首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 101 毫秒
1.
Insulin-like growth factor-II (IGF-II) mRNAs are subject to site-specific endonucleolytic cleavage in the 3' untranslated region (UTR), rendering an unstable 5' cleavage product containing the coding region and a very stable 3' cleavage product of 1.8 kb consisting of the 3'-UTR sequence and the poly(A) tail. Previously, it was established that two widely separated elements in the 3'-UTR (elements I and II), that can form a duplex structure, are necessary and sufficient for cleavage. To further investigate the sequence and secondary structure requirements for cleavage, we have introduced a number of mutations around the cleavage site and assayed their effects on cleavage. Several recognition determinants involved in the endonucleolytic cleavage of IGF-II mRNAs were identified. Mutational analysis around the cleavage site revealed that cleavage is sequence specific and that the cleavage site must be in a single-stranded conformation to allow efficient cleavage. In addition, we have identified an accessory protein that specifically interacts with a stem-loop structure located 133 to 73 nt upstream of the cleavage site.  相似文献   

2.
The presence of either deoxyguanylyl-(3'----5')-deoxyguanosine (d(G-G] or deoxyadenylyl-(3'----5')-deoxyguanosine (d(A-G] greatly stimulates cleavage of the phage phi 80 cI repressor mediated by the Escherichia coli RecA protein in vitro. No other deoxydinucleoside monophosphate or riboguanylyl-(3'----5')-guanosine (r(G-G] affects the cleavage reaction. Neither the cleavage site of the phi 80 cI repressor nor the requirement for single-stranded DNA and ATP for cleavage is altered by d(G-G). Photoaffinity labeling experiments with 32P-labeled 5'-phosphoryl deoxyguanylyl deoxyguanosine (pd(G-G], which also stimulates cleavage, show that pd(G-G) bound to the repressor under the conditions in which the repressor is cleaved by RecA protein. The binding increases the affinity of the repressor for RecA protein and thus greatly stimulates repressor cleavage. The cleavage reactions of LexA and lambda cI repressors by RecA protein are not affected by d(G-G).  相似文献   

3.
Outside-in signaling of beta(3) integrins induces and requires phosphorylation at tyrosine 747 (Tyr(747)) and tyrosine 759 (Tyr(759)) of the beta(3) subunit, but the mechanism for this requirement is unclear. On the other hand, a key consequence of integrin signaling, cell spreading, is inhibited by calpain cleavage of beta(3) cytoplasmic domain. Here we show that beta(3) tyrosine phosphorylation inhibits calpain cleavage. Mutating both tyrosines to phenylalanine sensitizes beta(3) to calpain cleavage. Furthermore, phosphorylation at Tyr(747) and Tyr(759) of beta(3) in the focal adhesion sites and the leading edge of spreading platelets was differentially regulated. Selective dephosphorylation of Tyr(759) is associated with calpain cleavage at Tyr(759). Thus, one mechanism by which tyrosine phosphorylation promotes integrin signaling and cell spreading is its inhibition of calpain cleavage of the beta(3) cytoplasmic domain.  相似文献   

4.
The fate of terminal (nonreducing) alpha-D-glucopyranosyluronic groups under reductive cleavage conditions was investigated by using the Klebsiella K2 (strain NCTC-418) capsular polysaccharide. Treatment of the fully methylated polysaccharide (1) with triethylsilane and a mixture of trimethylsilyl methanesulfonate (Me3SiOSO2CH3) and boron trifluoride etherate (BF3.Et2O) as the catalyst, resulted in complete cleavage of all glycosidic linkages to yield the expected products, namely 3-O-acetyl-1,5-anhydro-2,4,6-tri-O-methyl-D-glucitol (2), 3,4-di-O-acetyl-1,5-anhydro-2,6-di-O-methyl-D-mannitol (3), 4-O-acetyl-1,5-anhydro-2,3,6-tri-O-methyl-D-glucitol (4), and methyl 2,6-anhydro-3,4,5-tri-O-methyl-L-gulonate. Treatment of 1 with trimethylsilyl trifluoromethanesulfonate (Me3SiOSO2CF3) as the catalyst resulted in incomplete cleavage of the glycosidic linkage of the methylated D-glucopyranosyluronic group, to yield 4-O-acetyl-1,5-anhydro-2,6-di-O-methyl- 3-O-(methyl2,3,4-tri-O-methyl-alpha-D-glucopyranosyluronate )-D-mannitol (9). Reductive cleavage of 1 in the presence of BF3.Et2O resulted in incomplete cleavage of all glycosidic linkages and gave rise to all four dimers (including 9) that could be formed from a tetrasaccharide repeating unit. The proposed structures of these dimers are based upon their composition, as established by chemical ionization mass spectrometry and by the reported structure of the polysaccharide. A small proportion of 1,5-anhydro-2,4,6-tri-O-methyl-3-O-(methyl 2,3,4-tri-O-methyl-alpha-D-glucopyranosyluronate)-D-mannitol (12) was also detected in the products of the BF3.Et2O-catalyzed reductive cleavage. The presence of 12 is chemical evidence for the phase of the tetrasaccharide repeating unit in the polysaccharide. The reductive cleavage of 1 was also accomplished after reduction of its ester groups with lithium aluminum hydride. Complete cleavage of all glycosidic linkages was observed when either Me3SiOSO2CF3 or Me3SiOSO2CH3-BF3.Et2O was used to catalyze reductive cleavage, and anhydroalditols 2, 3, 4, and 6-O-acetyl-1,5-anhydro-2,3,4-tri-O-methyl-D-glucitol were produced, as expected.  相似文献   

5.
VP-16 (etoposide) has recently been shown to induce topoisomerase II (TOP2)-mediated DNA cleavage within the mixed lineage leukemia (MLL) breakpoint cluster region (bcr), suggesting a role of TOP2 in MLL gene rearrangement. In our current studies, we have compared the induction of DNA cleavage within the MLL bcr in different cell lines after treatment with various anticancer drugs. All anticancer drugs tested including VP-16 (a TOP2-directed drug), camptothecin (a topoisomerase I-directed drug), 5-fluorouracil and methotrexate (antimetabolites), and vinblastine (a microtubule inhibitor) induced the same site-specific cleavage within the MLL bcr. This cleavage was shown to be nuclease-mediated but not TOP2-mediated by the following observations: 1) drug-induced cleavage within the MLL bcr was not protein-linked; 2) unlike TOP2-mediated cleavage, drug-induced DNA cleavage within the MLL bcr was kinetically slow and coincided with the formation of the apoptotic nucleosomal DNA ladder; 3) drug-induced cleavage within the MLL bcr was unaffected in cells with reduced nuclear TOP2; and 4) drug-induced cleavage within the MLL bcr was abolished by the caspase inhibitor, Z-Asp(OCH(3))-Glu(OCH(3))-Val-Asp(OCH(3))-FMK. The possibility that an apoptotic nuclease may be involved in cleavage of the MLL bcr and MLL gene translocation is discussed.  相似文献   

6.
Caliciviruses are single-stranded RNA viruses that cause a wide range of diseases in both humans and animals, but little is known about the regulation of cellular translation during infection. We used two distinct calicivirus strains, MD145-12 (genus Norovirus) and feline calicivirus (FCV) (genus Vesivirus), to investigate potential strategies used by the caliciviruses to inhibit cellular translation. Recombinant 3C-like proteinases (r3CL(pro)) from norovirus and FCV were found to cleave poly(A)-binding protein (PABP) in the absence of other viral proteins. The norovirus r3CL(pro) PABP cleavage products were indistinguishable from those generated by poliovirus (PV) 3C(pro) cleavage, while the FCV r3CL(pro) products differed due to cleavage at an alternate cleavage site 24 amino acids downstream of one of the PV 3C(pro) cleavage sites. All cleavages by calicivirus or PV proteases separated the C-terminal domain of PABP that binds translation factors eIF4B and eRF3 from the N-terminal RNA-binding domain of PABP. The effect of PABP cleavage by the norovirus r3CL(pro) was analyzed in HeLa cell translation extracts, and the presence of r3CL(pro) inhibited translation of both endogenous and exogenous mRNAs. Translation inhibition was poly(A) dependent, and replenishment of the extracts with PABP restored translation. Analysis of FCV-infected feline kidney cells showed that the levels of de novo cellular protein synthesis decreased over time as virus-specific proteins accumulated, and cleavage of PABP occurred in virus-infected cells. Our data indicate that the calicivirus 3CL(pro), like PV 3C(pro), mediates the cleavage of PABP as part of its strategy to inhibit cellular translation. PABP cleavage may be a common mechanism among certain virus families to manipulate cellular translation.  相似文献   

7.
Poliovirus (PV) causes a rapid and drastic inhibition of host cell cap-dependent protein synthesis during infection while preferentially allowing cap-independent translation of its own genomic RNA via an internal ribosome entry site element. Inhibition of cap-dependent translation is partly mediated by cleavage of an essential translation initiation factor, eIF4GI, during PV infection. In addition to cleavage of eIF4GI, cleavage of eIF4GII and poly(A)-binding protein (PABP) has been recently proposed to contribute to complete host translation shutoff; however, the relative importance of eIF4GII and PABP cleavage has not been determined. At times when cap-dependent translation is first blocked during infection, only 25 to 35% of the total cellular PABP is cleaved; therefore, we hypothesized that the pool of PABP associated with polysomes may be preferentially targeted by viral proteases. We have investigated what cleavage products of PABP are produced in vivo and the substrate determinants for cleavage of PABP by 2A protease (2A(pro)) or 3C protease (3C(pro)). Our results show that PABP in ribosome-enriched fractions is preferentially cleaved in vitro and in vivo compared to PABP in other fractions. Furthermore, we have identified four N-terminal PABP cleavage products produced during PV infection and have shown that viral 3C protease generates three of the four cleavage products. Also, 3C(pro) is more efficient in cleaving PABP in ribosome-enriched fractions than 2A(pro) in vitro. In addition, binding of PABP to poly(A) RNA stimulates 3C(pro)-mediated cleavage and inhibits 2A(pro)-mediated cleavage. These results suggest that 3C(pro) plays a major role in processing PABP during virus infection and that the interaction of PABP with translation initiation factors, ribosomes, or poly(A) RNA may promote its cleavage by viral 2A and 3C proteases.  相似文献   

8.
We previously demonstrated caspase-mediated cleavage of p130cas during apoptosis and identified two caspase-3 cleavage sites [1]. In this study, we investigated the phosphorylation-dependent cleavage of p130cas in apoptotic Rat-1 fibroblast cells. Lysophosphatidic acid and fibronectin induced p130cas phosphorylation, which in turn resulted in resistance to caspase-mediated cleavage. Alternatively, dephosphorylation by calf intestinal alkaline phosphatase, PP1, and LAR stimulated cleavage of p130cas by caspase-3, generating a 31-kDa fragment. During apoptosis, p130cas dephosphorylation seems to precede its cleavage. The phosphorylation of tyrosine and serine residues immediately adjacent to the two cleavage sites (DVPD(416) and DSPD(748)) strongly affected p130cas cleavage by caspase-3, both in vitro and in vivo. Furthermore, the generation of the 31-kDa cleavage fragment was strongly regulated by phosphorylation of a tyrosine residue at position 751 (DSPD(748) and GQY(751)). Our results collectively suggest that degradation of p130cas during apoptosis is modulated in a phosphorylation-dependent manner.  相似文献   

9.
The determinants of cleavage site specificity of the yellow fever virus (YF) NS3 proteinase for its 2B/3 cleavage site have been studied by using site-directed mutagenesis. Mutations at residues within the GARR decreases S sequence were tested for effects on cis cleavage of an NS2B-3(181) polyprotein during cell-free translation. At the P1 position, only the conservative substitution R-->K exhibited significant levels of cleavage. Conservative and nonconservative substitutions were tolerated at the P1' and P2 positions, resulting in intermediate levels of cleavage. Substitutions at the P3 and P4 positions had no effects on cleavage efficiency in the cell-free assay. Processing at other dibasic sites was studied by using transient expression of a sig2A-5(356) polyprotein. Cleavage at the 2B/3 site was not required for processing at downstream sites. However, increased accumulation of high-molecular-weight viral polyproteins was generally observed for mutations which reduced cleavage efficiency at the 2B/3 site. Several mutations were also tested for their effects on viral replication. Virus was not recovered from substitutions which blocked or substantially reduced cleavage in the cell-free assay, suggesting that efficient cleavage at the 2B/3 site is required for flavivirus replication.  相似文献   

10.
Cleavage of eukaryotic translation initiation factor 4GI (eIF4GI) by viral 2A protease (2Apro) has been proposed to cause severe translation inhibition in poliovirus-infected cells. However, infections containing 1 mM guanidine-HCl result in eIF4GI cleavage but only partial translation shutoff, indicating eIF4GI cleavage is insufficient for drastic translation inhibition. Viral 3C protease (3Cpro) cleaves poly(A)-binding protein (PABP) and removes the C-terminal domain (CTD) that interacts with several translation factors. In HeLa cell translation extracts that exhibit cap-poly(A) synergy, partial cleavage of PABP by 3Cpro inhibited translation of endogenous mRNAs and reporter RNA as effectively as complete cleavage of eIF4GI and eIF4GII by 2Apro. 3Cpro-mediated translation inhibition was poly(A) dependent, and addition of PABP to extracts restored translation. Expression of 3Cpro in HeLa cells resulted in partial PABP cleavage and similar inhibition of translation. PABP cleavage did not affect eIF4GI-PABP interactions, and the results of kinetics experiments suggest that 3Cpro might inhibit late steps in translation or ribosome recycling. The data illustrate the importance of the CTD of PABP in poly(A)-dependent translation in mammalian cells. We propose that enteroviruses use a dual strategy for host translation shutoff, requiring cleavage of PABP by 3Cpro and of eIF4G by 2Apro.  相似文献   

11.
12.
Human insulin-like growth factor II (IGF-II) mRNA can be cleaved at a specific site in its 4 kb long 3′-UTR. This yields a stable 3′ cleavage product of 1.8 kb consisting of a 3′-UTR and a poly(A) tail and an unstable 5′ cleavage product containing the IGF-II coding region. After cleavage, the 5′ cleavage product is targeted to rapid degradation and consequently is no longer involved in IGF-II protein synthesis. Cleavage is therefore thought to provide an additional way to control IGF-II gene expression. In this paper the kinetics and the efficiency of cleavage of IGF-II mRNAs are examined. The cleavage efficiency of IGF-II mRNAs carrying four different leaders (L1–L4) is enhanced in the highly structured leaders L1 and L3. Additionally, under standard cell culture conditions cleavage is a slow process that only plays a limited role in destabilisation and translation of the IGF-II mRNAs. However, in human Hep3B cells and CaCo2 cells which express IGF-II endogenously, cleavage is upregulated 3–5-fold at high cell densities. Regulated endonucleolytic cleavage of IGF-II mRNAs is restricted to cells in which IGF-II expression is related to specific cell processes.  相似文献   

13.
Kawai S  Nakagawa M  Ohashi H 《FEBS letters》1999,446(2-3):355-358
The novel cleavage products, 2,3-dihydroxy-1-(4-ethoxy-3-methoxyphenyl)-1-formyloxypropane (II) and 1-(4-ethoxy-3-methoxyphenyl)-1,2,3-trihydroxypropane-2,3-cyclic carbonate (III) were identified as products of a non-phenolic beta-O-4 lignin model dimer, 1,3-dihydroxy-2-(2,6-dimethoxylphenoxy)-1-(4-ethoxy-3-methoxypheny l)propane (I), by a Trametes versicolor laccase in the presence of 1-hydroxybenzotriazole (1-HBT). An isotopic experiment with a 13C-labeled lignin model dimer, 1,3-dihydroxy-2-(2,6-[U-ring-13C] dimethoxyphenoxy)-1-(4-ethoxy-3-methoxyphenyl)propane (I-13C) indicated that the formyl and carbonate carbons of products II and III were derived from the beta-phenoxy group of beta-O-4 lignin model dimer I as aromatic ring cleavage fragments. These results show that the laccase-1-HBT couple could catalyze the aromatic ring cleavage of non-phenolic beta-O-4 lignin model dimer in addition to the beta-ether cleavage, Calpha-Cbeta cleavage, and Calpha-oxidation.  相似文献   

14.
The cleavage signal transferred to the future cleavage cortex during anaphase has been proposed as "cleavage stimulus," but no signal has proved to induce cleavage furrows. The local Ca2+ transient along the cleavage furrow has been reported, but the Ca2+ source has remained unknown. To address these questions, we studied functions of Ca2+ stores in dividing newt eggs and found that microinjection of the Ca2+ store-enriched microsome fraction to the dividing newt egg induced a local extra-cleavage furrow at the injection site in 64-67% of the injected newt eggs while coinjection with inositol 1,4, 5-trisphosphate receptor (IP(3)R) antagonists heparin or anti-type 1-IP(3)R antibody clearly suppressed this induction (5 and 11% in induction rates, respectively). Injection of cerebellar microsomes from the type 1-IP(3)R-deficient mice induced extracleavage furrows albeit at a low rate (19%). Our observations strongly suggest that Ca2+ stores with IP(3)R induce and position a cleavage furrow via IP(3)-induced Ca2+ release (IICR) as Ca(2+)-releasing machinery and putative cleavage stimulus itself.  相似文献   

15.
已知丙型肝炎病毒(hepatitis C virus,HCV)可通过其蛋白酶NS3/4A切割线粒体抗病毒信号蛋白(mitochondrial antiviral signaling protein,MAVS)来逃逸天然免疫识别,但尚不清楚其切割动力学及切割在抑制干扰素中的作用。本研究旨在细胞模型中探讨HCV感染过程中病毒复制建立及病毒NS3/4A切割MAVS的动态过程,探究NS3/4A切割MAVS对病毒逃逸宿主天然免疫建立感染的贡献。首先构建基于绿色荧光蛋白(green fluorescent protein,GFP)的MAVS切割报告系统(GFP-NLS-MAVS-TM462),用 HCV Jc1-Gluc 感染Huh7.5/GFP-NLS-MAVS-TM462细胞。结果显示,病毒复制早期MAVS切割效率较低;NS3/4A高效切割MAVS发生于HCV复制晚期,且其切割效率与NS3蛋白水平相关。利用带有GFP ypet的HCV报告病毒Jc1-378-1感染Huh7.5/RFP-NLS-MAVS-TM462细胞,在单细胞水平观察HCV感染阳性细胞中MAVS被切割情况,发现HCV复制细胞中仅部分细胞MAVS被切割。进一步研究发现,不同基因型NS3/4A切割MAVS的效率仅与NS3表达水平相关。以上结果提示,HCV蛋白酶NS3/4A切割MAVS依赖NS3/4A蛋白在病毒复制过程中的累积,对在病毒复制早期逃逸宿主天然免疫建立感染可能无显著贡献。  相似文献   

16.
F Liu  S Altman 《Nucleic acids research》1996,24(14):2690-2696
M1 RNA, the catalytic RNA subunit of RNase P from Escherichia coli, has been covalently linked at its 3' terminus to oligonucleotides (guide sequences) that guide the enzyme to target RNAs through hybridization with the target sequences. These constructs (M1GS RNAs) have been used to determine some minimal features of model substrates. As few as 3 bp on the 3' side of the site of cleavage in a substrate complex and 1 nt on the 5' side are required for cleavage to occur. The cytosines in the 3' terminal CCA sequence of the model substrates are important for cleavage efficiency but not cleavage site selection. A purine (base-paired or not) at the 3' side of the cleavage site is important both for cleavage site selection and efficiency. M1GS RNAs provide both a simple system for characterization of the reaction governed by M1 RNA and a tool for gene therapy.  相似文献   

17.
The presenilin 1 (PS1) and presenilin 2 (PS2) proteins are necessary for proteolytic cleavage of the amyloid precursor protein (APP) within its transmembrane domain. One of these cleavage events (termed gamma-secretase) generates the C-terminal end of the Abeta-peptide by proteolysis near residue 710 or 712 of APP(770). Another event (termed gamma-like or epsilon-secretase cleavage) cleaves near residue 721 at approximately 2-5 residues inside the cytoplasmic membrane boundary to generate a series of stable, C-terminal APP fragments. This latter cleavage is analogous to S3-cleavage of Notch. We report here that specific mutations in the N terminus, loop, or C terminus of PS1 all increase the production of Abeta(42) but cause inhibition of both epsilon-secretase cleavage of APP and S3-cleavage of Notch. These data support the hypothesis that epsilon-cleavage of APP and S3-cleavage of Notch are similar events. They also argue that, although both the gamma-site and the epsilon-site cleavage of APP are presenilin-dependent, they are likely to be independent catalytic events.  相似文献   

18.
Human interleukin-2 (hIL-2) was produced as a recombinant fusion protein (G3.IL-2/HF) consisting of three tandem-arranged human glucagon molecules (G3) and hIL-2. For the recovery of hIL-2, a factor Xa (FXa) cleavage sequence was introduced next to the N-terminus of hIL-2. Cleavage efficiency on this recombinant protein construct was very low because its recognition sequence was sterically hindered within the G3.IL-2/HF molecule and hence FXa access to the cleavage site was insufficient. We therefore introduced various synthetic oligopeptides upstream from the FXa cleavage site as a means to change substrate conformation and thereby increase cleavage efficiency. Among these oligopeptides, acidic or nucleophilic constructs were the most effective for the FXa-mediated cleavage of the fusion protein. In addition, insertion of various oligopeptides into the G3.IL-2/HF molecule varied the solubility of each construct depending on their physical properties. Consequently, the G3.IL-2/DF construct showed the highest final hIL-2 yields via FXa-mediated removal of the fusion partner. Lastly, we confirmed that cleavage efficiency was greatly increased but native hIL-2 was cleaved internally by non-specific cleavage when the acidic oligopeptide D4 (DDDD) was introduced upstream of the EK cleavage site within G3.IL-2/HE molecule. The G3.IL-2/HE molecule was shown to be an inefficient substrate to EK in a previous report (Biotechnol. Bioprocess Eng. (2000) 5, 13-16).  相似文献   

19.
A method for studying the local inhomogeneities of DNA and its dynamics is proposed. The method is based on the combination of two procedures, splitting the DNA molecules by ultrasound and analysis of DNA fragments obtained by gel electrophoresis. The frequency of cleavage of internucleotide bonds was found to depend on the type of nucleotides forming the bond and on their nearest neighbors. Estimates of cleavage frequencies in each of 16 dinucleotides showed that, in the 5'-d(CpG)-3', 5'-d(CpA)-3', and 5'-d(CpT)-3' dimers, the cleavage occurs considerably more frequently than in the rest, and the frequency of cleavage depends on the nearest neighbors. It was shown that the double-helix cleavage can occur with shifts by several nucleotides. Physical prerequisites were considered that can lead to this pattern of sequence - specific cleavage.  相似文献   

20.
CD44 is a cell surface adhesion molecule for several extracellular matrix components. We previously showed that CD44 expressed in cancer cells is proteolytically cleaved at the ectodomain through membrane-anchored metalloproteases and that CD44 cleavage plays a critical role in cancer cell migration. Therefore, cellular signals that promote the migration and metastatic activity of cancer cells may regulate the CD44 ectodomain cleavage. Here, we demonstrate that the expression of the dominant active mutant of Ha-Ras (Ha-Ras(Val-12)) induces redistribution of CD44 to the newly generated membrane ruffling area and CD44 ectodomain cleavage. The migration assay revealed that the CD44 cleavage contributes to the Ha-Ras(Val-12)-induced migration of NIH3T3 cells on hyaluronate substrate. Treatment with LY294002, an inhibitor for phosphoinositide 3-OH kinase (PI3K), significantly inhibits Ha-Ras(Val-12)-induced CD44 cleavage, whereas that with PD98059, an inhibitor for MEK, does not. The active mutant p110 subunit of PI3K has also been shown to enhance the CD44 cleavage, suggesting that PI3K mediates the Ras-induced CD44 cleavage. Moreover, the expression of dominant negative mutants of Cdc42 and Rac1 inhibits the Ha-Ras(Val-12)-induced CD44 cleavage. These results suggest that Ras > PI3K > Cdc42/Rac1 pathway plays an important role in CD44 cleavage and may provide a novel molecular basis to explain how the activated Ras facilitates cancer cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号