首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A key step in plasma HDL maturation from discoidal to spherical particles is the esterification of cholesterol to cholesteryl ester, which is catalyzed by LCAT. HDL-like lipoproteins in cerebrospinal fluid (CSF) are also spherical, whereas nascent lipoprotein particles secreted from astrocytes are discoidal, suggesting that LCAT may play a similar role in the CNS. In plasma, apoA-I is the main LCAT activator, while in the CNS, it is believed to be apoE. apoE is directly involved in the pathological progression of Alzheimer’s disease, including facilitating β-amyloid (Aβ) clearance from the brain, a function that requires its lipidation by ABCA1. However, whether apoE particle maturation by LCAT is also required for Aβ clearance is unknown. Here we characterized the impact of LCAT deficiency on CNS lipoprotein metabolism and amyloid pathology. Deletion of LCAT from APP/PS1 mice resulted in a pronounced decrease of apoA-I in plasma that was paralleled by decreased apoA-I levels in CSF and brain tissue, whereas apoE levels were unaffected. Furthermore, LCAT deficiency did not increase Aβ or amyloid in APP/PS1 LCAT−/− mice. Finally, LCAT expression and plasma activity were unaffected by age or the onset of Alzheimer’s-like pathology in APP/PS1 mice. Taken together, these results suggest that apoE-containing discoidal HDLs do not require LCAT-dependent maturation to mediate efficient Aβ clearance.  相似文献   

2.
Sphingosine 1-phosphate (S1P) is accumulated in lipoproteins, especially high-density lipoprotein (HDL), in plasma. However, it remains uncharacterized how extracellular S1P is produced in the CNS. The treatment of rat astrocytes with retinoic acid and dibutyryl cAMP, which induce apolipoprotein E (apoE) synthesis and HDL-like lipoprotein formation, stimulated extracellular S1P accumulation in the presence of its precursor sphingosine. The released S1P was present together with apoE particles in the HDL fraction. S1P release from astrocytes was inhibited by the treatment of the cells with glybenclamide or small interfering RNAs specific to ATP-binding cassette transporter A1 (ABCA1). Astrocytes from Abca1−/− mice also showed impairment of retinoic acid/dibutyryl cAMP-induced S1P release in association with the blockage of HDL-like lipoprotein formation. However, the formation of either apoE or lipoprotein itself was not sufficient, and additional up-regulation of ABCA1 was requisite to stimulate S1P release. We conclude that the S1P release from astrocytes is coupled with lipoprotein formation through ABCA1.  相似文献   

3.
Abstract: Although the critical role of apolipoprotein E (apoE) allelic variation in Alzheimer's disease and in the outcome of CNS injury is now recognized, the functions of apoE in the CNS remain obscure, particularly with regard to lipid metabolism. We used density gradient ultracentrifugation to identify apoE-containing lipoproteins in human CSF. CSF apoE lipoproteins, previously identified only in the 1.063–1.21 g/ml density range, were also demonstrated in the 1.006–1.060 g/ml density range. Plasma lipoproteins in this density range include low-density lipoprotein and high-density lipoprotein (HDL) subfraction 1 (HDL1). The novel CSF apoE lipoproteins are designated HDL1. No immunoreactive apolipoprotein A-I (apo A-I) or B could be identified in the CSF HDL1 fractions. Large lipoproteins 18.3 ± 6.6 nm in diameter (mean ± SD) in the HDL1 density range were demonstrated by electron microscopy. Following fast protein liquid chromatography of CSF at physiologic ionic strength, apoE was demonstrated in particles of average size greater than particles containing apoA-I. The largest lipoproteins separated by this technique contained apoE without apoA-I. Thus, the presence of large apoE-containing lipoproteins was confirmed without ultracentrifugation. Interconversion between the more abundant smaller apoE-HDL subfractions 2 and 3 and the novel larger apoE-HDL1 is postulated to mediate a role in cholesterol redistribution in brain.  相似文献   

4.
Deficiency of ABCA1 impairs apolipoprotein E metabolism in brain   总被引:1,自引:0,他引:1  
ABCA1 is a cholesterol transporter that is widely expressed throughout the body. Outside the central nervous system (CNS), ABCA1 functions in the biogenesis of high-density lipoprotein (HDL), where it mediates the efflux of cholesterol and phospholipids to apolipoprotein (apo) A-I. Deficiency of ABCA1 results in lack of circulating HDL and greatly reduced levels of apoA-I. ABCA1 is also expressed in cells within the CNS, but its roles in brain lipid metabolism are not yet fully understood. In the brain, glia synthesize the apolipoproteins involved in CNS lipid metabolism. Here we demonstrate that glial ABCA1 is required for cholesterol efflux to apoA-I and plays a key role in facilitating cholesterol efflux to apoE, which is the major apolipoprotein in the brain. In both astrocytes and microglia, ABCA1 deficiency reduces lipid efflux to exogenous apoE. The impaired ability to efflux lipids in ABCA1-/- glia results in lipid accumulation in both astrocytes and microglia under normal culture conditions. Additionally, apoE secretion is compromised in ABCA1-/- astrocytes and microglia. In vivo, deficiency of ABCA1 results in a 65% decrease in apoE levels in whole brain, and a 75-80% decrease in apoE levels in hippocampus and striatum. Additionally, the effect of ABCA1 on apoE is selective, as apoJ levels are unchanged in brains of ABCA1-/- mice. Taken together, these results show that glial ABCA1 is a key influence on apoE metabolism in the CNS.  相似文献   

5.
Recent studies have demonstrated that the ATP-binding cassette transporter A1 (ABCA1) facilitates the efflux of phospholipids and cholesterol to apoprotein acceptors, leading to the synthesis of HDL. The purpose of this study was to determine the changes in the lipoprotein fractions in Abca1-deficient mice and study the mechanisms responsible for the low levels of HDL when ABCA1 is absent. Plasma phospholipid concentration was decreased by more than 75%, mostly due to a reduction of phosphatidylcholine (PC) in HDL. Abca1(-/-) HDL represents less than 2% of wild-type levels and is smaller and enriched in phospholipids (11.2-fold more than HDL from controls). Compared to wild-type littermates, Abca1(-/-) HDL had a 4-fold increase in PC, whereas lysophosphatidylcholine (LPC) (125-fold), sphingomyelin (SPH) (49-fold), and phosphatidylethanolamine (PE) (18-fold) showed even higher increases. As a consequence, the ratios of LPC/PC, SPH/PC, PE/PC, and phosphatidylinositol + phosphatidylserine (PI+PS)/PC were all much higher in HDL from Abca1(-/-), compared to wild-type HDL. Plasma phospholipid transfer protein (PLTP) and lecithin cholesterol acyltransferase (LCAT) activities were decreased by more than 80%, suggesting that the maturation of HDL is affected. To test this hypothesis, plasma from Abca1(-/-) mice was incubated with CHO cells that are known to express high levels of ABCA1 with the intent of restoring the flux of phospholipid and cholesterol onto apoAI. Compared to native plasma, no change in maturation of HDL was observed. In contrast, a 220% increase in the formation of mature HDL was observed when ABCA1 function and LCAT activities were restored. Taken together, these observations suggest that ABCA1 is necessary for the adequate lipidation of apoAI, which enables the interaction with LCAT and subsequent maturation.  相似文献   

6.
Molecular interactions between apoE and ABCA1: impact on apoE lipidation   总被引:3,自引:0,他引:3  
Apolipoprotein E (apoE)/ABCA1 interactions were investigated in human intact fibroblasts induced with 22(R)-hydroxycholesterol and 9-cis-retinoic acid (stimulated cells). Here, we show that purified human plasma apoE3 forms a complex with ABCA1 in normal fibroblasts. Lipid-free apoE3 inhibited the binding of (125)I-apoA-I to ABCA1 more efficiently than reconstituted HDL particles (IC(50) = 2.5 +/- 0.4 microg/ml vs. 12.3 +/- 1.3 microg/ml). ApoE isoforms showed similar binding for ABCA1 and exhibited identical kinetics in their abilities to induce ABCA1-dependent cholesterol efflux. Mutation of ABCA1 associated with Tangier disease (C1477R) abolished both apoE3 binding and apoE3-mediated cholesterol efflux. Analysis of apoE3-containing particles generated during the incubation of lipid-free apoE3 with stimulated normal cells showed nascent apoE3/cholesterol/phospholipid complexes that exhibited prebeta-electrophoretic mobility with a particle size ranging from 9 to 15 nm, whereas lipid-free apoE3 incubated with ABCA1 mutant (C1477R) cells was unable to form such particles. These results demonstrate that 1). apoE association with lipids reduced its ability to interact with ABCA1; 2). apoE isoforms did not affect apoE binding to ABCA1; 3). apoE-mediated ABCA1-dependent cholesterol efflux was not affected by apoE isoforms in fibroblasts; and 4). the lipid translocase activity of ABCA1 generates apoE-containing high density-sized lipoprotein particles. Thus, ABCA1 is essential for the biogenesis of high density-sized lipoprotein containing only apoE particles in vivo.  相似文献   

7.
We have developed an astrocyte cell culture system that is attractive for the study of apoE structure and its impact on astrocyte lipoproteins and neuronal function. Primary astrocytes from apoE-/- mice were infected with adenovirus expressing apoE3 or apoE4 and the nascent lipoproteins secreted were characterized. The nascent apoE-containing astrocyte particles were predominantly the size of plasma high density lipoprotein (HDL). ApoE4, in contrast to apoE3, appeared to be distributed in two distinct lipoprotein peaks and the apoE4-containing lipoproteins contained significantly more radiolabeled triglyceride. On electron micrographs the astrocyte particles were both discoidal and spherical in shape with a prevalence of stacked discs in apoE3 particles, but single discs and larger spheres in apoE4 particles. The apoE4 discs were significantly wider than apoE3 discs. These properties of the astrocyte lipoproteins are similar to those obtained from apoE isoform transgenic mice. Astrocyte lipoproteins containing apoE3, but not apoE4, stimulated neurite outgrowth in Neuro-2a cells. These studies suggest that the isoform-specific effects of apoE lipoproteins may involve differences in particle size and composition. Finally we demonstrate the usefulness of this system by expressing a truncated apoE3 (delta202-299) mutant and show preliminary data indicating that a liver X receptor agonist promotes HDL output by the astrocytes without an increase in apoE in the media. This cell culture system is more flexible and allows for more rapid expression of apoE mutants.  相似文献   

8.
Composition of central nervous system lipoproteins affects the metabolism of lipoprotein constituents within the brain. The epsilon4 allele of apolipoprotein E (apoE) is a risk factor for Alzheimer's disease via an unknown mechanism(s). As glia are the primary central nervous system cell type that synthesize apoE, we characterized lipoproteins secreted by astrocytes from wild type (WT), apoE (-/-), and apoE transgenic mice expressing human apoE3 or apoE4 in a mouse apoE (-/-) background. Nondenaturing size exclusion chromatography demonstrates that WT, apoE3, and apoE4 astrocytes secrete particles the size of plasma high density lipoprotein (HDL) composed of phospholipid, free cholesterol, and protein, primarily apoE and apoJ. However, the lipid:apoE ratio of particles containing human apoE is significantly lower than WT. ApoE localizes across HDL-like particle sizes. ApoJ localizes to the smallest HDL-like particles. ApoE (-/-) astrocytes secrete little phospholipid or free cholesterol despite comparable apoJ expression, suggesting that apoE is required for normal secretion of astrocyte lipoproteins. Further, particles were not detected in apoE (-/-) samples by electron microscopy. Nondenaturing immunoprecipitation experiments indicate that apoE and apoJ reside predominantly on distinct particles. These studies suggest that apoE expression influences the unique structure of astrocyte lipoproteins, a process further modified by apoE species.  相似文献   

9.
Apolipoprotein E (apoE) genotype has a major influence on the risk for Alzheimer disease (AD). Different apoE isoforms may alter AD pathogenesis via their interactions with the amyloid beta-peptide (Abeta). Mice lacking the lipid transporter ABCA1 were found to have markedly decreased levels and lipidation of apoE in the central nervous system. We hypothesized that if Abca1-/- mice were bred to the PDAPP mouse model of AD, PDAPP Abca1-/ mice would have a phenotype similar to that of PDAPP Apoe+/- and PDAPP Apoe-/- mice, which develop less amyloid deposition than PDAPP Apoe+/+ mice. In contrast to this prediction, 12-month-old PDAPP Abca -/- mice had significantly higher levels of hippocampal Abeta, and cerebral amyloid angiopathy was significantly more common compared with PDAPP Abca1+/+ mice. Amyloid precursor protein (APP) C-terminal fragments were not different between Abca1 genotypes prior to plaque deposition in 3-month-old PDAPP mice, suggesting that deletion of Abca1 did not affect APP processing or Abeta production. As expected, 3-month-old PDAPP Abca1-/- mice had decreased apoE levels, but they also had a higher percentage of carbonate-insoluble apoE, suggesting that poorly lipidated apoE is less soluble in vivo. We also found that 12-month-old PDAPP Abca1-/- mice had a higher percentage of carbonate-insoluble apoE and that apoE deposits co-localize with amyloid plaques, demonstrating that poorly lipidated apoE co-deposits with insoluble Abeta. Together, these data suggest that despite substantially lower apoE levels, poorly lipidated apoE produced in the absence of ABCA1 is strongly amyloidogenic in vivo.  相似文献   

10.
High levels of expression of the ATP binding cassette transporter A1 (ABCA1) in the liver and the need to over- or underexpress hepatic ABCA1 to impact plasma HDL levels in mice suggest a major role of the liver in HDL formation and in determining circulating HDL levels. Cultured murine hepatocytes were used to examine the role of hepatic ABCA1 in mediating the lipidation of apolipoprotein A-I (apoA-I) for HDL particle formation. Exogenous apoA-I stimulated cholesterol efflux to the medium from wild-type hepatocytes, but not from ABCA1-deficient (abca1(-/-)) hepatocytes. ApoA-I induced the formation of new HDL particles and enhanced the lipidation of endogenously secreted murine apoA-I in ABCA1-expressing but not abca1(-/-) hepatocytes. ABCA1-dependent cholesterol mobilization to apoA-I increased new cholesterol synthesis, indicating depletion of the regulatory pool of hepatocyte cholesterol during HDL formation. Secretion of triacylglycerol and apoB was decreased following apoA-I incubation with ABCA1-expressing but not abca1(-/-) hepatocytes. These results support a major role for hepatocyte ABCA1 in generating a critical pool of HDL precursor particles that enhance further HDL generation and passive cholesterol mobilization in the periphery. The results also suggest that diversion of hepatocyte cholesterol into the "reverse" cholesterol transport pathway diminishes cholesterol availability for apoB-containing lipoprotein secretion by the liver.  相似文献   

11.
We investigated the lipoprotein distribution and composition in cerebrospinal fluid (CSF) in a group of patients with Alzheimer's disease (AD) or affected by other types of dementia in comparison to non-demented controls. We found slightly decreased apolipoprotein (apo)E and cholesterol concentrations in CSF of AD patients and moderately increased apoA-I concentrations, while in patients suffering from other types of dementia the apoA-I CSF concentration was increased. ApoA-IV concentrations varied widely in human CSF, but were not associated with any clinical condition. HDL(2)-like apoE-containing lipoproteins represent the major lipoprotein fraction. In CSF of normal controls, only a minor HDL(3)-like apoA-I-containing lipoprotein fraction was observed; this fraction was more prevalent in AD patients. ApoA-II was recovered mostly in the HDL(3) density range, while apoA-IV was not associated with lipoproteins but appeared in a lipid-free form, co-localizing with LCAT immunoreactivity. Bi-dimensional analysis demonstrated pre-beta and alpha apoA-I-containing particles; apoE and apoA-II were detected only in alpha-migrating particles. ApoA-IV distributed both to pre-beta and gamma-migrating particles; the LCAT signal was co-localized in this gamma-migrating fraction. Enzymatically active LCAT was present in human CSF as well as PLTP activity and mass; no CETP mass was detected. In CSF from AD patients, LCAT activity was 50% lower than in CSF from normal controls. CSF lipoproteins induced a significant cholesterol efflux from cultured rat astrocytes, suggesting that they play an active role in maintaining the cholesterol homeostasis in brain cells.  相似文献   

12.
Nascent Astrocyte Particles Differ from Lipoproteins in CSF   总被引:12,自引:4,他引:8  
Abstract: Little is known about lipid transport and metabolism in the brain. As a further step toward understanding the origin and function of CNS lipoproteins, we have characterized by size and density fractionation lipoprotein particles from human CSF and primary cultures of rat astrocytes. The fractions were analyzed for esterified and free cholesterol, triglyceride, phospholipid, albumin, and apolipoproteins (apo) E, AI, AII, and J. As determined by lipid and apolipoprotein profiles, gel electrophoresis, and electron microscopy, nascent astrocyte particles contain little core lipid, are primarily discoidal in shape, and contain apoE and apoJ. In contrast, CSF lipoproteins are the size and density of plasma high-density lipoprotein, contain the core lipid, esterified cholesterol, and are spherical. CSF lipoproteins were heterogeneous in apolipoprotein content with apoE, the most abundant apolipoprotein, localized to the largest particles, apoAI and apoAII localized to progressively smaller particles, and apoJ distributed relatively evenly across particle size. There was substantial loss of protein from both CSF and astrocyte particles after density centrifugation compared with gel-filtration chromatography. The differences between lipoproteins secreted by astrocytes and present in CSF suggest that in addition to delivery of their constituents to cells, lipoprotein particles secreted within the brain by astrocytes may have the potential to participate in cholesterol clearance, developing a core of esterified cholesterol before reaching the CSF. Study of the functional properties of both astrocyte-secreted and CSF lipoproteins isolated by techniques that preserve native particle structure may also provide insight into the function of apoE in the pathophysiology of specific neurological diseases such as Alzheimer's disease.  相似文献   

13.
Central nervous system lipoproteins mediate the exchange of cholesterol between cells and support synaptogenesis and neuronal growth. The primary source of lipoproteins in the brain is astroglia cells that synthesize and secrete apolipoprotein (apo) E in high density lipoprotein-like particles. Small quantities of apoA1, derived from the peripheral circulation, are also present in the brain. In addition to the direct secretion of apoE-containing lipoproteins from astroglia, glia-derived lipoproteins are thought to be formed by cholesterol efflux to extracellular apolipoproteins via ATP-binding cassette (ABC) transporters. We used cultured cerebellar murine astroglia to investigate the relationship among cholesterol availability, apoE secretion, expression of ABCA1 and ABCG1, and cholesterol efflux. In many cell types, cholesterol content, ABCA1 expression, and cholesterol efflux are closely correlated. In contrast, cholesterol enrichment of glia failed to increase ABCA1 expression, although ABCG1 expression and cholesterol efflux to apoA1 were increased. Moreover, the liver X receptor (LXR) agonist TO901317 up-regulated ABCA1 and ABCG1 expression in glia without stimulating cholesterol efflux. Larger lipoproteins were generated when glia were enriched with cholesterol, whereas treatment with the LXR agonist produced smaller particles that were eliminated when the glia were loaded with cholesterol. We also used glia from ApoE(-/-) mice to distinguish between direct lipoprotein secretion and the extracellular generation of lipoproteins. Our observations indicate that partially lipidated apoE, secreted directly by glia, is likely to be the major extracellular acceptor of cholesterol released from glia in a process mediated by ABCG1.  相似文献   

14.
It has long been postulated that apolipoprotein E (apoE) may play a role in lipid metabolism in the brain. However, direct evidence that apoE plays such a role is lacking. We investigated whether apoE isoforms influence lipid content in the brain. We compared the brains of wild-type mice to apoE knockout (-/-) and human apoE3 and apoE4 transgenic mice and compared cerebrospinal fluid (CSF) of humans with different apoE isoforms. We found that there was no effect of apoE on the content of multiple phospholipids, sphingolipids, and cholesterol. There was, however, a marked effect of apoE on the sulfatide (ST) content in both the brain and CSF. The sulfatide mass in hippocampus and cortex of apoE knockout mice was found to be 61 and 114 mol% higher than wild-type mice counterparts at 12 months of age. In contrast, the sulfatide content in brain tissues from human apoE4-expressing mice was approximately 60% less than those found in wild-type mice of the same age. The ST mass in human CSF was significantly dependent on the APOE genotypes of the subjects. Examination of potential sulfatide carrier(s) in human CSF demonstrated that sulfatides are specifically associated with apoE-containing high density lipoproteins, suggesting that sulfatide levels in the central nervous system (CNS) are likely to be directly modulated by the same metabolic pathways that regulate levels of apoE-containing CNS lipoproteins. This novel role for apoE in the CNS may provide new insights into the connection of apoE with Alzheimer's disease and poor recovery after brain injury.  相似文献   

15.
Chroni A  Koukos G  Duka A  Zannis VI 《Biochemistry》2007,46(19):5697-5708
ATP-binding cassette transporter A-1 (ABCA1)-mediated lipid efflux to lipid-poor apolipoprotein A-I (apoA-I) results in the gradual lipidation of apoA-I. This leads to the formation of discoidal high-density lipoproteins (HDL), which are subsequently converted to spherical HDL by the action of lecithin:cholesterol acyltransferase (LCAT). We have investigated the effect of point mutations and deletions in the carboxy-terminal region of apoA-I on the biogenesis of HDL using adenovirus-mediated gene transfer in apoA-I-deficient mice. It was found that the plasma HDL levels were greatly reduced in mice expressing the carboxy-terminal deletion mutants apoA-I[Delta(185-243)] and apoA-I[Delta(220-243)], shown previously to diminish the ABCA1-mediated lipid efflux. The HDL levels were normal in mice expressing the WT apoA-I, the apoA-I[Delta(232-243)] deletion mutant, or the apoA-I[E191A/H193A/K195A] point mutant, which promote normal ABCA1-mediated lipid efflux. Electron microscopy and two-dimensional gel electrophoresis showed that the apoA-I[Delta(185-243)] and apoA-I[Delta(220-243)] mutants formed mainly prebeta-HDL particles and few spherical particles enriched in apoE, while WT apoA-I, apoA-I[Delta(232-243)], and apoA-I[E191A/H193A/K195A] formed spherical alpha-HDL particles. The findings establish that (a) deletions that eliminate the 220-231 region of apoA-I prevent the synthesis of alpha-HDL but allow the synthesis of prebeta-HDL particles in vivo, (b) the amino-terminal segment 1-184 of apoA-I can promote synthesis of prebeta-HDL-type particles in an ABCA1-independent process, and (c) the charged residues in the 191-195 region of apoA-I do not influence the biogenesis of HDL.  相似文献   

16.
Drosatos K  Kypreos KE  Zannis VI 《Biochemistry》2007,46(33):9645-9653
Overexpression of apolipoprotein E (apoE) induces hypertriglyceridemia in apoE-deficient mice, which is abrogated by deletion of the carboxy-terminal segment of residues 260-299. We have used adenovirus-mediated gene transfer in apoE-/- and apoA-I-/- mice to test the effect of three sets of apoE mutations within the region of residues 261-265 on the induction of hypertriglyceridemia, the esterification of cholesterol of very low-density lipoprotein (VLDL) and high-density lipoprotein (HDL), and the formation of spherical or discoidal apoE-containing HDL. A single-amino acid substitution (apoE4[Phe265Ala]) induced hypertriglyceridemia in apoE-/- or apoA-I-/- mice, promoted the accumulation of free cholesterol in the very low-density lipoprotein (VLDL) and HDL region, and decreased HDL cholesterol levels. A double substitution (apoE4[Leu261Ala/Trp264Ala]) induced milder hypertriglyceridemia and increased HDL cholesterol levels. A triple substitution (apoE4[Leu261Ala/Trp264Ala/Phe265Ala] or apoE2[Leu261Ala/Trp264Ala/Phe265Ala]) did not induce hypertriglyceridemia and increased greatly the HDL cholesterol levels. Electron microscopy (EM) analysis of the HDL fractions showed that apoE4[Leu261Ala/Trp264Ala/Phe265Ala] and apoE2[Leu261Ala/Trp264Ala/Phe265Ala] contained spherical HDL, apoE4[Leu261Ala/Trp264Ala] contained mostly spherical and few discoidal HDL particles, and apoE4[Phe265Ala] contained discoidal HDL. We conclude that residues Leu261, Trp264, and Phe265 play an important role in apoE-induced hypertriglyceridemia, the accumulation of free cholesterol in VLDL and HDL, and the formation of discoidal HDL. Substitution of these residues with Ala improves the apoE functions by preventing hypertriglyceridemia and promoting formation of spherical apoE-containing HDL.  相似文献   

17.
Phospholipid transfer protein (PLTP) transfers phospholipids between HDL and other lipoproteins in plasma. It also remodels spherical, apolipoprotein A-I (apoA-I)-containing HDL into large and small particles in a process involving the dissociation of lipid-free/lipid-poor apoA-I. ApoE is another apolipoprotein that is mostly associated with large, spherical HDL that do not contain apoA-I. Three isoforms of apoE have been identified in human plasma: apoE2, apoE3, and apoE4. This study investigates the remodeling of spherical apoE-containing HDL by PLTP and the ability of PLTP to transfer phospholipids between apoE-containing HDL and phospholipid vesicles. Spherical reconstituted high density lipoproteins (rHDL) containing apoA-I [(A-I)rHDL], apoE2 [(E2)rHDL], apoE3 [(E3)rHDL], or apoE4 [(E4)rHDL] as the sole apolipoprotein were prepared by incubating discoidal rHDL with low density lipoproteins and lecithin:cholesterol acyltransferase. PLTP remodeled the spherical, apoE-containing rHDL into large and small particles without the dissociation of apoE. The PLTP-mediated remodeling of apoE-containing rHDL was more extensive than that of (A-I)rHDL. PLTP transferred phospholipids from small unilamellar vesicles to apoE-containing rHDL in an isoform-dependent manner, but at a rate slower than that for spherical (A-I)rHDL. It is concluded that apoE enhances the capacity of PLTP to remodel HDL but reduces the ability of HDL to participate in PLTP-mediated phospholipid transfers.  相似文献   

18.
Low levels of transgenic mouse apolipoprotein E (apoE) suppress atherosclerosis in apoE knockout (apoE-/-) mice without normalizing plasma cholesterol. To test whether this is due to facilitation of cholesterol efflux from the vessel wall, we produced apoA-I-/-/apoE-/- mice with or without the transgene. Even without apoA-I and HDL, apoA-I-/-/apoE-/- mice had the same amount of aorta cholesteryl ester as apoE-/- mice. Low apoE in the apoA-I-/-/apoE-/- transgenic mice reduced aortic lesions by 70% versus their apoA-I-/-/apoE-/- siblings. To define the free cholesterol (FC) efflux capacity of lipoproteins from the various genotypes, sera were assayed on macrophages expressing ATP-binding cassette transporter A1 (ABCA1). Surprisingly, ABCA1 FC efflux was twice as high to sera from the apoA-I-/-/apoE-/- or apoE-/- mice compared with wild-type mice, and this activity correlated with serum apoA-IV. Immunodepletion of apoA-IV from apoA-I-/-/apoE-/- serum abolished ABCA1 FC efflux, indicating that apoAI-V serves as a potent acceptor for FC efflux via ABCA1. With increasing apoE expression, apoA-IV and FC acceptor capacity decreased, indicating a reciprocal relationship between plasma apoE and apoA-IV. Low plasma apoE (1-3 x 10(-8) M) suppresses atherosclerosis by as yet undefined mechanisms, not dependent on the presence of apoA-I or HDL or an increased capacity of serum acceptors for FC efflux.  相似文献   

19.
Apolipoprotein (apo) E plays a key role in regulating plasma levels of lipoproteins. We investigated the serum apoE concentrations in cows during different lactating stages by ELISA. To confirm the distribution of apoE in lipoprotein fractions, cow plasma was separated by gel filtration, ultracentrifugation and agarose gel electrophoresis. The apoE concentrations during early, mid- and late lactating stages in cows were significantly higher than that during the non-lactating stage. In lactating plasma, apoE eluted in high-density lipoprotein (HDL) fractions separated by gel filtration increased. The portion of this apoE in plasma was 49%. However, when lactating plasma was separated by ultracentrifugation, less then 5% apoE was recovered in the HDL fraction, and more apoE was recovered in the non-lipoprotein fraction (d>1.21 g/ml, 46%). In agarose gel electrophoresis, plasma apoE was found in β-migrating lipoprotein, but it was not present in α-migrating lipoprotein. To purify apoE-containing particles, the HDL fraction separated by gel filtration was pooled and the fraction retained on Heparin–Sepharose chromatography collected. Cholesterol was absent from this fraction. These results suggest that apoE-containing particles, which increased during the lactating stage, were not associated with HDL particles, and that lipid-free forms were included in cow plasma.  相似文献   

20.
The ATP-binding cassette transporter ABCA1 is essential for high density lipoprotein (HDL) formation and considered rate-controlling for reverse cholesterol transport. Expression of the Abca1 gene is under control of the liver X receptor (LXR). We have evaluated effects of LXR activation by the synthetic agonist T0901317 on hepatic and intestinal cholesterol metabolism in C57BL/6J and DBA/1 wild-type mice and in ABCA1-deficient DBA/1 mice. In wild-type mice, T0901317 increased expression of Abca1 in liver and intestine, which was associated with an approximately 60% rise in HDL. Biliary cholesterol excretion rose 2.7-fold upon treatment, and fecal neutral sterol output was increased by 150-300%. Plasma cholesterol levels also increased in treated Abca1(-/-) mice (+120%), but exclusively in very low density lipoprotein-sized fractions. Despite the absence of HDL, hepatobiliary cholesterol output was stimulated upon LXR activation in Abca1(-/-) mice, leading to a 250% increase in the biliary cholesterol/phospholipid ratio. Most importantly, fecal neutral sterol loss was induced to a similar extent (+300%) by the LXR agonist in DBA/1 wild-type and Abca1(-/-) mice. Expression of Abcg5 and Abcg8, recently implicated in biliary excretion of cholesterol and its intestinal absorption, was induced in T0901317-treated mice. Thus, activation of LXR in mice leads to enhanced hepatobiliary cholesterol secretion and fecal neutral sterol loss independent of (ABCA1-mediated) elevation of HDL and the presence of ABCA1 in liver and intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号