首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A resonance light scattering (RLS) detection method for protein was developed, using a flow-injection system based on the enhancement of RLS signals from Biebrich scarlet (BS) by protein. The enhanced RLS intensities at 286.0 nm, in acidic aqueous medium, were proportional to the protein concentration over the range 0.005-18 microg/mL and 0.008-16 microg/mL for human serum albumin (HSA) and bovine serum albumin (BSA), respectively, with corresponding limits of detection (3sigma) of 5.00 ng/mL for HSA, and 7.80 ng/mL for BSA. The method was successfully applied to the quantification of total proteins in human serum samples.  相似文献   

2.
Fullerol has been synthesized through the reaction of fullerene C60 with NaOH in aqueous solution by means of ultrasonic agitation and characterized by infrared and 1H-nuclear magnetic resonance spectroscopy. The fullerol obtained shows good solubility and excellent stability in water. A weak resonance light scattering (RLS) spectrum of fullerol was observed in aqueous solution. However, the intensity of the RLS signal could be enhanced in the presence of proteins, including bovine serum albumin (BSA), human serum albumin (HSA), pepsin (Pep), and lysozyme (Lys). Based on the enhancement of the RLS, a sensitive method for the determination of proteins has been established. The quantitative conditions were considered with regard to the effects of the pH, the ion strength, and the concentration of the fullerol. Under the optimum conditions, the intensity of the RLS was proportional to the concentration of proteins with the limits of detection of 9.7, 10.9, 57.4, and 8.5 ng mL(-1) for BSA, HSA, Pep, and Lys, respectively. Almost no interference can be observed from some amino acids, nucleic acids, and most of the metal ions. The model samples and human serum samples were determined satisfactorily with the proposed method.  相似文献   

3.
The interaction between surfactant and fluorescein was studied, using a fluorescence spectroscopy and flow-injection (FI) chemiluminescence (CL) method. It was found that the cationic surfactant cetyltrimethylammonium bromide (CTAB) could cause the structural transformation of fluorescein from the quinone to the spirolactone form, and greatly enhance the CL intensity of the fluorescein-human serum albumin (HSA) complex. Based on this finding, a rapid and sensitive FI-CL method was developed for the determination of HSA. Under the optimum conditions, the proposed method has a linear range of 0.05-24.0 microg/mL, with a detection limit of 0.03 microg/mL for HSA (3sigma). The relative standard deviation (RSD) of 1.2 microg/mL HSA (n = 8) is 0.8%. The method was applied to the determination of protein content in urine samples, with satisfactory results. Density functional theory was used to study the mechanism of surfactant-enhanced CL intensity of the fluorescein-HSA complex.  相似文献   

4.
Dong L  He J  Li Q  Chen X  Hu Z 《Analytical biochemistry》2003,315(1):22-28
This is the first report on the determination of proteins with 3-hydroxy-4-(2-hydroxy-4-sulfo-1-naphthalenyl)azo (Cal-Red) by Rayleigh light scattering (RLS). At pH 4.07, the weak RLS of Cal-Red can be enhanced greatly by the addition of proteins. On this basis, the reaction of Cal-Red and proteins was studied. A new quantitative determination method for proteins has been developed. This method is very sensitive (0.45-36.9 microgml(-1) for bovine serum albumen (BSA)), rapid (<2min), simple (one step), and tolerant of most interfering substances. The maximum binding number of Cal-Red to BSA was 143 and the binding constant was 4.1x10(6)mol(-1)L. Four samples of total protein in human serum were determined and the maximum relative error is no more than 3%.  相似文献   

5.
The interactions between 1-benzoyl-4-p-chlorphenyl thiosemicarbazide (BCPT) and bovine serum albumin (BSA) or human serum albumin (HSA) have been studied by fluorescence spectroscopy. By the analysis of fluorescence spectrum and fluorescence intensity, it was showed that BCPT has a strong ability to quench the intrinsic fluorescence of both bovine serum albumin and human serum albumin through a static quenching procedure. The binding constants of BCPT with BSA or HSA were determined at different temperatures based on the fluorescence quenching results. The binding sites were obtained and the binding force were suggested to be mainly hydrophobic. The effect of common ions on the binding constants was also investigated. A new fluorescence spectroscopy assay of the proteins is presented. The linear range is 5.36-67.0 microg mL(-1) with recovery of 101.1% for BSA, and the linear range is 8.28-144.9 microg mL(-1) with recovery of 102.6% for HSA. Determination of the proteins in bovine serum or in human serum by this method gives results which are very close to those obtained by using Coomassie Brilliant Blue G-250 colorimetry. A practical method was proposed for the determination of BCPT in human serum samples.  相似文献   

6.
The fluorescence of acridine orange (AO) is greatly quenched by the anionic surfactant sodium dodecyl benzene sulphonate (SDBS), but when protein is added into the AO-SDBS system, the fluorescence intensity of the latter is enhanced again. Based on this, a new fluorimetric method of determination of protein was developed. Under optimum conditions, the enhanced intensity of fluorescence is in proportion to the concentration of protein, such as bovine serum albumin (BSA), human serum albumin (HSA) and egg albumin (EA), over a wide range with detection limits at the 10(-9) g/mL level. This method has been satisfactorily used for the determination of protein in samples. We compared results using 280 nm and 490 nm excitation wavelengths and the mechanism of the assay.  相似文献   

7.
A simple and high-sensitivity method has been developed for the determination of proteins in aqueous solutions by resonance light scattering (RLS) technique. At pH 3.4 and ionic strength 1.2 x 10(-3), the weak RLS intensity of sodium lauroyl sarcosinate was greatly enhanced by the addition of proteins with the maximum peak located at 391 nm. Under the optimum conditions, the enhanced RLS intensities were in proportion to the concentrations of proteins in the range of 0.04 to 2.1 microg/mL for lysozyme, 0.0025 to 1.2 microg/mL for bovine serum albumin, 0.0075 to 0.9 microg/mL for human serum albumin, 0.02 to 1.4 microg/mL for gamma-globulin, 0.02 to 0.8 microg/mL for egg albumin, and 0.01 to 0.6 microg/mL for hemoglobin. Low detection limits ranging from 0.8 ng/mL to 4.3 ng/mL depending on the kind of proteins that have been achieved. The protein concentrations in synthetic samples and real biochemical samples were determined with satisfactory results. This method presented here is not only sensitive and simple but also reliable and suitable for practical bioassay applications.  相似文献   

8.
Chlorotetracycline (CTC) can react with europium ions Eu3+, and the complex emits the intrinsic fluorescence of Eu3+. The intensity is greatly enhanced by proteins and this forms the basis of a new fluorimetric method for determination of protein. Further research indicates that under optimum conditions, the enhanced intensity of fluorescence is in proportion to the concentration of proteins, in the range 2.0 x 10(-7)-1.0 x 10(-5) g/mL for bovine serum albumin (BSA) (linear equation, I(f) = 34.35933 + 11.54467 x 10(6)C)(r = 0.99895) and 8.0 x 10(-7)-1.0 x 10(-5) g/mL for human serum albumin (HSA) (linear equation, I(f) = 76.58881 + 5.3569 x 10(6)C) (r = 0.99283). Detection limits (S/N = 3) were 8.9 x 10(-9) g/mL for BSA and 3.3 x 10(-8) g/mL for HSA. In an assay for BSA in calf serum, this method gave a value close to that determined by the UV spectrophotometric method.  相似文献   

9.
血清蛋白与4,5-二溴荧光素相互作用及其分析应用的研究   总被引:2,自引:0,他引:2  
在 0 .10mol/mL的醋酸溶液中 ,4,5 二溴荧光素能与血清蛋白形成稳定的复合物 ,最大吸收波长 482nm ,与试剂比较 ,红移了 12nm。据此建立了测定血清蛋白的方法 ,用于BSA和HSA的测定 ,分别在 2~ 14mg·L-1有线性关系 ,表观摩尔吸光系数分别为 3.12× 10 5L·mol-1·cm-1和 3.2 7× 10 5L·mol-1·cm-1。应用该法测定了人血清样品总蛋白含量 ,结果令人满意。  相似文献   

10.
Liu S  Yang Z  Liu Z  Kong L 《Analytical biochemistry》2006,353(1):108-116
Gold nanoparticles with a 12-nm diameter were used as probes for the determination of proteins by resonance Rayleigh-scattering techniques. In weak acidic solution, large amounts of citrate anions will self-assemble on the surface of positively charged gold nanoparticles to form supermolecular compounds with negative charges. Below the isoelectric point, proteins with positive charges such as human serum albumin (HSA), bovine serum albumin (BSA), and ovalbumin (Ova) can bind gold nanoparticles to form larger volume products (the diameter of the binding product of gold nanoparticles with HSA is 23 nm.) through electrostatic force, hydrogen bonds, and hydrophobic effects, which can result in a red shift of the maximum absorption wavelength, the remarkable enhancement of the resonance Rayleigh-scattering intensity (RRS), and the appearance of the RRS spectra. At the same time, the second-order-scattering (SOS) and frequency-doubling-scattering (FDS) intensities are also enhanced. The binding products of gold nanoparticles with different proteins have similar spectral characteristics and the maximum wavelengths are located near 303 nm for RRS, 540 nm for SOS, and 390 for FDS, respectively. The scattering enhancement (DeltaI) is directly proportional to the concentration of proteins. Among them, the RRS method has the highest sensitivity and the detection limits are 0.38 ng/ml for HSA, 0.45 ng/ml for BSA, and 0.56 ng/ml for Ova, separately. The methods have good selectivity. A new RRS method for the determination of trace proteins using a gold nanoparticle probe has been developed. Because gold nanoparticle probes do not need to be modified chemically in advance, the method is very simple and fast.  相似文献   

11.
The fluorescence intensity of the morin-Al(3+) complex was greatly enhanced by proteins in the presence of sodium dodecyl benzene sulphonate (SDBS). Based on this, a new fluorimetric method for the determination of protein was developed. Under optimum conditions, the enhanced intensity of fluorescence was in proportion to the concentration of proteins in the range 1.0 x 10(-8)-1.3 x 10(-5) g/mL for bovine serum albumin (BSA), 4.0 x 10(-8)-1.2 x 10(-5) g/mL for egg albumin (EA) and 5.0 x 10(-8)-1.2 x 10(-5) g/mL for human serum albumin (HSA). Their detection limits (S:N = 3) were 5.0 x 10(-9), 1.8 x 10(-8) and 1.6 x 10(-8) g/mL, respectively. The interaction mechanism was also studied.  相似文献   

12.
In this study, a CdSe/ZnS quantum dot (QD)-based immunosensor using a simple optical system for human serum albumin (HSA) detection is developed. Monoclonal anti-HSA (AHSA) immobilized on 3-aminopropyltriethoxysilane (APTES)-modified glass was used to capture HSA specifically. Bovine serum albumin (BSA) was used to block non-specific sites. The solution, containing AHSA-QD complex prepared by mixing biotinylated polyclonal anti-HSA and streptavidin coated QD, was used to conjugate with the HSA molecules captured on AHSA/BSA/APTES-modified glass for the modification of HSA with QD. A simple optical system, comprising a diode laser (405 nm), an optical lens, a 515-nm-long pass filter, and an Si-photodiode, was used to detect fluorescence and convert it to photocurrent. The current intensity was determined by the amount of QD specifically conjugated with HSA, and was therefore HSA-concentration-dependent and could be used to quantify HSA concentration. The detection limit of the pure QD solution was ~3.5×10(-12) M, and the detection limit for the CdSe/ZnS QD-based immunosensor developed in this study was approximately 3.2×10(-5) mg/ml. This small optical biosensing system shows considerable potential for future applications of on-chip liver-function detection.  相似文献   

13.
Chen Z  Liu G  Chen M  Peng Y  Wu M 《Analytical biochemistry》2009,384(2):337-653
A new high-sensitivity detection of protein assay at the nanogram level is proposed based on the decreased resonance light scattering (RLS) signals of zwitterionic gemini surfactant (phosphodiesters quaternary ammonium salt [PQAS]). It was found that PQAS self-assembled into nanometer-scale PQAS aggregates, which induced intense RLS signal in Britton-Robinson (BR) buffer solution (pH 10.5). Under the optimum conditions, the RLS intensity quenching extent of PQAS aggregation was in proportion to the concentration of proteins in the range of 0.0012-1.08 μg/ml for bovine serum albumin, 0.0015-0.95 μg/ml for human serum albumin, and 0.0025-1.3 μg/ml for γ-globulin. The detection limits were 0.8, 1.2, and 2.0 ng/ml, respectively. The proposed method was successfully applied to determine total protein in human serum samples, and the results were identical to those obtained by the Bradford assay. The mechanism of interaction between PQAS and protein was studied using RLS, fluorescence, and time-resolved fluorescence, which indicated that the new complex formed between them, disaggregating self-aggregation of PQAS, resulted in the dominated quenching of RLS signal of the assay system.  相似文献   

14.
A simple, rapid, specific, precise, accurate and sensitive method for determination of WCK 771 in human serum has been developed. The method uses high performance liquid chromatography with tandem mass spectrometric detection. Sample preparation involves protein precipitation method by addition of acetonitrile. Gatifloxacin was used as internal standard. The response was found to be linear from 0.312 to 40 microg/ml of serum with correlation coefficient greater than 0.99. Limit of detection and lower limit of quantification for WCK 771 was found to be 0.078 microg/ml and 0.312 microg/ml, respectively. The intra-day precision and accuracy from analysis of quality control (QC) samples at four concentrations was in the range of 2.36-2.58% and from 96.71 to 103.2%, respectively. The inter-day precision and accuracy from analysis of quality control samples at four concentrations was in the range of 3.14-6.82% and from 96.84 to 105.76%, respectively. WCK 771 was found to be stable for 24 h at auto-injector environment. WCK 771 was also found to be stable for 2h in serum at 25+/-3 degrees C and for 3 months at -20 degrees C. Mean absolute recovery at four different concentrations was 86.92% with standard deviation of 1.79. Throughput of the method is approximately one sample every 4 min. The method was also reproduced with monkey serum. The method was employed for estimation of drug serum levels during pre-clinical and clinical trials.  相似文献   

15.
Based on the interaction between nucleic acids and tetraphenyl porphyrinatoiron chloride (FeTPPCl), a novel method for the determination of nucleic acids at the nanogram level has been developed. Under the optimum conditions, the weak resonance light scattering (RLS) intensity of FeTPPCl was greatly enhanced by nucleic acids and the enhanced RLS intensity was proportional to the concentration of nucleic acids in the range 0.02-2.8 microg/mL for calf thymus DNA, 0.05-3.3 microg/mL for fish sperm DNA and 0.07-4.5 microg/mL for yeast RNA. The detection limits (3sigma) were 2.9 ng/mL for calf thymus DNA, 3.9 ng/mL for fish sperm DNA and 5.2 ng/mL for yeast RNA. Almost no interference could be observed from proteins, nucleosides and most of the metal ions. The proposed method showed good reliability, sensitivity, rapidity and reproducibility when applied to the determination of nucleic acids in synthetic and biochemical samples. The time savings make this method suitable for large routine analyses.  相似文献   

16.
In this paper, a sensitive resonance light scattering (RLS) method for the determination of protein is reported. In the Tris–HCl (pH 7.50) buffer, protein enhanced the RLS intensity of the Y3+–2‐thenoyltrifluoroacetone (TTA)–sodium dodecyl sulphate (SLS) system. The enhanced RLS intensities were in proportion to the concentrations of proteins in the range 8.0 × 10?9–1.0 × 10?5 g/mL for BSA, 1.0 × 10–8–1.0 × 10?5 g/mL for HSA and 1.0 × 10–8–1.0 × 10?6 g/mL for EA, and their detection limits were 5.0, 5.4 and 6.7 ng/mL, respectively. Actual samples were satisfactorily determined. The interaction mechanism was also studied. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Resonance light scattering (RLS) of Congo red (CR) was greatly enhanced by BSA (HSA) in the presence of Triton X-100 (TX-100). In sodium citrate-HCl buffer (pH 2.7-3.0), the enhanced intensity of resonance light scattering at 360 nm was in proportion to the concentration of proteins [corrected] The linear relationship was obtained between the resonance light scattering intensity and proteins in the range 5.0 x 10(-8)-8.0 x 10(-6) g/mL and 1.0 x 10(-9)-6.0 x 10(-6) g/mL for BSA and HSA, respectively. Their detection limits were 1.4 x 10(-8) g/mL and 2.8 x 10(-10) g/mL (S:N = 3), respectively. Synthetic and actual samples were analysed satisfactorily.  相似文献   

18.
A solid phase microextraction (SPME)-HPLC-UV method for the determination of the immunosuppressant mycophenolic acid (MPA) in human serum samples was developed for the first time. The procedure, that employed a carbowax/templated resin (Carbowax/TPR-100) as fiber coating, required a very simple sample pretreatment, an isocratic elution, and provides an highly selective extraction. The linear range was 0.2-100 microg x ml(-1). Recovery was practically unchanged (63+/- 4%) passing from 0.2 to 100 microg x ml(-1) level. Within-day and between-days coefficient of variation ranged from 5.9 to 6.5% and from 8.8 to 9.2%, respectively. A detection limit of 0.05 microg x ml(-1) was estimated in spiked serum. The method was successfully applied to the determination of MPA in serum of a patient under mycophenolate mophetil ester (MMF) therapy, as demonstrated by the relevant concentration-time profiles.  相似文献   

19.
A simple method for the measurement of the active leflunomide metabolite A77 1726 in human plasma by HPLC is presented. The sample workup was simple, using acetonitrile for protein precipitation. Chromatographic separation of A77 1726 and the internal standard, alpha-phenylcinnamic acid, was achieved using a C(18) column with UV detection at 305 nm. The assay displayed reproducible linearity for A77 1726 with determination coefficients (r2) > 0.997 over the concentration range 0.5-60.0 microg/ml. The reproducibility (%CV) for intra- and inter-day assays of spiked controls was <5%. The limit of quantification was 0.8 microg/ml. The average absolute recovery was approximately 100%. This assay is suitable for the determination of A77 1726 in plasma of patients taking leflunomide, and is simpler to use than other HPLC methods reported previously.  相似文献   

20.
A novel cationic polyhedral oligomeric silsesquioxane nanoparticle (cationic POSS) was synthesized and successfully used as a new probe for the detection of DNA by resonance light scattering technique (RLS). It was found that the electrostatic interaction of cationic POSS and DNA could obviously enhance the RLS signal, the enhanced RLS intensity at 360 nm was proportional to the concentration of nucleic acids within the range of 0.35-42.82 microg ml-1 for calf thymus DNA, the determination limit (3sigma) was 0.32 ng ml-1. The results showed this method was very sensitive, convenient, rapid and reproducible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号