoxic condition. Of the 19 miRNAs tested, 17 were significantly altered by hypoxia and/or DOR activation with the direction and amplitude varying depending on hypoxic duration and times of DOR treatment. Expression of several miRNAs such as miR-29b, -101b, -298, 324-3p, -347 and 466b was significantly depressed after 24 hours of hypoxia. Similar changes were seen in normoxic condition 24 hours after DOR activation with one-time treatment of UFP-512. In contrast, some miRNAs were more tolerant to hypoxic stress and showed significant reduction only with 5-day (e.g., miR-31 and -186) or 10-day (e.g., miR-29a, let-7f and -511) exposures. In addition, these miRNAs had differential responses to DOR activation. Other miRNAs like miRs-363* and -370 responded only to the combined exposure to hypoxia and DOR treatment, with a notable reduction of >70% in the 5-day group. These data suggest that cortical miRNAs are highly yet differentially sensitive to hypoxia. DOR activation can modify, enhance or resolve the changes in miRNAs that target HIF, ion transport, axonal guidance, free radical signaling, apoptosis and many other functions.  相似文献   

6.
Kindling is a phenomenon of epileptogenesis, which has been widely used as an experimental model of temporal lobe epilepsy. At the present work we investigated the contribution of NMDA receptors in the Pentylenetetrazol-induced kindling model in the mouse brain, by using quantitative autoradiography and the radioactive ligands [3H]MK801 and [3H]L-glutamate (NMDA-sensitive component). One week after establishment of kindling, a small but significant increase in [3H]MK801 as well as NMDA-sensitive [3H]glutamate binding was seen, being restricted to the molecular layer (ML) of the dentate gyrus (DG) and the CA3 region of the hippocampus. These binding augmentations persisted one month after establishment of kindling. A significant increase of NMDA receptor binding was also observed in the cortex-somatosensory and temporal one week after acquisition of the kindled state. The upregulation of NMDA receptors seen in DG and CA3 region of the hippocampus could be associated with the kindling process of this model especially with its maintenance phase, since it persists at long term, is area-specific and consistent with electrophysiological data. The increase of NMDA receptors seen in the cortex of the kindled animals could underlie the hyperexcitability detected by electrophysiological studies in this area.  相似文献   

7.
8.
Specific binding of human β-endorphin to rabbit cerebellar and brain membranes was measured using [3H2-Tyr27]-βh-endorphin as the primary ligand. In both tissues binding was time dependent and saturable, with apparent equilibrium dissociation constants of 0.275 nM and 0.449 nM in the cerebellum and brain, respectively. The binding capacity of cerebellum is greater than that of brain. Kinetic studies showed that the association rate constants were 2.7 × 107 M?1min?1 for cerebellum and 2.4 × 107 M?1min?1 for brain. Dissociation of tritiated βh-endorphin from both cerebellum and brain is not consistent with a first order decay from a single site. In the cerebellum, these is a time-dependent increase in slowly dissociating complex. The potency of several opioid peptides and opiates to inhibit the binding of tritiated βh-endorphin was determined. Ligands with preference for μ, δ, and κ opiate receptor (morphine, Metenkephalin and ethylketocyclazocine) all have similar affinities toward βh-endorphin sites in both brain and cerebellar membranes.  相似文献   

9.
18β-Glycyrrhetinic acid (GA) is the aglycone of glycyrrhizin that is a component of Glycyrrhiza, and has several pharmacological actions in the central nervous system. Recently, GA has been demonstrated to reach the brain by crossing the blood-brain barrier in rats after oral administration of a Glycyrrhiza-containing traditional Japanese medicine, yokukansan. These findings suggest that there are specific binding sites for GA in the brain. Here we show evidence that [3H]GA binds specifically to several brain areas by quantitative autoradiography; the density was higher in the hippocampus, moderate in the caudate putamen, nucleus accumbens, amygdala, olfactory bulb, cerebral cortex, thalamus, and mid brain, and lower in the brain stem and cerebellum. Several kinds of steroids, gap junction-blocking reagents, glutamate transporter-recognized compounds, and glutamate receptor agonists did not inhibit the [3H]GA binding. Microautoradiography showed that the [3H]GA signals in the hippocampus were distributed in small non-neuronal cells similar to astrocytes. Immunohistochemical analysis revealed that immunoreactivity of 11β-hydroxysteroid dehydrogenase type-1 (11β-HSD1), a defined molecule recognized by GA, was detected mainly in neurons, moderately in astrocytes, and very slightly in microglial cells, of the hippocampus. These results demonstrate that specific binding sites for GA exist in rat brain tissue, and suggest that the pharmacological actions of GA may be related to 11β-HSD1 in astrocytes. This finding provides important information to understand the pharmacology of GA in the brain.  相似文献   

10.
The dura mater and its vasculature have for decades been central in the hypothesis of migraine and headache pathophysiology. Although recent studies have questioned the role of the vasculature as the primary cause, dural vessel physiology is still relevant in understanding the complex pathophysiology of migraine. The aim of the present study was to isolate the middle meningeal artery (MMA) from rodents and characterize their purinergic receptors using a sensitive wire myograph method and RT-PCR. The data presented herein suggest that blood flow through the MMA is, at least in part, regulated by purinergic receptors. P2X1 and P2Y6 receptors are the strongest contractile receptors and, surprisingly, ADPβS caused contraction most likely via P2Y1 or P2Y13 receptors, which is not observed in other arteries. Adenosine addition, however, caused relaxation of the MMA. The adenosine relaxation could be inhibited by SCH58261 (A2A receptor antagonist) and caffeine (adenosine receptor antagonist). This gives one putative molecular mechanism for the effect of caffeine, often used as an adjuvant remedy of cranial pain. Semi-quantitative RT-PCR expression data for the receptors correlate well with the functional findings. Together these observations could be used as targets for future understanding of the in vivo role of purinergic receptors in the MMA.  相似文献   

11.
Summary Antisera raised against ACTH (1–39), -endorphin and the 16K proopiocortin were used, in association with the immunoperoxidase reaction, to localize positively-staining cell bodies and nerve fibres in the hypothalamus of the rat. Antigens, cross-reactive against anti-ACTH (1–39) serum were detected in a fibre system in the rostro-dorsal hypothalamus situated between the optic chiasm and the third ventricle while immunoreactive 16K-like material was present in fibres localized in the caudal hypothalamus, dorso-lateral to the arcuate nucleus. This latter system was also associated with the appearance of ACTH (1–39) and ACTH (17–39) immunoreactivity.Cells of the arcuate nucleus stained positively for ACTH (1–39), 16K antigen and -endorphin, and on examining adjacent thin sections it was observed that cells that contained 16K antigen-like material, also gave a positive immunoreaction with ACTH (1–39) and -endorphin antisera. In the magnocellular system, cells of the supraoptic (SON) and paraventricular (PVN) nuclei also gave a positive immunoreaction with anti-ACTH (1–39), 16K antigen and -endorphin serum. As in the case of the arcuate nucleus, common cells stained for these three antigens.On the basis of the precursor theory for the synthesis of ACTH, 16K antigen and -endorphin, it was not unexpected to find these three fragments of pro-opiocortin localized together in cells of the arcuate nucleus. That ACTH (1–39), 16K antigen and -endorphin-like materials are present in the magnocellular neurosecretory system would suggest that cells of the SON and PVN are not only involved in the synthesis of neurophysin and the neurohypophysial hormones, but also of some products of the pro-opiocortin molecule. Whether the biochemical nature of the ACTH and -endorphin in cells of the SON and PVN is identical to that of anterior pituitary origin remains to be established, as does the biosynthetic relationship between neurophysin and oxytocin/ vasopressin and these fragments of pro-opiocortin.Drs. M.M. Wilkes, S.S.C. Yen, G. Pelletier, B.A. Eipper and R. Walter are thanked for supplying some of the antisera and antigens used in this study. Thanks also go to Ciba-Geigy Ltd. and Organon Inc. for supplies of ACTH (17–39) and ACTH (1–24) respectively. This work was financed by The Medical Research Council of New Zealand  相似文献   

12.

Background

Reports of reduced pain sensitivity in autism have prompted opioid theories of autism and have practical care ramifications. Our objective was to examine behavioral and physiological pain responses, plasma β-endorphin levels and their relationship in a large group of individuals with autism.

Methodology/Principal Findings

The study was conducted on 73 children and adolescents with autism and 115 normal individuals matched for age, sex and pubertal stage. Behavioral pain reactivity of individuals with autism was assessed in three observational situations (parents at home, two caregivers at day-care, a nurse and child psychiatrist during blood drawing), and compared to controls during venepuncture. Plasma β-endorphin concentrations were measured by radioimmunoassay. A high proportion of individuals with autism displayed absent or reduced behavioral pain reactivity at home (68.6%), at day-care (34.2%) and during venepuncture (55.6%). Despite their high rate of absent behavioral pain reactivity during venepuncture (41.3 vs. 8.7% of controls, P<0.0001), individuals with autism displayed a significantly increased heart rate in response to venepuncture (P<0.05). Moreover, this response (Δ heart rate) was significantly greater than for controls (mean±SEM; 6.4±2.5 vs. 1.3±0.8 beats/min, P<0.05). Plasma β-endorphin levels were higher in the autistic group (P<0.001) and were positively associated with autism severity (P<0.001) and heart rate before or after venepuncture (P<0.05), but not with behavioral pain reactivity.

Conclusions/Significance

The greater heart rate response to venepuncture and the elevated plasma β-endorphin found in individuals with autism reflect enhanced physiological and biological stress responses that are dissociated from observable emotional and behavioral reactions. The results suggest strongly that prior reports of reduced pain sensitivity in autism are related to a different mode of pain expression rather than to an insensitivity or endogenous analgesia, and do not support opioid theories of autism. Clinical care practice and hypotheses regarding underlying mechanisms need to assume that children with autism are sensitive to pain.  相似文献   

13.
Epilepsy is characterized by the abnormal activation of neurons in the cerebral cortex, but the molecular and cellular mechanisms contributing to the development of recurrent seizures are largely unknown. Recently, the critical involvement of astrocytes in the pathophysiology of epilepsy has been proposed. However, the nature of plastic modulations of astrocytic proteins in the epileptic cortex remains poorly understood. In this study, we utilized the zero magnesium in vitro model of epilepsy and examined the potential molecular changes of cortical astrocytes, focusing specifically on endfeet, where specialized biochemical compartments exist. We find that the continuous epileptic activation of neurons for 1 h decreases the expression level of β-dystroglycan (βDG) in acute cortical brain slices prepared from mice. This change is completely abolished by the pharmacological blockade of NMDA-type glutamate receptors as well as by matrix metalloproteinase inhibitors. Consistent with the highly specialized localization of βDG at astrocytic endfeet, where it plays a pivotal role in anchoring endfeet-enriched proteins in astrocytes, the down-regulation of βDG is accompanied by a decrease in the expression of AQP4 but not laminin. Importantly, this down-regulation of βDG persists for at least 1 h, even after the apparent recovery of neuronal activation. Finally, we show that the down-regulation of βDG is associated with the dysfunction of the endfeet at the blood-brain interface as a diffusion barrier. These results suggest that the sustained down-regulation of βDG leads to dysfunctions of astrocytic endfeet in the epileptic cerebral cortex and may contribute to the pathogenesis of epilepsy.  相似文献   

14.
Beta-sitosterol (β-SITO), a phytosterol present in many edible vegetables, has been reported to possess antineoplastic properties and cancer treatment potential. We have shown previously that it binds at a unique site (the ‘SITO-site’) compared to the colchicine binding site at the interface of α- and β-tubulin. In this study, we investigated the anticancer efficacy of β-SITO against invasive breast carcinoma using MCF-7 cells. Since ‘isotypes’ of β-tubulin show tissue-specific expression and many are associated with cancer drug resistance, using computer-assisted docking and atomistic molecular dynamic simulations, we also examined its binding interactions to all known isotypes of β-tubulin in αβ-tubulin dimer. β-SITO inhibited MCF-7 cell viability by up to 50%, compared to vehicle-treated control cells. Indicating its antimetastatic potential, the phytosterol strongly inhibited cell migration. Immunofluorescence imaging of β-SITO-treated MCF-7 cells exhibited disruption of the microtubules and chromosome organization. Far-UV circular dichroism spectra indicated loss of helical stability in tubulin when bound to β-SITO. Docking and MD simulation studies, combined with MM-PBSA and MM-GBSA calculations revealed that β-SITO preferentially binds with specific β-tubulin isotypes (βII and βIII) in the αβ-tubulin dimer. Both these β-tubulin isotypes have been implicated in drug resistance against tubulin-targeted chemotherapeutics. Our data show the tubulin-targeted anticancer potential of β-SITO, and its potential clinical utility against βII and βIII isotype-overexpressing neoplasms.  相似文献   

15.
Sympathetic activation in a “fight or flight reaction” may put the sensory systems for hearing and balance into a state of heightened alert via β1-adrenergic receptors (β1-AR). The aim of the present study was to localize β1-AR in the gerbil inner ear by confocal immunocytochemistry, to characterize β1-AR by Western immunoblots, and to identify β1-AR pharmacologically by measurements of cAMP production. Staining for β1-AR was found in strial marginal cells, inner and outer hair cells, outer sulcus, and spiral ganglia cells of the cochlea, as well as in dark, transitional and supporting cells of the vestibular labyrinth. Receptors were characterized in microdissected inner ear tissue fractions as 55 kDa non-glycosylated species and as 160 kDa high-mannose-glycosylated complexes. Pharmacological studies using isoproterenol, ICI-118551 and CGP-20712A demonstrated β1-AR as the predominant adrenergic receptor in stria vascularis and organ of Corti. In conclusion, β1-AR are present and functional in inner ear epithelial cells that are involved in K+ cycling and auditory transduction, as well as in neuronal cells that are involved in auditory transmission.  相似文献   

16.
Epilepsy is one of the most common neurological disorders. Even though antiepileptic drugs can afford a reasonably satisfactory treatment for 80% of diagnosed patients, chronic intractable epilepsy still affects a significant number of people and more effective and less harmful antiepileptic drugs are needed. Previous studies have shown that -decanolactone has dose-dependent sedative effects, including hypnotic, anticonvulsant and hypothermic properties in mice. The present study reports an inhibitory effect of -decanolactone on glutamate binding (96.8% with 5 mM) in rat cortex membranes. The non competitive nature of glutamate binding inhibition as a neurochemical correlate of the anticonvulsant activity of -decanolactone may be a relevant mode of action for further drug development.  相似文献   

17.
Abstract

We report the isolation of the genes encoding the β1 and β2 adrenergic receptors from dog genomic DNA. Sequence analysis of both genes revealed intronless open reading frames of 473 and 415 amino acid residues, receptively. Heterologous expression of both receptors in CHO cells indicated that both receptors are functionally similar to the human homologs. Comparing the dog β1 and β2 adrenergic receptors, the β1 receptor appears to bind to G proteins more tightly than the β2 receptor. Heterologously expressed receptors provide a convenient system for evaluating novel receptor agonists and antagonists.  相似文献   

18.
DNA polymorphism patterns linked to the A-globin gene were analyzed in healthy Japanese using four different restriction endonucleases. The chromosomes with the A-globin gene were mapped through an evaluation of the presence of seven different restriction sites (HincII 5 to ; HindIII in G and A; HincII in, and 3 to, 1; AvaII in ; Bam-HI 3 to ). Among 36 chromosomes analyzed, 20 chromosomes had a haplotype of [+–––––+]. Among 55 individuals examined, 7 possessed a homozygous haplotye of [+–––––+]. All Japanese with the AT-globin gene had a subhaplotype of [–++–+] 5 to the -globin gene. Their major haplotypes were [–++–+–+] and [–++–++–]. It was expected that the presence of the AT-globin gene in Japanese may be deduced from subhaplotypes 5 to the -globin gene.  相似文献   

19.
20.
The experiments with the isolated rat heart demonstrated a significant decrease in reperfusion-induced damage of cardiomyocytes upon adding the selective 1 receptor agonist DPDPE (0.1 mg/l) to the perfusion solution. On the contrary, no cardioprotective effect was observed for 0.5 mg/l concentration of the peptide or after its intravenous injection. Stimulation of the cardiac 1 opioid receptors by intravenous injection of 0.5 mg/kg DPDPE or its addition to the perfusion solution decreased myocardial contractility both under conditions of normal oxygenation and during reperfusion. Thus, the cardioprotective and negative inotropic effect of DPDPE is mediated by activation of the cardiac 1 opioid receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号