首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The iron-sulfur protein present in the mitochondrial outer membrane has been partially purified from beef kidney cortex mitochondria be means of selective solubilization followed by DEAE-cellulose chromatography. The EPR spectrum of the iron-sulfur protein with g-values at 2.01, 1.94 and 1.89 was well resolved up to 200 K which is unusual for an iron-sulfur protein. Analyses confirmed a center with two iron and two labile sulfur atoms in the protein. By measuring the effect of oxidation-reduction potential on the EPR signal amplitude, midpoint potentials at pH 7.2 were determined both for the purified ironsulfur protein, +75 (±5) mV, and in prepared mitochondrial outer membrane, +62 (±6) mV. At pH 8.2 slightly lower values were indicated, +62 and 52 mV, respectively. The oxidation-reduction equilibrium involved a one electron transfer. A functional relationship to the rotenone-insensitive NADH-cytochrome c oxidoreductase in the mitochondrial outer membrane is suggested. Both this activity and the iron-sulfur center were sensitive to acidities slightly below pH 7 in contrast to the iron-sulfur centers of the inner membrane.  相似文献   

2.
On addition of NADH or NADPH to the mitochondrial outer membrane fraction from rat liver, an electron paramagnetic resonance (EPR) spectrum is observed which is characteristic of a protein, containing an iron-sulfur center. The g-values are 2.01, 1.94 and 1.89. Quantitation of the EPR absorption and analysis of the acid labile sulfur content suggest that the paramagnetic center contains two iron and two acid labile sulfur atoms. The concentration of the center in the outer membrane is about 0.5 nmoles/mg protein.  相似文献   

3.
The ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complex from Paracoccus denitrificans exhibits a thermodynamically stable ubisemiquinone radical detectable by EPR spectroscopy. The radical is centered at g = 2.004, is sensitive to antimycin, and has a midpoint potential at pH 8.5 of +42 mV. These properties are very similar to those of the stable ubisemiquinone (Qi) previously characterized in the cytochrome bc1 complexes of mitochondria. The micro-environment of the Rieske iron-sulfur cluster in the Paracoccus cytochrome bc1 complex changes in parallel with the redox state of the ubiquinone pool. This change is manifested as shifts in the gx, gy, and gz values of the iron-sulfur cluster EPR signal from 1.80, 1.89, and 2.02 to 1.76, 1.90, and 2.03, respectively, as ubiquinone is reduced to ubiquinol. The spectral shift is accompanied by a broadening of the signal and follows a two electron reduction curve, with a midpoint potential at pH 8.5 of +30 mV. A hydroxy analogue of ubiquinone, UHDBT, which inhibits respiration in the cytochrome bc1 complex, shifts the gx, gy, and gz values of the iron-sulfur cluster EPR signal to 1.78, 1.89, and 2.03, respectively, and raises the midpoint potential of the iron-sulfur cluster at pH 7.5 from +265 to +320 mV. These changes in the micro-environment of the Paracoccus Rieske iron-sulfur cluster are like those elicited in mitochondria. These results indicate that the cytochrome bc1 complex of P. denitrificans has a binding site for ubisemiquinone and that this site confers properties on the bound ubisemiquinone similar to those in mitochondria. In addition, the line shape of the Rieske iron-sulfur cluster changes in response to the oxidation-reduction status of ubiquinone, and the midpoint of the iron-sulfur cluster increases in the presence of a hydroxyquinone analogue of ubiquinone. The latter results are also similar to those observed in the mitochondrial cytochrome bc1 complex. However, unlike the mitochondrial complexes, which contain eight to 11 polypeptides and are thought to contain distinct quinone binding proteins, the Paracoccus cytochrome bc1 complex contains only three polypeptide subunits, cytochromes b, c1, and iron-sulfur protein. The ubisemiquinone binding site and the site at which ubiquinone and/or ubiquinol bind to affect the Rieske iron-sulfur cluster in Paracoccus thus exist in the absence of any distinct quinone binding proteins and must be composed of domains contributed by the cytochromes and/or iron-sulfur protein.  相似文献   

4.
The iron-sulfur proteins of the green photosynthetic bacterium Chlorobium have been characterized by oxidation-reduction potentiometry in conjunction with low-temperature electron paramagnetic resonance spectroscopy. Chlorobium ferredoxin was the only iron-sulfur protein detected in the soluble fraction; no high-potential iron-sulfur protein was observed. In addition, high-potential iron-sulfur protein was not detected in the chromatophores. Four chromatophore-bound iron-sulfur proteins were detected. One is the "Rieske" type iron-sulfur protein with a g-value of 1.90 in the reduced state; the protein has a midpoint potential of + 160 mV (pH 7.0), and this potential is pH dependent. Three g=1.94 chromatophore-bound iron-sulfur proteins were observed, with midpoint potentials of -25, -175, and about -550 mV. A possible role for the latter iron-sulfur protein in the primary photochemical reaction in Chlorobium is considered.  相似文献   

5.
The soluble (cytoplasmic plus periplasmic) Ni/Fe-S/Se-containing hydrogenase from Desulfovibrio baculatus (DSM 1743) was purified from cells grown in an 57Fe-enriched medium, and its iron-sulfur centers were extensively characterized by M?ssbauer and EPR spectroscopies. The data analysis excludes the presence of a [3Fe-4S] center, either in the native (as isolated) or in the hydrogen-reduced states. In the native state, the non-heme iron atoms are arranged as two diamagnetic [4Fe-4S]2+ centers. Upon reduction, these two centers exhibit distinct and unusual M?ssbauer spectroscopic parameters. The centers were found to have similar mid-point potentials (approximately -315 mV) as determined by oxidation-reduction titratins followed by EPR.  相似文献   

6.
David B. Knaff  Richard Malkin 《BBA》1976,430(2):244-252
The iron-sulfur proteins of the green photosynthetic bacterium Chlorobium have been characterized by oxidation-reduction potentiometry in conjunction with low-temperature electron paramagnetic resonance spectroscopy. Chlorobium ferredoxin was the only iron-sulfur protein detected in the soluble fraction; no high-potential iron-sulfur protein was observed. In addition, high-potential iron-sulfur protein was not detected in the chromatophores. Four chromatophore-bound iron-sulfur proteins were detected. One is the “Rieske” type iron-sulfur protein with a g-value of 1.90 in the reduced state; the protein has a midpoint potential of +160 mV (pH 7.0), and this potential is pH dependent. Three g = 1.94 chromatophore-bound iron-sulfur proteins were observed, with midpoint potentials of ?25, ?175, and about ?550 mV. A possible role for the latter iron-sulfur protein in the primary photochemical reaction in Chlorobium is considered.  相似文献   

7.
A new bound iron-sulfur protein has been identified in spinach chloroplasts. In the reduced form, this protein has an electron paramagnetic resonance spectrum at 20°K with g-values of 2.02 and 1.90. The midpoint oxidation-reduction potential (Em) of the protein, which is pH-independent, is +290 mV. These properties are similar to those of the “Rieske” g = 1.90 iron-sulfur protein of mitochondrial Complex III.  相似文献   

8.
The "Triton Subchloroplast Fraction I" or "TSF-I particles" can be further fractionated into a cytochrome fraction and a P-700-containing fraction essentially free of cytochromes. The cytochrome complex contains cytochromes f and b6 in approx. equimolar amounts, and, in addition, also plastocyanin and one iron-sulfur protein, all in the bound state. Bound plastocyanin was characterized by EPR spectroscopy. The EPR spectrum of the bound iron-sulfur protein resembles that previously detected in Phostosystem I particles under highly reducing conditions at lower than -560 mV. The redox potential of P-700 in the cytochrome-free high-P-700 particles was measured to be +468 mV; those of cytochromes f and b6 are +345 and -140 mV, respectively. Among the four components present in the complex, only cytochrome f can be coupled to a Photosystem I particle and undergoes photooxidation. This coupled photooxidation is totoally inhibited by KCN and only partially inhibited by HgCl2. The similarity of the complex containing cytochromes f and b6, plastocyanin, and an iron-sulfur protein to complexes III and IV of the mitochondrial respiratory redox chain and a possible involvement of the complex in cyclic photophosphorylation are noted and discussed.  相似文献   

9.
Two N-1 type iron-sulfur clusters in NADH-ubiquinone oxidoreductase (Complex I, EC 1.6.5.3) were potentiometrically resolved: one was titrated as a component with a midpoint oxidation-reduction potential of -335 mV at pH 8.0, and with an n-value equal to one; the other as an extremely low midpoint potential component (Em 8.0 less than -500 mV). These two clusters are tentatively assigned to N-1b and N-1a, respectively. Cluster N-1b is completely reducible with NADH and has a spin concentration of about 0.8/FMN. Its EPR spectrum can be simulated as a single rhombic component with principal g values of 2.019, 1.937, and 1.922, which correspond to the Center 1 reported earlier by Orme-Johnson, N. R., Hansen, R. E., and Beinert, H. (1974) J. Biol. Chem. 249, 1922-1927. At extremely low oxidation-reduction potentials (less than -450 mV), additional EPR signals emerge with apparent g values of gz = 2.03, gy = 1.95, and gx = 1.91, which we assign to cluster N-1a. It is difficult, however, to simulate the detailed spectral line shape of this component as a single rhombic component, suggesting some degree of protein modification or interaction with a neighboring oxidation-reduction component. EPR spectra of soluble NADH dehydrogenase, containing 5-6 g atoms of non-heme iron and 5-6 mol of acid-labile sulfide/mol of FMN, were examined. Signals from at least two iron-sulfur species could be distinguished in the NADH-reduced form: one of an N-1b type spectrum; the other of a spectrum with g values of 2.045, 1.95, and 1.87 (total of about 0.5 spin equivalents/FMN). This is the first example of an N-1 type signal detected in isolated soluble NADH dehydrogenase.  相似文献   

10.
R Cammack  J H Weiner 《Biochemistry》1990,29(36):8410-8416
The electron transfer centers in dimethyl sulfoxide reductase were examined by EPR spectroscopy in membranes of the overproducing Escherichia coli strain HB101/pDMS159, and in purified enzyme. Iron-sulfur clusters of the [4Fe-4S] type and a molybdenum center were detected in the protein, which comprises three different subunits: DmsA, -B, and -C. The intensity of the reduced iron-sulfur clusters corresponded to 3.82 +/- 0.5 spins per molecule. The dithionite-reduced clusters were reoxidized by DMSO or TMAO. The enzyme, as prepared, showed a spectrum of Mo(V), which resembles the high-pH form of E. coli nitrate reductase. The Mo(V) detected by EPR was absent from a mutant which does not assemble the molybdenum cofactor. In these cases, the levels of EPR-detectable iron-sulfur clusters in the cells were increased. Extracts from HB101/pDMS159 enriched in DmsA showed more Mo(V) signals and considerably less iron-sulfur. These results are in agreement with predictions from amino acid sequence comparisons, that the molybdenum center is located in DmsA, while four iron-sulfur clusters are in DmsB. The midpoint potentials of the molybdenum and iron-sulfur clusters in the various preparations were determined by mediator titrations. The iron-sulfur signals could be best fitted by four clusters, with midpoint potentials spread between -50 and -330 mV. The midpoint potentials of the iron-sulfur clusters and Mo(V) species were pH dependent. In addition, all potentials became less negative in the presence of the detergent Triton X-100. Observation of relaxation enhancement of the Mo(V) species by the reduced [4Fe-4S] clusters indicated that the centers are in proximity within the protein.  相似文献   

11.
The physicochemical properties of the iron-sulfur clusters present in the NADH:ubiquinone oxidoreductase of Paracoccus denitrificans have been examined in the cytoplasmic membrane particles by redox potentiometry and EPR spectroscopy. Analogous to the iron-sulfur clusters present in the mitochondrial NADH: ubiquinone oxidoreductase, we have found two binuclear and three tetranuclear EPR detectable iron-sulfur clusters, namely, N-1a, N-1b, N-2, N-3, and N-4. In the bacterial system, the two binuclear clusters differ in line shape and in Em values; the cluster with more rhombic symmetry (gx,y,z = 1.918, 1.937, 2.029) has the Em7.0 value of -150 while the almost axial one (gx,y,z = 1.929, 1.941, 2.019) has Em7.0 of -270 mV. The Em of the former cluster is pH dependent (-60 mV/pH) as in the case of mammalian N-1a while the latter is pH independent as is the mammalian cluster N-1b. The pH-dependent P. denitrificans [2Fe-2S] cluster, which we have labeled N-1a, has an Em7.0 as high as that of N-2, in contrast to the mammalian N-1a. Thus N-1a is reducible with a physiological reductant, NADH in this bacterial system. The Em of the cluster N-2 is also pH dependent (Em7.0 = -130 mV) with a pK value near 7.7. The Em values of all other clusters exhibit no pH dependence as in the case of their mammalian counterparts. We have found that the cluster N-1a is the most labile component among the five iron-sulfur clusters and may give rise to variable relative spin concentrations and extremely low Em values due to the facile modifications of the microenvironment of the cluster. The P. denitrificans NADH:ubiquinone oxidoreductase provides a unique and useful site I model system where redox composition is similar to the mitochondrial enzyme but with fewer numbers of polypeptides (Yagi, T. (1986) Arch. Biochem. Biophys. 250, 302-311).  相似文献   

12.
The redox properties of the iron-sulfur centers of the two nitrate reductases from Escherichia coli have been investigated by EPR spectroscopy. A detailed study of nitrate reductase A performed in the range +200 mV to -500 mV shows that the four iron-sulfur centers of the enzyme belong to two classes with markedly different redox potentials. The high-potential group comprises a [3Fe-4S] and a [4Fe-4S] cluster whose midpoint potentials are +60 mV and +80 mV, respectively. Although these centers are magnetically isolated, they are coupled by a significant anticooperative redox interaction of about 50 mV. The [4Fe-4S]1+ center occurs in two different conformations as shown by its composite EPR spectrum. The low-potential group contains two [4Fe-4S] clusters with more typical redox potentials (-200 mV and -400 mV). In the fully reduced state, the three [4Fe-4S]1+ centers are magnetically coupled, leading to a broad featureless spectrum. The redox behaviour of the high-pH EPR signal given by the molybdenum cofactor was also studied. The iron-sulfur centers of the second nitrate reductase of E. coli, nitrate reductase Z, exhibit essentially the same characteristics than those of nitrate reductase A, except that the midpoint potentials of the high-potential centers appear negatively shifted by about 100 mV. From the comparison between the redox centers of nitrate reductase and of dimethylsulfoxide reductase, a correspondence between the high-potential iron-sulfur clusters of the two enzymes can be proposed.  相似文献   

13.
A soluble enzymically active cytochrome b.c1 complex has been purified from baker's yeast mitochondria by a procedure involving solubilization in cholate, differential fractionation with ammonium sulfate, and ultracentrifugation. The resulting particle is free of both cytochrome c oxidase and succinate dehydrogenase activities. The complex contains cytochromes b and c1 in a ratio of 2:1 and quinone and iron-sulfur protein in amounts roughly stoichiometric with cytochrome c1. EPR spectroscopy has shown the iron-sulfur protein to be present mainly as the Rieske protein. EPR spectroscopy also shows a heterogeneity in the cytochrome b population with resonances appearing at g = 3.60 (cytochrome bK) and g = 3.76 (cytochrome bT). A third EPR resonance appearing in the region associated with low spin ferric hemes (g = 3.49) is assigned to cytochrome c1. Anaerobic titration of the complex with dithionite confirmed the heterogeneity in the cytochrome b population and demonstrated that the oxidation-reduction potential of the iron-sulfur protein is approximately 30 mV more positive than cytochrome c1. An intense EPR signal assigned to the coenzyme Q free radical appeared midway in the reductive titration; this signal disappeared toward the end of the titration. A conformational change in the iron-sulfur protein attendant on reduction of a low potential species was noted.  相似文献   

14.
An 88-kDa corrinoid/iron-sulfur protein (C/Fe-SP) is the methyl carrier protein in the acetyl-CoA pathway of Clostridium thermoaceticum. In previous studies, it was found that this C/Fe-SP contains (5-methoxybenzimidazolyl)cobamide and a [4Fe-4S]2+/1+ center, both of which undergo redox cycling during catalysis, and that the benzimidazole base is uncoordinated to the cobalt (base off) in all three redox states, 3+, 2+, and 1+ [Ragsdale, S.W., Lindahl, P.A., & Münck, E. (1987) J. Biol. Chem. 262, 14289-14297]. In this paper, we have determined the midpoint reduction potentials for the metal centers in this C/Fe-SP by electron paramagnetic resonance and UV-visible spectroelectrochemical methods. The midpoint reduction potentials for the Co3+/2+ and the Co2+/1 couples of the corrinoid were found to be 300-350 and -504 mV (+/- 3 mV) in Tris-HCl at pH 7.6, respectively. We also removed the (5-methoxybenzimidazolyl)cobamide cofactor from the C/Fe-SP and determined that its Co3+/2+ reduction potential is 207 mV at pH 7.6. The midpoint potential for the [4Fe-4S]2+/1+ couple in the C/Fe-SP was determined to be -523 mV (+/- 5 mV). Removal of this cluster totally inactivates the protein; however, there is little effect of cluster removal on the midpoint potential of the Co2+/1+ couple. In addition, removal of the cobamide has an insignificant effect on the midpoint reduction potential of the [4Fe-4S] cluster. A 27-kDa corrinoid protein (CP) also was studied since it contains (5-methoxybenzimidazolyl)cobamide in the base-on form.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The green sulfur bacterium Chlorobium vibrioforme was cultured in the presence of ethylene to selectively inhibit the synthesis of the chlorosome antenna BChl d. Use of these cells as starting material simplified the isolation of a photoactive antenna-depleted membrane fraction without the use of high concentrations of detergents. The preparation had a BChl alpha/P840 of 50, and the spectral properties were similar to those of preparations isolated from cells grown with a normal complement of chlorosomes. The membrane preparation was active in NADP+ photoreduction. This indicated that the fraction contained reaction centers with complete electron-transfer sequences which were then characterized further by flash kinetic spectrophotometry and EPR. We confirmed that cytochrome c553 is the endogenous donor to P840+, and at room temperature we observed a recombination reaction between the reduced terminal acceptor and P840+ with a t1/2 = 7 ms. Oxidative degradation of iron-sulfur centers using low concentrations of chaotropic salts introduced a faster recombination reaction of t1/2 = 50 microseconds which was lost at higher concentrations of chaotrope, indicating the participation of another iron-sulfur redox center earlier than the terminal acceptor. Cluster insertion using ferric chloride and sodium sulfide in the presence of 2-mercaptoethanol restored both the 50-microseconds and 7-ms recombination reactions, allowing definitive assignments of these centers as iron-sulfur centers. Following the suggestion of Nitschke et al. [(1990) Biochemistry 29, 3834-3842], we associate these two kinetic phases to back-reactions between P840+ and iron-sulfur centers FX and FAFB, respectively. The iron-sulfur cluster degradation and reconstitution protocols also led to inhibition and restoration of NADP+ photoreduction by the membrane preparation, providing unequivocal evidence for the function of the centers FX and FAFB in the physiological electron-transfer sequence on the acceptor side of the Chlorobium reaction center. At 77 K we observed a recombination reaction of t1/2 = 20 ms that we suggest occurs between Fx- and P840+. Degradation of the iron-sulfur clusters resulted in replacement of the 20-ms phase with a faster reaction of t1/2 = 80 microseconds that was most likely a recombination between the early acceptor A1- and P840+ or decay of 3P840. Analysis of the iron-sulfur centers in the preparation by EPR at cryogenic temperature supports the optical measurements. EPR signals originating from the terminal acceptor(s) were not observed following treatment of the membrane preparation by chaotropes, and a modified signal was restored following cluster reinsertion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Two distinct Hipip type iron-sulfur centers are present in pigeon heart mitochondria. These two can be distinguished by their EPR spectra which differ in the detailed line shape, field position and temperature dependence. These two seem to correspond to Center S-3, and an iron-sulfur protein purified by Ruzicka and Beinert. They exhibit different thermodynamic behavior and topographical location in the mitochondrial membrane.  相似文献   

17.
In addition to the two species of ferredoxin-type iron-sulfur centers (Centers S-1 and S-2), a third iron-sulfur center (Center S-3), which is paramagnetic in the oxidezed state analogous to the bacterial high potential iron-sulfur protein, has bwen detected in the reconstitutively active soluble succinate dehydrogenase preparation. Midpoint potential (at pH 7.4) of Center S-3 determined in a particulate succinate-cytochrome c reductase is +60 +/- 15 mV. In soluble form, Center S-3 becomes extremely labile towards oxygen or ferricyanide plus phenazine methosulfate similar to reconstitutive activity of the dehydrogenase. Thus, even freshly prepared reconstitutively active enzyme preparations show EPR spectra of Center S-3 which correspond approximately to 0.5 eq per flavin; in particulate preparations this component was found in a 1:1 ratio to flavin. All reconstitutively inactive dehydrogenase preparations that Center S-3 is an innate constituent of succinate dehydrogenase and plays an important role in mediating electrons from the flavoprotein subunit to most probably ubiquinone and then to the cytochrome chain.  相似文献   

18.
The N5-methyltetrahydromethanopterin:coenzyme M methyltransferase is a membrane-bound cobalamin-containing protein of Methanosarcina mazei Gö1 that couples the methylation of coenzyme M by methyltetra-hydrosarcinopterin to the translocation of Na+ across the cell membrane (B. Becher, V. Müller, and G. Gottschalk, J. Bacteriol. 174:7656-7660, 1992). We have partially purified this enzyme and shown that, in addition to the cobamide, at least one iron-sulfur cluster is essential for the transmethylation reaction. The membrane fraction or the partly purified protein contains a "base-on" cobamide with a standard reduction potential (Eo') for the Co2+/1+ couple of -426 mV. The iron-sulfur cluster appears to be a [4Fe-4S]2+/1+ type with an Eo' value of -215 mV. We have determined the methyltransferase activity at various controlled redox potentials and demonstrated that the enzyme activity is activated by a one-electron reduction with half-maximum activity occurring at -235 mV in the presence of ATP and -450 mV in its absence. No activation was observed when ATP was replaced by other nucleoside triphosphates or nonhydrolyzable ATP analogs.  相似文献   

19.
1. Dark equilibrium potentiometric titrations were conducted on membranes purified from Rhodospirillum rubrum in an effort to identify b-type cytochrome components reported in other Rhodospirillaceae. In preparations from aerobically grown cells virtually devoid of bacteriochlorophyll a, three components were observed at 560-540 nm. Their oxidation-reduction midpoint potentials assigned by computer-assisted analysis were +195, +50 and -110 mV at pH 7.0; each of these fitted closely to theoretical single-electron equivalent curves. 2. In chromatophores from phototrophically grown carotenoidless mutant G-9, three components were also observed with E0' +190, +50 and -90mV. 3. The alpha-band of the +50mV component exhibited an absorption maximum near 560nm in difference spectra obtained at fixed oxidation-reduction potentials. 4. This component could be demonstrated most readily in purified membrane preparations and may have been obscured in previous studies by residual cytochrome c'. 5. This is the first definitive report of cytochrome b+50 in membranes from Rs. rubrum and aligns this bacterium with other Rhodospirillaceae in which this component functions in light-driven cyclic electron flow.  相似文献   

20.
The thermodynamic and spectral properties of the photochemical reaction center components of Heliobacterium chlorum have been examined. The primary electron donor bacteriochlorophyll has Em,7 = +225 mV, and the ‘primary acceptor’ Em,10 = −510 mV. The former has an EPR signal in its oxidised form near G = 2.0025, ΔH = 0.95 mT, reminiscent of the properties of the primary donor in bacteria containing bacteriochlorophyll a. The ‘primary acceptor’ has properties similar to those of the iron-sulfur cluster acceptors of green sulfur bacteria. H. chlorum contains a c-type cytochrome (Em,7 = +170 mV) that donates electrons to the photooxidised primary donor with . The reaction center of H. chlorum is thus very similar to that found in representative green sulfur bacteria, but the cellular architecture and photopigments of this group are quite distinct from those of H. chlorum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号