首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The RNA genome of the Moloney isolate of murine sarcoma virus (M-MSV) consists of two parts--a sarcoma-specific region with no homology to known leukemia viral RNAs, and a shared region present also in Moloney murine leukemia virus RNA. Complementary DNA was isolated which was specific for each part of the M-MSV genome. The DNA of a number of mammalian species was examined for the presence of nucleotide sequences homologous with the two M-MSV regions. Both sets of viral sequences had homologous nucleotide sequences present in normal mouse cellular DNA. MSV-specific sequences found in mouse cellular DNA closely matched those nucleotide sequences found in M-MSV as seen by comparisons of thermal denaturation profiles. In all normal mouse cells tested, the cellular set of M-MSV-specific nucleotide sequences was present in DNA as one to a few copies per cell. The rate of base substitution of M-MSV nucleotide sequences was compared with the rate of evolution of both unique sequences and the hemoglobin gene of various species. Conservation of MSV-specific nucleotide sequences among species was similar to that of mouse globin gene(s) and greater than that of average unique cellular sequences. In contrast, cellular nucleotide sequences that are homologous to the M-MSV-murine leukemia virus "common" nucleotide region were present in multiple copies in mouse cells and were less well matched, as seen by reduced melting profiles of the hybrids. The cellular common nucleotide sequences diverged very rapidly during evolution, with a base substitution rate similar to that reported for some primate and avian endogenous virogenes. The observation that two sets of covalently linked viral sequences evolved at very different rates suggests that the origin of M-MSV may be different from endogenous helper viruses and that cellular sequences homologous to MSV-specific nucleotide sequences may be important to survival.  相似文献   

2.
The concentrations, in copies per cell, of viral RNA sequences complementary to different regions of the genome were determined at 8, 18 and 32 hours after infection of human cells with adenovirus type 2: separated strands of fragments of 32P-labelled adenovirus 2 DNA, generated by cleavage with restriction endonucleases EcoR1, Hpa1 and BamH1, were added to reaction mixtures at sufficient concentrations to drive hybridizations with infected or transformed cell RNA. Under these conditions, the fraction of 32P-labelled DNA entering hybrid is directly proportional to the absolute amount of complementary RNA in the reaction.At 8 hours after infection in the presence of cytosine arabinoside, “early” viral messenger RNA sequences are present at a frequency of 300 to 1000 copies per cell. The abundance of early mRNA sequences in different lines of adenovirus 2-transformed rat cells is markedly lower than their concentration in lytically infected cells. Moreover, the abundance of early mRNA in a given transformed rat cell line reflects the number of copies of its template DNA sequences per diploid quantity of cell DNA. After the onset of the late phase of the lytic cycle, the abundance of one early mRNA species, that coding for a single-stranded DNA binding protein required for viral DNA replication, is amplified. Viral RNA sequences complementary to regions of the genome coding for other early mRNA sequences remain at the level observed at 8 hours after infection.Exclusively “late” viral mRNA sequences are present over a range of concentrations, 500 to 10,000 copies per cell, depending on the region of the genome. By 18 hours after infection, the nucleus contains approximately three times as much total, viral RNA as the cytoplasm. The abundant nuclear, viral RNA sequences at 18 hours are transcribed from a contiguous region, 65% of the genome in length. In some cases, viral RNA sequences complementary to mRNA sequences are very abundant in the nucleus. When cytoplasmic and nuclear fractions are mixed and incubated under annealing conditions, some mRNA sequences will anneal with more abundant, anti-messenger nuclear RNA sequences to form double-stranded RNA. Such annealing of nuclear, viral RNA to early, cytoplasmic mRNA sequences probably accounts for the inability to detect, by filter hybridization, certain classes of early mRNA sequences during the late stage of infection.  相似文献   

3.
Differences in nuclear DNA content in vertebrates have been shown to be correlated with cell size, cell division rate, and embryonic developmental rate. We compare seven species of anuran amphibians with a three-fold range of genome sizes. Parameters examined include the number and density of cells in a number of embryonic structures, and the change in cell number in the CNS during development. We show that genome size is correlated with cell proliferation rate and with developmental rate at different stages of embryonic development, but that the correlation between genome size and cell size is only evident at later stages. We discuss the evolution of genome size in amphibians. Our discussion takes into account data that reportedly support two conflicting hypotheses: the "skeletal DNA" hypothesis, which claims a selective role for differences in genome size, and the "junk DNA" hypothesis, which claims that differences in genome size are a random result of the accumulation of noncoding DNA sequences. We show that these supposedly conflicting hypotheses can be integrated into a more complex and inclusive model for the evolution of genome size.  相似文献   

4.
Cultured cells are widely used in molecular biology despite poor understanding of how cell line genomes change in vitro over time. Previous work has shown that Drosophila cultured cells have a higher transposable element content than whole flies, but whether this increase in transposable element content resulted from an initial burst of transposition during cell line establishment or ongoing transposition in cell culture remains unclear. Here, we sequenced the genomes of 25 sublines of Drosophila S2 cells and show that transposable element insertions provide abundant markers for the phylogenetic reconstruction of diverse sublines in a model animal cell culture system. DNA copy number evolution across S2 sublines revealed dramatically different patterns of genome organization that support the overall evolutionary history reconstructed using transposable element insertions. Analysis of transposable element insertion site occupancy and ancestral states support a model of ongoing transposition dominated by episodic activity of a small number of retrotransposon families. Our work demonstrates that substantial genome evolution occurs during long-term Drosophila cell culture, which may impact the reproducibility of experiments that do not control for subline identity.  相似文献   

5.
6.
A double-strand break (DSB) in the mammalian genome has been shown to be a very potent signal for the cell to activate repair processes. Two different types of repair have been identified in mammalian cells. Broken ends can be rejoined with or without loss or addition of DNA or, alternatively, a homologous template can be used to repair the break. For most genomic sequences the latter event would involve allelic sequences present on the sister chromatid or homologous chromosome. However, since more than 30% of our genome consists of repetitive sequences, these would have the option of using nonallelic sequences for homologous repair. This could have an impact on the evolution of these sequences and of the genome itself. We have designed an assay to look at the repair of DSBs in LINE-1 (L1) elements which number 10(5) copies distributed throughout the genome of all mammals. We introduced into the genome of mouse epithelial cells an L1 element with an I-SceI endonuclease site. We induced DSBs at the I-SceI site and determined their mechanism of repair. We found that in over 95% of cases, the DSBs were repaired by an end-joining process. However, in almost 1% of cases, we found strong evidence for repair involving gene conversion with various endogenous L1 elements, with some being used preferentially. In particular, the T(F) family and the L1Md-A2 subfamily, which are the most active in retrotransposition, appeared to be contributing the most in this process. The degree of homology did not seem to be a determining factor in the selection of the endogenous elements used for repair but may be based instead on accessibility. Considering their abundance and dispersion, gene conversion between repetitive elements may be occurring frequently enough to be playing a role in their evolution.  相似文献   

7.
Analyses of the herpes simplex virus (HSV) DNA sequences which are present in three HSV thymidine kinase-transformed (HSVtk+) mouse cell lines have revealed that these cells contain relatively large and variable portions of the viral genome. Two of these cell lines do not contain the viral DNA sequences known to encode the early viral genes normally responsible for regulating tk gene expression during lytic HSV infections. This finding suggests that cell-associated viral tk gene expression may be regulated by cellular rather than viral control mechanisms. In addition, we have compared the viral DNA sequences present in one unstable HSVtk+ cell line to those present in tk- revertant and tk+ rerevertant cell lines sequentially derived from it. Our results have shown that within the limits of sensitivity of our mapping approach, these three related cell lines contain the same set of viral DNA sequences. Thus, gross changes in viral DNA content do not appear to be responsible for the different tk phenotypes of these cells.  相似文献   

8.
Meyer DH  Bailis AM 《PloS one》2008,3(10):e3318
Telomerase is a ribonucleoprotein complex required for the replication and protection of telomeric DNA in eukaryotes. Cells lacking telomerase undergo a progressive loss of telomeric DNA that results in loss of viability and a concomitant increase in genome instability. We have used budding yeast to investigate the relationship between telomerase deficiency and the generation of chromosomal translocations, a common characteristic of cancer cells. Telomerase deficiency increased the rate of formation of spontaneous translocations by homologous recombination involving telomere proximal sequences during crisis. However, telomerase deficiency also decreased the frequency of translocation formation following multiple HO-endonuclease catalyzed DNA double-strand breaks at telomere proximal or distal sequences before, during and after crisis. This decrease correlated with a sequestration of the central homologous recombination factor, Rad52, to telomeres determined by chromatin immuno-precipitation. This suggests that telomerase deficiency results in the sequestration of Rad52 to telomeres, limiting the capacity of the cell to repair double-strand breaks throughout the genome. Increased spontaneous translocation formation in telomerase-deficient yeast cells undergoing crisis is consistent with the increased incidence of cancer in elderly humans, as the majority of our cells lack telomerase. Decreased translocation formation by recombinational repair of double-strand breaks in telomerase-deficient yeast suggests that the reemergence of telomerase expression observed in many human tumors may further stimulate genome rearrangement. Thus, telomerase may exert a substantial effect on global genome stability, which may bear significantly on the appearance and progression of cancer in humans.  相似文献   

9.
10.
11.
Summary Continued insertion into the genome of functionalAlu sequences is expected to compensate for the functional eclipse of older sequences attributable to structural adulteration and can be presumed to establish a renewable store of functional sequences at a relatively elevated numerical level. This store of functional sequences could be maintained at almost no selective cost. A strategy of maintaining function in multiple sequence copies with selection limited to a very few master (source) sequences may be resorted to also by other types of DNA sequences that are generated repeatedly during evolution and that are spread over many sectors of the genome.  相似文献   

12.
经渗透胁迫后 ,CO2 倍增条件下小麦叶片的SOD、POX和CAT的活性均显著高于对照 ,上升或稳定时期较长 ;在渗透胁迫后期MDA含量和电解质泄露率增加较慢 ,显著低于对照 ;H2 O2 含量一直高于对照但进行PEG胁迫后增长较慢。CO2 倍增条件下 ,小麦细胞出现DNA梯的时间较晚而且持续的时间较长 ,DNA梯出现时抗氧化酶和H2 O2 处于相对稳定状态。结果表明在渗透胁迫下CO2 倍增使小麦的抗氧化能力增强从而减轻了对细胞膜和DNA的损伤 ,并且干旱条件下小麦的细胞程序性死亡可能是由于细胞内氧化过强所致  相似文献   

13.
14.
We report here the application of a genetic approach to identify and isolate human DNA sequences controlling the expression of a GDP-L-fucose: beta-D-galactoside 2-alpha-L-fucosyltransferase [alpha-1,2)fucosyltransferase). Mouse L cells were chosen as host cells for this scheme since they express the necessary substrate and acceptor molecules for surface display of blood group H Fuc alpha 1----2 G al linkages constructed by (alpha-1,2) fucosyltransferases. However, they do not express cell surface blood group H structures nor detectable (alpha-1,2)fucosyltransferase activity. We therefore asked if (alpha-1,2)fucosyltransferase activity could be expressed and detected in these cells after transfection with human DNA sequences. These cells were transfected with genomic DNA isolated from a human cell line (A431) that expresses (alpha-1,2)fucosyltransferase. A panning procedure and fluorescence-activated cell sorting were used to isolate a mouse transfectant cell line that expresses cell surface H Fuc alpha 1----2 Gal linkages and a cognate (alpha-1,2)fucosyltransferase. Southern blot analysis showed that the genome of this cell line contains several hundred kilobase pairs of human DNA. Genomic DNA from this primary transfectant was used to transfect mouse L cells, and several independent, H-expressing secondary transfectants were isolated by immunological selection. Each expresses an (alpha-1,2)fucosyltransferase. Southern blot analysis demonstrated that the genome of each secondary transfectant contains common, characteristic human DNA restriction fragments. These results show that transfected human DNA sequences determine expression of the (alpha-1,2)fucosyltransferases in the mouse transfectants, that these sequences represent a single locus, and that they are within or linked to specific human restriction fragments identifiable in each secondary transfectant. These sequences may represent a human (alpha-1,2)fucosyltransferase gene.  相似文献   

15.
The structure of the polyoma virus (Py) integration site in the inducible LPT line of Py-transformed rat cells was determined by biochemical methods of gene mapping. LPT cell DNA was digested with various restriction enzymes. The digestion products were electrophoresed in agarose gels and transferred onto nitrocellulose sheets by Southern blotting. Fragments containing viral or cell DNA sequences, or both, were identified by hybridization with Py DNA or with a cloned flanking cell DNA probe. Cleavage of LPT DNA with enzymes that restrict the Py genome once generated linear Py DNA molecules and two fragments containing both cell and viral DNA sequences. Cleavage of LPT DNA with enzymes which do not restrict Py DNA generated series of fragments whose lengths were found to differ by increments of a whole Py genome; the smallest fragment in each series was found to be longer than the viral genome. These data indicate that LPT cultures contain Py insertions of various lengths integrated into the same chromosomal site in all the cells. The length heterogeneity of the viral insertions is due to the presence of 0, 1, 2, 3. . . Py genomes arranged in a direct tandem repeat within invariable sequences of viral DNA. Double-digestion experiments were also carried out with the above enzymes and with enzymes that cleave the Py genome at multiple sites. The data obtained in these experiments were used to construct a physical map of the integration site. This map showed that the early region of the virus remained intact even in the smallest insertion (which contains no whole duplicated genomes), whereas the late region was partially duplicated and split during integration. The smallest insertion is colinear with the Py physical map over a region including the entire Py genome and at least a part of the duplicated segment. This structure could give rise to nondefective circular viral DNA molecules by single homologous recombination events. Similar recombination events may occur at a higher frequency in the longer insertions, which include longer regions of homology, and may yield many more free viral genomes. The presence of these insertions in LPT cells could thus be one of the factors which account for the high inducibility of the LPT line.  相似文献   

16.
To see if integration of the provirus resulting from RNA tumor virus infection is limited to specific sites in the cell DNA, the variation in the number of copies of virus-specific DNA produced and integrated in chicken embryo fibroblasts after RAV-2 infection with different multiplicities has been determined at short times, long times, and several transfers after infection. The number of copies of viral DNA in cells was determined by initial hybridization kinetics of single-stranded viral complementary DNA with a moderate excess of cell DNA. The approach took into account the different sizes of cell DNA and complementary DNA in the hybridization mixture. It was found that uninfected chicken embryo fibroblasts have approximately seven copies, part haploid genome of DNA sequences homologous to part of the Rous-association virus 2 (RAV-2) genome. Infection with RAV-2 adds additional copies, and different sequences, of RAV -2- specific DNA. By 13 h postinfection, there are 3 to 10 additional copies per haploid genome. This number can not be increased by increasing the multiplicity of infection, and stays relatively constant up to 20 h postinfection, when some of the additional viral DNA is integrated. Between 20 and 40 h postinfection, the cells accumulated up to 100 copies per haploid genome of viral DNA. Most of these are unintegrated. This number decreases with cell transfer, until cells are left with one to three copies of additional viral DNA sequences per haploid genome, of which most are integrated. The finding that viral infection causes the permanent addition of one to three copies of integrated viral DNA, despite the cells being confronted with up to 100 copies per haploid genome after infection, is consistent with a hypothesis that chicken cells contain a limited number of specific integration sites for the oncornavirus genome.  相似文献   

17.
Chloroplast DNA Sequence Homologies among Vascular Plants   总被引:2,自引:2,他引:2       下载免费PDF全文
The extent of sequence conservation in the chloroplast genome of higher plants has been investigated. Supercoiled chloroplast DNA, prepared from pea seedlings, was labeled in vitro and used as a probe in reassociation experiments with a high concentration of total DNAs extracted from several angiosperms, gymnosperms, and lower vascular plants. In each case the probe reassociation was accelerated, demonstrating that some chloroplast sequences have been highly conserved throughout the evolution of vascular plants. Only among the flowering plants were distinct levels of cross-reaction with the pea chloroplast probe evident; broad bean and barley exhibited the highest and lowest levels, respectively. With the hydroxylapatite assay these levels decreased with a decrease in probe fragment length (from 1,860 to 735 bases), indicating that many conserved sequences in the chloroplast genome are separated by divergent sequences on a rather fine scale. Despite differences observed in levels of homology with the hydroxylapatite assay, S1 nuclease analysis of heteroduplexes showed that outside of the pea family the extent of sequence relatedness between the probe and various heterologous DNAs is approximately the same: 30%. In our interpretation, the fundamental changes in the chloroplast genome during angiosperm evolution involved the rearrangement of this 30% with respect to the more rapidly changing sequences of the genome. These rearrangements may have been more extensive in dicotyledons than in monocotyledons. We have estimated the amount of conserved and divergent DNA interspersed between one another.  相似文献   

18.
汪乐洋  黄海燕  吴强 《遗传》2017,39(4):313-325
在基因组中,编码区存在许多高度相似的基因簇或基因群(多拷贝基因),非编码区也存在大量的重复序列。这些重复序列能通过改变染色体的三维结构调控基因的转录,对于生物体的遗传与进化起到了重要的作用。其高度同源的特征使得利用CRISPR/Cas9技术进行基因组编辑时面临更加复杂的状况。如果编辑的片段是二倍体或多倍体,还会产生各条染色单体上的编辑情况不相同的现象。为此本文选择了2个位于同一染色体相距11 kb的高度同源300 bp片段(L1和L2)进行CRISPR介导的DNA片段编辑。采用一对sgRNA(分别共同靶向两片段的上、下游位点)引导Cas9对HepG2细胞两个高度相似的DNA片段进行切割。片段编辑的细胞进一步单克隆化后,对获得的22个L1/L2编辑的CRISPR单克隆细胞株进行详细的基因型鉴定。结果发现除了这两个DNA片段本身被删除外,它们之间的大片段也存在被删除的现象,三个片段的各种反转组合也很频繁。该研究结果对于采用CRISPR/Cas9系统编辑多拷贝基因或重复序列,尤其是对二倍体或多倍体生物进行基因组编辑时具有重要的借鉴和参考价值。  相似文献   

19.
Comparative analyses of genome structure and sequence of closely related species have yielded insights into the evolution and function of plant genomes. A total of 103,844 BAC end sequences delegated -73.8 Mb of O. officinalis that belongs to the CC genome type of the rice genus Oryza were obtained and compared with the genome sequences office cultivar, O. sativa ssp.japonica cv. Nipponbare. We found that more than 45% of O. officinalis genome consists of repeat sequences, which is higher than that of Nipponbare cultivar. To further investigate the evolutionary divergence of AA and CC genomes, two BAC-contigs of O. officinalis were compared with the collinear genomic regions of Nipponbare. Of 57 genes predicted in the AA genome orthologous regions, 39 had orthologs in the regions of the CC genome. Alignment of the orthologous regions indicated that the CC genome has undergone expansion in both genic and intergenic regions through primarily retroelement insertion. Particularly, the density of RNA transposable elements was 17.95% and 1.78% in O. officinalis and O. sativa, respectively. This explains why the orthologous region is about 100 kb longer in the CC genome in comparison to the AA genome.  相似文献   

20.
The photosynthetic oxygen evolution of Chlorella vulgaris (Beijer.) cells taken from phosphate-deficient (-P) and control cultures was measured during 8 days of culture growth. Under inorganic carbon concentration (50 microM) in the measuring cell suspension and irradiance (150 micromol m(-2) s(-1)), the same as during culture growth, there were no marked differences in the photosynthetic O2 evolution rate between the -P cells and the controls. The much slower growth of -P cultures indicated that the utilization of absorbed photosynthetically active radiation (PAR) in the CO2 assimilation and biomass production were in -P cells less efficient than in the controls. Alga cells under the phosphorus stress utilized more of the absorbed PAR in the nitrate reduction than the control cells. However, under conditions of more efficient CO2 supply (inorganic carbon concentration 150 microM, introducing of exogenous carbonic anhydrase to the measuring cell suspension) and under increased irradiance (500 micromol m(-2) s(-1)), the photosynthetic O2 evolution in -P cells reached a higher rate than in the controls. The results suggest that in -P cells the restricted CO2 availability limits the total photosynthetic process. But under conditions more favorable for the CO2 uptake and under high irradiance, the -P cells may reveal a higher photosynthetic oxygen evolution rate than the controls. It is concluded that an increased potential activity of the photosynthetic light energy absorption and conversion in the C. vulgaris cells from -P cultures is a sign of acclimation to phosphorus stress by a sun-type like adaptation response of the photosynthetic apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号