首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Tissue ablation by ultraviolet excimer lasers results in exposure of viable cells to subablative doses of radiation. To understand the potential biological consequences better, we have studied changes in gene expression in cultured human skin fibroblasts exposed to either 193- or 248-nm laser light. Northern blot analyses revealed that both treatments up-regulate a common set of genes, including interstitial collagenase, tissue inhibitor of metalloprotease, metallothionein, and the proto-oncogene c-fos. Dose-response and kinetic studies of collagenase induction by 193-nm radiation showed a maximal effect with 60 J/m2 and at approximately 24 h. The induction was still persistent 96 h later. In addition to the commonly affected genes, known to be activated also by conventional UV light (254 nm) and tumor-promoting phorbol esters, other genes were found to be selectively induced by the 193-nm radiation. The heat-shock hsp70 mRNA, undetectable in controls and in cultures irradiated at 248 nm, was transiently induced 8 h after exposure to 193-nm radiation. Furthermore, a selective up-regulation of collagen type I expression was observed. The results indicate that the 193- and 248-nm radiations by excimer lasers elicit specific and different cellular responses, in addition to an overlapping pathway of gene activation common also to UV radiation by germicidal lamps. The laser-induced genes could serve as molecular markers in evaluating cell injury in situ.  相似文献   

2.
Changes in the expression of genes implicated in oxidative stress and in extracellular matrix (ECM) remodeling and selected protein expression profiles in mouse skin were examined after exposure to low-dose-rate or high-dose-rate photon irradiation. ICR mice received whole-body γ rays to total doses of 0, 0.25, 0.5 and 1 Gy at dose rates of 50 cGy/h or 50 cGy/min. Skin tissues were harvested for characterization at 4 h after irradiation. For oxidative stress after low-dose-rate exposure, 0.25, 0.5 and 1 Gy significantly altered 27, 23 and 25 genes, respectively, among 84 genes assessed (P < 0.05). At doses as low as 0.25 Gy, many genes responsible for regulating the production of reactive oxygen species (ROS) were significantly altered, with changes >2-fold compared to 0 Gy. For an ECM profile, 18-20 out of 84 genes were significantly up- or downregulated after low-dose-rate exposure. After high-dose-rate irradiation, of 84 genes associated with oxidative stress, 16, 22 and 22 genes were significantly affected after 0.25, 0.5 and 1 Gy, respectively. Compared to low-dose-rate radiation, high-dose-rate exposure resulted in different ECM gene expression profiles. The most striking changes after low-dose-rate or high-dose-rate exposure on ECM profiles were on genes encoding matrix metalloproteinases (MMPs), e.g., Mmp2 and Mmp15 for low dose rate and Mmp9 and Mmp11 for high dose rate. Immunostaining for MMP-2 and MMP-9 proteins showed radiation dose rate-dependent differences. These data revealed that exposure to low total doses with low-dose-rate or high-dose-rate photon radiation induced oxidative stress and ECM-associated alterations in gene expression profiles. The expression of many genes was differentially regulated by different total dose and/or dose-rate regimens.  相似文献   

3.
Gruel, G., Voisin, P., Vaurijoux, A., Roch-Lefèvre, S., Gré goire, E., Maltère, P., Petat, C., Gidrol, X., Voisin, P. and Roy, L. Broad Modulation of Gene Expression in CD4(+) Lymphocyte Subpopulations in Response to Low Doses of Ionizing Radiation. Radiat. Res. 170, 335-344 (2008).To compare the responses of the different lymphocyte subtypes after an exposure of whole blood to low doses of ionizing radiation, we examined variations in gene expression in different lymphocyte subpopulations using microarray technology. Blood samples from five healthy donors were independently exposed to 0 (sham irradiation), 0.05 and 0.5 Gy of ionizing radiation. Three and 24 h after exposure, CD56(+), CD4(+) and CD8(+) cells were negatively isolated. RNA from each set of experimental conditions was competitively hybridized on 25k oligonucleotide microarrays. Modifications of gene expression were measured after both intervals and in all cell types. Twenty-four hours after exposure to 0.5 Gy, we observed an induction of the expression of BAX, PCNA, GADD45, DDB2 and CDKN1A. However, the numbers of modulated genes greatly differed between cell types. In particular, 3 h after exposure to doses as low as 0.05 Gy, the number of down-modulated genes was 10 times greater for CD4(+) cells than for all other cell types. Moreover, most of these repressed genes were taking part in the cell processes of protein biosynthesis and oxidative phosphorylation. The results suggest that several biological pathways in CD4(+) cells could be sensitive to low doses of radiation. Therefore, specifically studying CD4(+) cells could help to understand the mechanisms involved in low-dose response and allow their detection.  相似文献   

4.
In this study, we examined effects of low-dose ionizing radiation on organ cultured human foreskin and, in particular, on the epidermis. Diagnostic, therapeutic, natural environmental and incidental exposures to moderate to low doses of radiation are inevitable and, although information on cultured cells continues to accumulate, little is known about the effects of low-dose radiation on human tissues. Our hypothesis is that ex vivo organ cultured foreskin is a simple and reliable model to study the biochemical effects of low-dose radiation exposure on skin. A model such as this will aid in the identification and quantification of low-dose radiation-induced changes in proteins in human skin and may be useful in the development of a precise, non-invasive, and reliable assay of exposure. In this work, several aspects of skin responses to culture conditions and radiation were examined. The responses of epidermal TP53 from organ cultured skin irradiated in medium with and without serum were found to be similar. TP53 levels in organ cultured neonatal foreskin epidermis were then examined for baseline TP53 expression. After an initial increase at 4 h, the TP53 D01 signal returned to low steady-state levels for at least 72 h. Irradiated skin samples from different individuals revealed variations in the TP53 D01 signal. The dose and temporal response of dermis and epidermis to radiation were examined by Western blotting from 0 to 24 h after exposure. After irradiation and incubation, the epidermis was removed and assayed by Western blotting and was found to have increases in the TP53 D01 epitope and the TP53 phosphoserine 15 (TP53-S15p) epitope that reached a maximum at about 3 h. In the epidermis, doses of 1-5 cGy of radiation were detectable with the TP53 D01, and CDKN1A antibodies and doses greater than 10 cGy were detectable with the TP53-S15p antibody. When the dermis was compared to epidermis, it was found that dermis had a smaller response to radiation and more phosphorylated TP53.  相似文献   

5.
The incidence of skin cancer is increasing in epidemic proportion. Although solar UV radiation is known to be the major risk factor, much information is lacking about the molecular mechanisms leading to skin cancer. To gain a deeper insight into these mechanisms, we have examined cells of a human keratinocyte cell line (HaCat) after exposure to 0.16 minimal erythema doses of UVB radiation. This dose led to an S-phase delay that was reversible 22 h postirradiation. To examine gene expression 10 h after UV irradiation, a nonradioactive differential display was employed. Three genes were identified as being down-regulated significantly. The first encodes for topoisomerase-IIbeta-binding protein 1 (expression level 5% 6 h after irradiation). This protein is associated with human topoisomerase IIbeta and appears to be necessary for DNA replication during the onset of S phase. The second gene product has previously been reported to be involved in differentiation and is therefore known as differentiation-dependent A4 protein (28% 8 h after irradiation). The third gene is XPO1 (also known as CRM1) (5% 8 h after irradiation), whose protein is involved in nuclear export of mRNA molecules. Differential expression of these genes after UV irradiation has not been reported. Because of their potential involvement in cell cycle control and differentiation, these proteins could be important for understanding the reaction of keratinocytes after exposure to UV radiation.  相似文献   

6.
Dose assessment after radiological disasters is imperative to decrease mortality through rationally directed medical intervention. Our goal was to identify biomarkers capable of qualitative (nonirradiated/irradiated) and/or quantitative (dose) assessment of radiation exposure. Using real-time quantitative PCR, biodosimetry genes were identified in blood samples from cancer patients undergoing total-body irradiation. Time- (5, 12, 23, 48 h) and dose- (0-8 Gy) dependent changes in gene expression were examined in C57BL/6 mice. A training set was used to derive weighted voting classification algorithms (nonirradiated/irradiated) and continuous regression (dose assessment) models that were tested in a separate validation set of mice. Of eight biodosimetry genes identified in cancer patients ( ACTA2 , BBC3 , CCNG1 , CDKN1A , GADD45A , MDK , SERPINE1 , Tnfrsf10b ), expression of BBC3 , CCNG1 , CDKN1A , SERPINE1 and Tnfrsf10b was significantly (P < 0.05) increased in irradiated mice. CCNG1 and CDKN1A expression segregated irradiated mice from controls with an accuracy, specificity and sensitivity of 96.3, 100.0 and 94.4%, respectively, at 48 h. Multiple linear regression analysis predicted doses for the 0-, 1-, 2-, 4-, 6- and 8-Gy treatment groups as 0.0 ± 0.2, 1.6 ± 1.0, 2.9 ± 1.4, 5.1 ± 2.0, 5.3 ± 0.7 and 10.5 ± 5.6 Gy, respectively. These results suggest that gene expression analysis could be incorporated into biodosimetry protocols for qualitative and quantitative assessment of radiation exposure.  相似文献   

7.
Understanding how human organs respond to ionizing radiation (IR) at a systems biology level and identifying biomarkers for IR exposure at low doses can help provide a scientific basis for establishing radiation protection standards. Little is known regarding the physiological responses to low dose IR at the metabolite level, which represents the end-point of biochemical processes inside cells. Using a full thickness human skin tissue model and GC-MS-based metabolomic analysis, we examined the metabolic perturbations at three time points (3, 24 and 48 h) after exposure to 3, 10 and 200 cGy of X-rays. PLS-DA score plots revealed dose- and time-dependent clustering between sham and irradiated groups. Importantly, delayed metabolic responses were observed at low dose IR. When compared with the high dose at 200 cGy, a comparable number of significantly changed metabolites were detected 48 h after exposure to low doses (3 and 10 cGy) of irradiation. Biochemical pathway analysis showed perturbations to DNA/RNA damage and repair, lipid and energy metabolisms, even at low doses of IR.  相似文献   

8.
Acute changes in the gene expression profile in mouse brain after exposure to ionizing radiation were studied using microarray analysis. RNA was isolated at 0.25, 1, 5 and 24 h after exposure to 20 Gy and at 5 h after exposure of the whole brain of adult mice to 2 or 10 Gy. RNA was hybridized onto 15K cDNA microarrays, and data were analyzed using GeneSpring and Significant Analysis of Microarray. Radiation modulated the expression of 128, 334, 325 and 155 genes and ESTs at 0.25, 1, 5 and 24 h after 20 Gy and 60 and 168 at 5 h after 2 and 10 Gy, respectively. The expression profiles showed dose- and time-dependent changes in both expression levels and numbers of differentially modulated genes and ESTs. Seventy-eight genes were modulated at two or more times. Differentially modulated genes were associated with 12 different classes of molecular function and 24 different biological pathways and showed time- and dose-dependent changes. The change in expression of four genes (Jak3, Dffb, Nsep1 and Terf1) after irradiation was validated using quantitative real-time PCR. Up-regulation of Jak3 was observed in another mouse strain. In mouse brain, there was an increase of Jak3 immunoreactivity after irradiation. In conclusion, changes in the gene profile in the brain after irradiation are complex and are dependent on time and dose, and genes with diverse functions and pathways are modulated.  相似文献   

9.
NO (nitric oxide) molecule is produced by various mammalian cell types and plays a significant role in inflammation, infection and wound healing processes. Recently, gNO (gaseous nitric oxide) therapy has been utilized for its potential clinical application as an antimicrobial agent, with special focus on skin infection. In a previous study, we demonstrated that 200 ppm gNO, 8 h/day for three consecutive days significantly reduced the number of bacteria in dermal wounds without compromising the viability and function of skin cells. To increase the feasibility and ease of its clinical use, we propose that different doses of gNO (5 to 10 K ppm) for 8 h and as short as 10 min be used, respectively. To achieve this, we set up in vitro experiments and asked whether (i) different doses of gNO have any toxic effect on immune cells and (ii) gNO has any modulating effect on key ECM (extracellular matrix) components in fibroblasts. To further investigate the effect of gNO, expression of more than 100 key ECM genes have been examined using gene array in human fibroblasts. As immune cells play an important role in wound healing, the effect of gNO on proliferation and viability of human and mouse lymphocytes was also examined. The findings showed that, the 5, 25, 75 and 200 ppm of gNO for 8 h slightly increased the expression of Col 5A3 (collagen type V alpha 3), and gNO at 5 ppm decreased the expression of MMP-1 (matrix metalloproteinase 1), while exposure of fibroblast to 10 K ppm of gNO for 10 min does not show any significant changes in ECM genes. Exposure to gNO resulted in inhibition of lymphocyte proliferation without affecting the cell viability. Taken together, our findings show that skin could be treated with gNO without compromising the role of ECM and immune cells in low concentrations with long time exposure or high concentrations for a shorter exposure time.  相似文献   

10.
11.
Using microarrays to analyze differential gene expression as a function of p53 status and radiation quality, we observed downregulation of a large set of histone genes in p53 wild-type TK6 cells 24 h after exposure to equitoxic doses of high-LET (1.67 Gy 1 GeV/amu (56)Fe ions) or low-LET (2.5 Gy γ rays) radiation. Quantitative real-time PCR of specific subtypes of core (H2A, H2B, H3 and H4) and linker (H1) histones confirmed this result. DNA synthesis and histone gene expression are tightly coordinated during the S phase of the cell cycle, and both processes are regulated by cell cycle checkpoints in response to DNA damage caused by ionizing radiation. However, we observed similar repression of histone gene expression in both TK6 cells and their p53-null derivative NH32 after radiation exposure, although the histone gene expression was not decreased to the same extent in NH32 cells as it was in TK6 cells. We also found decreased histone gene expression that was dose- and time-dependent in the colon cancer cell line HCT116 and its p53-null derivative. These results show that both high- and low-LET radiation exposure negatively regulate histone gene expression in human lymphoblastoid and colon cancer cell lines independent of p53 status.  相似文献   

12.
13.
Cui W  Ma J  Wang Y  Biswal S 《PloS one》2011,6(8):e22988
The risk of radiation exposure, due to accidental or malicious release of ionizing radiation, is a major public health concern. Biomarkers that can rapidly identify severely-irradiated individuals requiring prompt medical treatment in mass-casualty incidents are urgently needed. Stable blood or plasma-based biomarkers are attractive because of the ease for sample collection. We tested the hypothesis that plasma miRNA expression profiles can accurately reflect prior radiation exposure. We demonstrated using a murine model that plasma miRNA expression signatures could distinguish mice that received total body irradiation doses of 0.5 Gy, 2 Gy, and 10 Gy (at 6 h or 24 h post radiation) with accuracy, sensitivity, and specificity of above 90%. Taken together, these data demonstrate that plasma miRNA profiles can be highly predictive of different levels of radiation exposure. Thus, plasma-based biomarkers can be used to assess radiation exposure after mass-casualty incidents, and it may provide a valuable tool in developing and implementing effective countermeasures.  相似文献   

14.
15.
目的: 探讨不同剂量核暴露后不同时间对大深度快速上浮脱险致减压病大鼠模型的发病率、死亡率及损伤指标的影响。方法: 80只SD雄性大鼠,随机分成空白对照组、脱险对照组和6个干预组(4 Gy辐射后4 h脱险、6 Gy辐射后4 h脱险、12 Gy辐射后4 h脱险、4 Gy辐射后8 h脱险、6 Gy辐射后8 h脱险、12 Gy辐射8 h后脱险),每组10只。干预组动物先采用不同剂量γ射线外照射(4、6、12 Gy),再进行大深度快速上浮脱险实验(最大加压深度150 m),分析大鼠肺W/D、脾指数及血浆IL-1β的变化。结果: 与脱险对照组比较,核辐射后脱险大鼠的减压病发病率及死亡率明显上升。4 Gy、6 Gy照射4 h后上浮脱险的大鼠发病率和死亡率较照射8 h后高。12 Gy辐射后4 h及8 h脱险大鼠的减压病的发病率及死亡率均比低剂量照射组明显增高,死亡率尤其明显。和发病率及死亡率的变化相一致,肺组织湿/干比、肺组织病理损伤程度、脾指数下降也表现同样的变化趋势:较低剂量(4 Gy、6 Gy)辐射后4 h改变明显,8 h改变不明显,而高剂量(12 Gy)辐射后4、8 h均变化明显。和空白对照组及脱险对照组相比较,各辐射后脱险组的血浆IL-1β浓度均显著上升。结论: 核辐射引起放射性肺损伤、免疫功能下降及血浆炎症因子浓度升高,会增加大鼠快速上浮脱险致减压病的风险。  相似文献   

16.
Ionizing radiation has been reported to cause an irreversible cell cycle arrest in normal human diploid fibroblasts. However, colony survival assays show that even at high doses of gamma radiation, human diploid fibroblasts do not irreversibly arrest, and that a dose-dependent fraction is capable of continued cycling. In this study, we resolve the apparent discrepancy between colony survival assays and the observed radiation-induced prolonged arrest. Using flow cytometry analysis, we have confirmed that human diploid fibroblasts do exhibit a prolonged cell cycle arrest in both G(1) and G(2)/M phases of the cell cycle. However, a single replacement of fresh growth medium stimulated a fraction of the arrested population of cells to transiently re-enter the cell cycle. Daily medium changes stimulated these irradiated human diploid fibroblasts to continue cycling until they were contact-inhibited. Thus the fraction of human diploid fibroblasts which survive radiation exposure and are capable of cycling appears to permanently arrest as a result of nutrient insufficiency. Western blot analysis demonstrated a radiation-induced elevation in TP53 (formerly known as p53) protein levels within 2 h postirradiation, followed by a decrease to levels comparable to those in unirradiated controls. The TP53 and CDKN1A (formerly known as p21) protein levels were indistinguishable after 24 h and remained elevated for a 6-day period of observation in both control and irradiated cultures. Our studies indicate that human diploid fibroblasts are capable of re-entering the cell cycle after exposure to ionizing radiation and that this re-entry is dependent on a constant supply of nutrients provided by fresh medium changes. The fraction of cells capable of resuming cell cycling is consistent with the surviving fraction of cells in colony assays.  相似文献   

17.
Exposure to radiation provokes cellular responses controlled in part by gene expression networks. MicroRNAs (miRNAs) are small non-coding RNAs which mostly regulate gene expression by degrading the messages or inhibiting translation. Here, we investigated changes in miRNA expression patterns after low (0.1 Gy) and high (2.0 Gy) doses of X-ray in human fibroblasts. At early (0.5 h) and late (6 and 24 h) time points, irradiation caused qualitative and quantitative differences in the down-regulation of miRNA levels, including miR-92b, 137, 660, and 656. A transient up-regulation of miRNAs was observed after 2 h post-irradiation following high doses of radiation, including miR-558 and 662. MicroRNA levels were inversely correlated with targets from mRNA and proteomic profiling after 2.0 Gy of radiation. MicroRNAs miR-579, 608, 548-3p, and 585 are noted for targeting genes involved in radioresponsive mechanisms, such as cell cycle checkpoint and apoptosis. We suggest here a model in which miRNAs may act as "hub" regulators of specific cellular responses, immediately down-regulated so as to stimulate DNA repair mechanisms, followed by up-regulation involved in suppressing apoptosis for cell survival. Taken together, miRNAs may mediate signaling pathways in sequential fashion in response to radiation, and may serve as biodosimetric markers of radiation exposure.  相似文献   

18.
19.
20.
One of the achievements of the modern radiation ecology is the preparation and application of stable eukariotic cell lines to solve various problems occurring under exposure to ionizing radiation, especially to low doses. The detection of onco-fetal protein--tenascin in different embryonic and tumor cells of humans and animals supposes the probability of appropriate gene expression in lymphoid cells, including hybridomal cells. Using the immunochemical method, the study of tenascin expression in two mouse hybridomal lines was carried out. Tenascin was revealed in hybridomal lines MLC-1 and K-48. Further hybridomal cell lines were exposed to X-ray radiation (120 KV) with doses 2.10,15 cGy. The obtained results demonstrated the sensitivity of tenascin expression to low doses of ionizing radiation, that may be used as a convenient model of studying of genotoxic effects of various damaging ionizing agents on a cell level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号