首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Acute ethanol loading causes oxidative stress to activate cell-death signaling via c-Jun NH2-terminal kinase (JNK) in livers. JNK are stimulated under conditions of endoplasmic reticulum (ER) stress which causes programmed cell death. However, no remarked cell death was observed in acute ethanol intoxication. Akt, one of the cell survival protein kinases, may be activated under ethanol loading. The aim of this study was to estimate activation of JNK and ER stress, role of ethanol metabolism on the activation, and association of JNK with Akt under acute ethanol loading using the perfused rat liver system. Activation of JNK or Akt and association of JNK and Akt with JNK interacting protein 1 were estimated by immunoprecipitation and immunoblotting. Expression of 78 kDa glucose-regulated protein (GRP78) mRNA, a biomarker of ER stress, was detected by quantitative real-time RT-PCR. Activations of JNK and Akt were enhanced by co-treatment with ethanol and a classical inhibitor of alcohol dehydrogenase (ADH). Addition of an antioxidant reduced the activation of JNK. Ethanol loading with ADH inhibition causes down-regulation of GRP78 mRNA levels. Therefore, these findings suggest first revelation that inhibition of ethanol metabolism complicates oxidative and ER stresses produced by ethanol.  相似文献   

2.
Pulmonary surfactant is a mixture of phospholipids, neutral lipids, and proteins that controls the surface tension of the fluid lining the lung. Surfactant amounts and composition are influenced by such physiological parameters as metabolic rate, activity, body temperature, and ventilation. Microchiropteran bats experience fluctuations in these parameters throughout their natural daily cycle of activity and torpor. The activity cycle of the microchiropteran bat Chalinolobus gouldii was studied over a 24-h period. Bats were maintained in a room at constant ambient temperature (24 degrees C) on an 8L : 16D cycle. Diurnal changes in the amount and composition of surfactant were measured at 4-h intervals throughout a 24-h period. The C. gouldii were most active at 2 a.m. and were torpid at 2 p.m. Alveolar surfactant increased 1.5-fold immediately after arousal. The proportion of disaturated phospholipid remained constant, while surfactant cholesterol levels increased 1.5-fold during torpor. Alveolar cholesterol in C. gouldii was six times lower than in other mammals. Cholesterol appears to function in maintaining surfactant fluidity during torpor in this species of bat.  相似文献   

3.
Hibernators like bats show only marginal muscle atrophy during prolonged hibernation. The current study was designed to test the hypothesis that hibernators use periodic arousal to increase protein anabolism that compensates for the continuous muscle proteolysis during disuse. To test this hypothesis, we investigated the effects of 3‐month hibernation (HB) and 7‐day post‐arousal torpor (TP) followed by re‐arousal (RA) on signaling activities in the pectoral muscles of summer‐active (SA) and dormant Murina leucogaster bats. The bats did not lose muscle mass relative to body mass during the HB or TP‐to‐RA period. For the first 30‐min following arousal, the peak amplitude and frequency of electromyographic spikes increased 3.1‐ and 1.4‐fold, respectively, indicating massive myofiber recruitment and elevated motor signaling during shivering. Immunoblot analyses of whole‐tissue lysates revealed several principal outcomes: (1) for the 3‐month HB, the phosphorylation levels of Akt1 (p‐Akt1) and p‐mTOR decreased significantly compared to SA bats, but p‐FoxO1 levels remained unaltered; (2) for the TP‐to‐RA period, p‐Akt1 and p‐FoxO1 varied little, while p‐mTOR showed biphasic oscillation; (3) proteolytic signals (i.e., atrogin‐1, MuRF1, Skp2 and calpain‐1) remained constant during the HB and TP‐to‐RA period. These results suggest that the resistive properties of torpid bat muscle against atrophy might be attained primarily by relatively constant proteolysis in combination with oscillatory anabolic activity (e.g., p‐mTOR) corresponding to the frequency of arousals occurring throughout hibernation. J. Cell. Physiol. 222: 313–319, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Chronic anoxia, glucose starvation, low pH, and numerous other conditions induce the glucose-regulated system of stress proteins (GRPs), whose principal members are observed at 78, 94, and 170 kDa. These stresses may be expected to occur during growth in untreated tumors. To examine the possibility that GRPs are correspondingly induced, we have examined the protein profiles of small (<0.1 g), intermediate (0.2–0.8 g), and large (>1.8 g) radiation-induced fibrosarcoma (RIF) tumors grown on C3H mice. One and two-dimensional gel electrophoresis indicate that the principal GRPs at 78 and 94 are coordinately and substantially increased in large tumor masses, relative to the small, and may be partially increased in the intermediate tumors. Necrotic material removed from large tumors exhibited an identical pattern of GRP induction with no visible indication of protein degradation and also contained a significant fraction of viable cells. Western blot analysis using rabbit antisera raised against the 78 and 170 kDa GRPs also demonstrated the enhanced accumulation of these proteins in the large tumors. The antibody against the 170 kDa GRP was also capable of detecting the induction of this stress protein in large tumors by indirect immunofluorescence analysis. Northern blot studies using a probe for the GRP 78 gene also showed an increase in GRP 78 message in large tumors as well as in RIF cells exposed to anoxic stress in vitro. Two-dimensional gel electrophoresis indicated that the major heat shock proteins at 70 and 90 kDa were not increased in the larger tumors, and the amount of the 90 kDa species was reduced. Finally, the quantity of vimentin and its degradation products is significantly diminished in large tumors and in anoxic cells. This study demonstrates that RIF tumor cells undergo a glucose regulated stress response in situ during tumor growth. © 1993 Wiley-Liss, Inc.  相似文献   

5.
The male little brown bat is a seasonally reproductive mammal that exhibits dramatic increases in plasma concentrations of sex steroid-binding protein (SBP) in the spring, following arousal from hibernation. Adult male bats, aroused prematurely from hibernation, were found to exhibit increases in plasma SBP titers that were comparable to those observed during normal spring arousal. To evaluate the role of the thyroid gland in the control of SBP in this species, plasma SBP concentrations were determined at weekly intervals in adult male bats that were either thyroparathyroidectomized (TRX) or sham operated (SHAM) after arousal from hibernation. Plasma SBP titers in SHAM males increased markedly within the first week after arousal and by 3 wk had reached levels 20-fold higher than those measured in hibernating controls. In contrast, plasma SBP values in the TRX animals did not increase significantly following arousal but were maintained at low basal levels throughout the experiment. The postarousal rise in SBP, which was blocked by TRX, was completely restored by implantation of either L- or D-thyroxine pellets. In male bats, TRX also hindered the normal postarousal atrophy of the sex accessory glands and resulted in attenuation of the postarousal increases in plasma testosterone concentrations. These effects of TRX were also prevented by treatment with thyroxine. Thus, the thyroid appears to play a significant role in the control of the postarousal rise of SBP in the little brown bat and may be an important factor in the regulation of reproductive function in this species.  相似文献   

6.
We have previously observed that metabolic oxidative stress-induced death domain-associated protein (Daxx) trafficking is mediated by the ASK1-SEK1-JNK1-HIPK1 signal transduction pathway. The relocalized Daxx from the nucleus to the cytoplasm during glucose deprivation participates in a positive regulatory feedback loop by binding to apoptosis signal-regulating kinase (ASK) 1. In this study, we report that Akt1 is involved in a negative regulatory feedback loop during glucose deprivation. Akt1 interacts with c-Jun NH(2)-terminal kinase (JNK)-interacting protein (JIP) 1, and Akt1 catalytic activity is inhibited. The JNK2-mediated phosphorylation of JIP1 results in the dissociation of Akt1 from JIP1 and subsequently restores Akt1 enzyme activity. Concomitantly, Akt1 interacts with stress-activated protein kinase/extracellular signal-regulated kinase (SEK) 1 (also known as MKK4) and inhibits SEK1 activity. Knockdown of SEK1 leads to the inhibition of JNK activation, JIP1-JNK2 binding, and the dissociation of Akt1 from JIP1 during glucose deprivation. Knockdown of JIP1 also leads to the inhibition of JNK activation, whereas the knockdown of Akt1 promotes JNK activation during glucose deprivation. Altogether, our data demonstrate that Akt1 participates in a negative regulatory feedback loop by interacting with the JIP1 scaffold protein.  相似文献   

7.
The glucose regulated proteins (GRPs) are major structural components of the endoplasmic reticulum (ER) and are involved in the import, folding, and processing of ER proteins. Expression of the glucose regulated proteins (GRP78 and GRP94) is greatly increased after cells are exposed to stress agents (including A23187 and tunicamycin) which inhibit ER function. Here, we demonstrate that three novel inhibitors of ER function, thapsigargin (which inhibits the ER Ca(2+)-ATPase), brefeldin A (an inhibitor of vesicle transport between the ER and Golgi) and AIF4-, (which inhibits trimeric G-proteins), can increase the expression of both GRP78 and 94. The common characteristic shared by activators of GRP expression is that they disrupt some function of the ER. The increased levels of GRPs may be a response to the accumulation of aberrant proteins in the ER or they may be increased in response to structural/functional damage to the ER. The increased accumulation of GRP78 mRNA after exposure of cells to either thapsigargin, brefeldin A, AIF4-, A23187, or tunicamycin can be blocked by pre-incubation in cycloheximide. In contrast, accumulation of GRPs after exposure to hypoxia was independent of cycloheximide. In addition, the protein kinase inhibitor genistein blocked the thapsigargin induced accumulation of GRP78 mRNA, whereas the protein phosphatase inhibitor okadaic acid caused increased accumulation of GRP78 mRNA. The data indicates that there are at least 2 mechanisms for induced expression of GRPs, one of which involves a phosphorylation step and requires new protein synthesis (e.g., thapsigargin, A23187) and one which is independent of both these steps (hypoxia).  相似文献   

8.
The small microchiropteran bat, Chalinolobus gouldii, undergoes large daily fluctuations in metabolic rate, body temperature, and breathing pattern. These alterations are accompanied by changes in surfactant composition, predominantly an increase in cholesterol relative to phospholipid during torpor. Furthermore, the surface activity changes, such that the surfactant functions most effectively at that temperature which matches the animal's activity state. Here, we examine the surface activity of surfactant from bats during arousal from torpor. Bats were housed at 24 degrees C on an 8:16h light:dark cycle and their surfactant was collected during arousal (28相似文献   

9.
10.
The thermal and metabolic physiology of Chalinolobus gouldii, an Australian vespertilionid bat, was studied in the laboratory using flow-through respirometry. Chalinolobus gouldii exhibits a clear pattern of euthermic thermoregulation, typical of endotherms with respect to body temperature and rate of oxygen consumption. The basal metabolic rate of euthermic Chalinolobus gouldii is approximately 86% of that predicted for a 17.5-g mammal and falls into the range of mass-specific basal metabolic rates ascribed to vespertilionid bats. However, like most vespertilionid bats, Chalinolobus gouldii displays extreme thermolability. It is able to enter into torpor and spontaneously arouse at ambient temperatures as low as 5 °C. Torpid bats thermoconform at moderate ambient temperature, with body temperature ≈ ambient temperature, and have a low rate of oxygen consumption determined primarily by Q 10 effects. At low ambient temperature (< 10 °C), torpid C. gouldii begin to regulate their body temperature by increased metabolic heat production; they tend to maintain a higher body temperature at low ambient temperature than do many northern hemisphere hibernating bats. Use of torpor leads to significant energy savings. The evaporative water loss of euthermic bats is relatively high, which seems unusual for a bat whose range includes extremely arid areas of Australia, and is reduced during torpor. The thermal conductance of euthermic C. gouldii is less than that predicted for a mammal of its size. The thermal conductance is considerably lower for torpid bats at intermediate body temperature and ambient temperature, but increases to euthermic values for torpid bats when thermoregulating at low ambient temperature. Accepted: 22 August 1996  相似文献   

11.
Akt, also known as protein kinase B (PKB), is a serine/threonine kinase that promotes survival and growth in response to extracellular signals. Akt1 has been demonstrated to play vital roles in cardiovascular diseases, but the role of Akt2 in cardiomyocytes is not fully understood. This study investigated the effect of Akt2 knockdown on tunicamycin (TM)-induced cytotoxicity in cardiomyocytes and the underlying mechanisms with a focus on the JNK-Wnt pathway. TM treatment significantly increased the expression of Akt2 at both mRNA and protein levels, which was shown to be mediated by the induction of reactive oxygen species (ROS). Knockdown of Akt2 expression via siRNA transfection markedly increased cell viability, decreased lactate dehydrogenase (LDH) release and reduced cell apoptosis after TM exposure. The results of western blot showed that downregulation of Akt2 also attenuated the TM-induced activation of the unfolded protein response (UPR) factors and ER stress associated pro-apoptotic proteins. In addition, Si-Akt2 transfection partially prevented the TM-induced decrease in nuclear localization of β-catenin. By using the selective inhibitor SP-600,125 to inhibit JNK phosphorylation, we found that knockdown of Akt2-induced protection and inhibition of ER stress was mediated by reversing TM-induced decrease of Wnt through the JNK pathway. In summary, these data suggested that Akt2 play a pivotal role in regulating cardiomyocyte survival during ER stress by modulating the JNK-Wnt pathway.  相似文献   

12.
Prolonged disuse of skeletal muscle causes significant loss of myofibrillar contents, muscle tension, and locomotory capacity. However, hibernating mammals like bats appear to deviate from this trend. Although low functional demands during winter dormancy has been implicated as a factor contributing to reduced muscle loss, the precise mechanism that actively prevents muscle atrophy remains unclear. We explored proteomic and molecular assessments of bat muscle to test a hypothesis that expression levels of major myofibrillar proteins are retained during hibernation, with periodic arousals utilized as a potential mechanism to prevent disuse atrophy. We examined changes in myofibrillar contents and contractile properties of the pectoral or biceps brachii muscles of the bat Murina leucogaster in summer active (SA), hibernation (HB) and early phase of arousal (AR) states. We found the bat muscles did not show any sign of atrophy or tension reduction over the 3-month winter dormancy. Levels of most sarcomeric and metabolic proteins examined were maintained through hibernation, with some proteins (e.g., actin and voltage dependent anion channel 1) 1.6- to 1.8-fold upregulated in HB and AR compared to SA. Moreover, expression levels of six heat shock proteins (HSPs) including glucose-regulated protein 75 precursor were similar among groups, while the level of HSP70 was even 1.7-fold higher in HB and AR than in SA. Thus, considering the nature of arousal with strenuous muscle shivering and heat stress, upregulation or at least balanced regulation of the chaperones (HSPs) would contribute to retaining muscle properties during prolonged disuse of the bat.  相似文献   

13.
Stem cell functions are dramatically altered by oxygen in tissue culture, which means the antioxidant/oxidant balance is critical for protection as well as toxicity. This study examined the effect of the heparin-binding growth factor midkine (MK) on hypoxia-induced apoptosis and related signal pathways in mouse embryonic stem cells (mESCs). Hypoxia (60 h) increased lactate dehydrogenase release and apoptosis, and reduced cell viability and proliferation. These effects were reversed by MK (100 ng/ml). MK also reversed hypoxia-induced increases of intracellular reactive oxygen species, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) phosphorylation. Blockage of JNK and p38 MAPK using small interference (si)RNAs produced a decrease in apoptosis. A loss of mitochondrial membrane potential, increases of cytochrome c release from mitochondria to cytosol, and cleaved caspase-3 expression, as well as decreases in cIAP-2 and Bcl-2 were also reversed by MK. Hypoxia alone and hypoxia with MK increased low-density lipoprotein receptor-related protein-1 (LRP-1) mRNA and protein expression. Hypoxia with MK rapidly increased serine/threonine protein kinase (Akt) phosphorylation which reversed by LRP-1 Ab (0.1 μg/ml) and prolonged heme oxygenase-1 (HO-1) expression. In addition, hypoxia with MK increased the expression of hypoxia-inducible factor-1α (HIF-1α). Moreover, inhibition of Akt, HO-1, and HIF-1α signaling pathways abolished the MK-induced blockage of apoptosis. In conclusion, MK partially prevented hypoxic injury of mESCs through activation of Akt, HO-1, and HIF-1α via LRP-1.  相似文献   

14.
Bats are one of the most successful mammalian groups, even though their foraging activities are restricted to the hours of twilight and night-time. Some studies suggested that bats became nocturnal because of overheating when flying in daylight. This is because--in contrast to feathered wings of birds--dark and naked wing membranes of bats efficiently absorb short-wave solar radiation. We hypothesized that bats face elevated flight costs during daylight flights, since we expected them to alter wing-beat kinematics to reduce heat load by solar radiation. To test this assumption, we measured metabolic rate and body temperature during short flights in the tropical short-tailed fruit bat Carollia perspicillata at night and during the day. Core body temperature of flying bats differed by no more than 2°C between night and daytime flights, whereas mass-specific CO(2) production rates were higher by 15 per cent during daytime. We conclude that increased flight costs only render diurnal bat flights profitable when the relative energy gain during daytime is high and risk of predation is low. Ancestral bats possibly have evolved dark-skinned wing membranes to reduce nocturnal predation, but a low degree of reflectance of wing membranes made them also prone to overheating and elevated energy costs during daylight flights. In consequence, bats may have become trapped in the darkness of the night once dark-skinned wing membranes had evolved.  相似文献   

15.
White-nose syndrome (WNS) has caused alarming declines of North American bat populations in the 5 years since its discovery. Affected bats appear to starve during hibernation, possibly because of disruption of normal cycles of torpor and arousal. The importance of hydration state and evaporative water loss (EWL) for influencing the duration of torpor bouts in hibernating mammals recently led to "the dehydration hypothesis," that cutaneous infection of the wing membranes of bats with the fungus Geomyces destructans causes dehydration which in turn, increases arousal frequency during hibernation. This hypothesis predicts that uninfected individuals of species most susceptible to WNS, like little brown bats (Myotis lucifugus), exhibit high rates of EWL compared to less susceptible species. We tested the feasibility of this prediction using data from the literature and new data quantifying EWL in Natterer's bats (Myotis nattereri), a species that is, like other European bats, sympatric with G. destructans but does not appear to suffer significant mortality from WNS. We found that little brown bats exhibited significantly higher rates of normothermic EWL than did other bat species for which comparable EWL data are available. We also found that Natterer's bats exhibited significantly lower rates of EWL, in both wet and dry air, compared with values predicted for little brown bats exposed to identical relative humidity (RH). We used a population model to show that the increase in EWL required to cause the pattern of mortality observed for WNS-affected little brown bats was small, equivalent to a solitary bat hibernating exposed to RH of ~95%, or clusters hibernating in ~87% RH, as opposed to typical near-saturation conditions. Both of these results suggest the dehydration hypothesis is plausible and worth pursuing as a possible explanation for mortality of bats from WNS.  相似文献   

16.
Pretreatment with mild heat shock is known to protect cells from severe stress (acquired thermotolerance). Here we addressed the mechanism of this phenomenon by using primary human fibroblasts. Severe heat shock (45 degrees C, 75 min) of the fibroblasts caused cell death displaying morphological characteristics of apoptosis; however, it was caspase independent. This cell death process was accompanied by strong activation of Akt, extracellular signal-regulated kinase 1 (ERK1) and ERK2, p38, and c-Jun N-terminal (JNK) kinases. Suppression of Akt or ERK1 and -2 kinases increased cell thermosensitivity. In contrast, suppression of stress kinase JNK rendered cells thermoresistant. Development of thermotolerance was not associated with Akt or ERK1 and -2 regulation, and inhibition of these kinases did not reduce acquired thermotolerance. On the other hand, acquired tolerance to severe heat shock was associated with downregulation of JNK. Using an antisense-RNA approach, we found that accumulation of the heat shock protein Hsp72 is necessary for JNK downregulation and is critical for thermotolerance. The capability of naive cells to withstand moderate heat treatment also appears to be dependent on the accumulation of Hsp72 induced by this stress. Indeed, exposure to 45 degrees C for 45 min caused only transient JNK activation and was nonlethal, while prevention of Hsp72 accumulation prolonged JNK activation and led to massive cell death. We also found that JNK activation by UV irradiation, interleukin-1, or tumor necrosis factor was suppressed in thermotolerant cells and that Hsp72 accumulation was responsible for this effect. Hsp72-mediated suppression of JNK is therefore critical for acquired thermotolerance and may play a role in tolerance to other stresses.  相似文献   

17.
Patterns of offspring development reflect the availability of energy and nutrients, limitations on an individual’s capacity to use available resources, and tradeoffs between the use of nutrients to support current metabolic demands and tissue growth. To determine if the long period of offspring dependency in bats is associated with the need for an advanced state of tissue maturation prior to flight, we examined body composition during postnatal growth in the big brown bat, Eptesicus fuscus. Despite their large size at birth (22% of maternal mass), newborn bats are relatively immature, containing 82% body water in fat-free mass. However, the total body water content of newborn bat pups decreases to near-adult levels in advance of weaning, while concentrations of total body fat and protein exceed adult values. In contrast to many other mammals, postnatal growth of bat pups was characterized by relatively stable concentrations of calcium and phosphorus, but declining concentrations of magnesium. These levels remained stable or rebounded in late postnatal development. This casts doubt on the hypothesis that low rates of mineral transfer necessitate an extended lactation period in bats. However, our finding of near-adult body composition at weaning is consistent with the hypothesis that extended lactation in bats is necessary for the young to achieve sufficient tissue maturity to undertake the active flight necessary for independent feeding. In this respect, bats differ from most other mammals but resemble birds that must engage in active flight to achieve nutritional independence.  相似文献   

18.
The Angolan free-tailed bat (Mops condylurus) uses roosts that often exceed 40 degrees C, an ambient temperature (Ta) that is lethal to many microchiropterans. We measured the physiological responses of this species at Ta's from 15 degrees to 45 degrees C. Torpor was commonly employed during the day at the lower Ta, but the bats generally remained euthermic at night, with a mean body temperature (Tb) of 35.2 degrees C. Metabolic rate reflected the pattern of Tb, increasing with falling Ta at night but decreasing during the day. Metabolic rate and evaporative losses were lower in torpid than in euthermic bats. Body temperature increased at each Ta >35 degrees C and was 43 degrees C at Ta of 45 degrees C. At Ta of 40 degrees C bats increased dry thermal conductance and evaporative heat loss compared to lower Ta. At 45 degrees C dry thermal conductance was lower than at 40 degrees C and evaporative heat loss was 132% of metabolic heat production. At high Ta there was only a slight increase in metabolic rate despite the employment of evaporative cooling mechanisms and an increase in Tb. Collectively our results suggest that M. condylurus is well suited to tolerate high Ta, and this may enable it to exploit thermally challenging roost sites and to colonise habitats and exploit food sources where less stressful roosts are limiting.  相似文献   

19.
Binding of activated forms of the proteinase inhibitor alpha2-macroglobulin (alpha2M*) to cell surface-associated GRP78 on 1-LN human prostate cancer cells causes their proliferation. We have now examined the interplay between Akt activation, regulation of apoptosis, the unfolded protein response, and activation of NF-kappaB in alpha2M*-induced proliferation of 1-LN cells. Exposure of cells to alpha2M* (50 pM) induced phosphatidylinositol 3-kinase-dependent activation of Akt by phosphorylation at Thr-308 and Ser-473 with a concomitant 60-80% increase in Akt-associated kinase activity. ERK1/2 and p38 MAPK were also activated, but there was only a marginal effect on JNK activation. Treatment of 1-LN cells with alpha2M* down-regulated apoptosis and promoted NF-kappaB activation as shown by increases of Bcl-2, p-Bad(Ser-136), p-FOXO1(Ser-253), p-GSK3beta(Ser-9), XIAP, NF-kappaB, cyclin D1, GADD45beta, p-ASK1(Ser-83), and TRAF2 in a time of incubation-dependent manner. alpha2M* treatment of 1-LN cells, however, showed no increase in the activation of caspase -3, -9, or -12. Under these conditions, we observed increased unfolded protein response signaling as evidenced by elevated levels of GRP78, IRE1alpha, XBP-1, ATF4, ATF6, p-PERK, p-eIF2alpha, and GADD34 and reduced levels of GADD153. Silencing of GRP78 gene expression by RNAi suppressed activation of Akt(Thr-308), Akt(Ser-473), and IkappaB kinase alpha kinase. The effects of alpha2M* on the NF-kappaB activation, antiapoptotic signaling, unfolded protein response signaling, and proapoptotic signaling were also reversed by this treatment. In conclusion, alpha2M* promotes cellular proliferation of 1-LN prostate cancer cells by activating MAPK and Akt-dependent signaling, down-regulating apoptotic signaling, and activating unfolded protein response signaling.  相似文献   

20.
Undisturbed hibernating Greater horseshoe bats were studied over three winters to find the effect of temperature on arousal frequency, timing of arousals and the selection of a hibernation site. The study showed that temperature is important in all three aspects and the ability to select a temperature zone accurately is an important factor in the survival of hibernation by a bat.
The arousal frequency falls with falling ambient temperature then seems to rise again below 6°C. There is a clear seasonal effect, bats waking up on average once a day at 10.5°C in winter compared with 8.5°C in spring. An arousal frequency of once in six days occurs at 8°C in winter compared with 6°C in spring. This shift of 2°C is compensated for by a shift of 2°C in temperature selection by the bats in relation to the same external climatic temperatures on the day of arousal. It appears that bats may select the temperature zone which, if prolonged, will result in the most advantageous arousal frequency in relation to feeding experiences.
The seasonal effect discovered indicates that inhibition of the arousal process is important in hibernation and a hormone is postulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号