首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ma JK  Carrell CJ  Mathews FS  Davidson VL 《Biochemistry》2006,45(27):8284-8293
Amicyanin is a type I copper protein that is the natural electron acceptor for the quinoprotein methylamine dehydrogenase (MADH). The conversion of Proline52 of amicyanin to a glycine does not alter the physical and spectroscopic properties of the copper binding site, but it does alter the rate of electron transfer (ET) from MADH. The values of electronic coupling (H(AB)) and reorganization energy (lambda) that are associated with the true ET reaction from the reduced O-quinol tryptophan tryptophylquinone (TTQ) of MADH to oxidized amicyanin are significantly altered as a consequence of the P52G mutation. The experimentally determined H(AB) increases from 12 to 78 cm(-1), and lambda increases from 2.3 to 2.8 eV. The rate and salt-dependence of the proton transfer-gated ET reaction from N-quinol MADH to amicyanin are also changed by the P52G mutation. Kinetic data suggests that a new common reaction step has become rate-limiting for both the true and gated ET reactions that occur from different redox forms of MADH. A comparison of the crystal structures of P52G amicyanin with those of native amicyanin free and in complex with MADH provided clues as to the basis for the change in ET parameters. The mutation results in the loss of three carbons from Pro52 and the movement of the neighboring residue Met51. This reduces the number of hydrophobic interactions with MADH in the complex and perturbs the protein-protein interface. A model is proposed for the ET reaction with P52G amicyanin in which the most stable conformation of the protein-protein complex with MADH is not optimal for ET. A new preceding kinetic step is introduced prior to true ET that requires P52G amicyanin to switch from this redox-inactive stable complex to a redox-active unstable complex. Thus, the ET reaction of P52G amicyanin is no longer a true ET but one that is conformationally gated by the reorientation of the proteins within the ET protein complex. This same reaction step now also gates the ET from N-quinol MADH, which is normally rate-limited by a proton transfer.  相似文献   

2.
Ma JK  Wang Y  Carrell CJ  Mathews FS  Davidson VL 《Biochemistry》2007,46(39):11137-11146
Amicyanin is a type 1 copper protein that is the natural electron acceptor for the quinoprotein methylamine dehydrogenase (MADH). A P52G amicyanin mutation increased the Kd for complex formation and caused the normally true electron transfer (ET) reaction from O-quinol MADH to amicyanin to become a gated ET reaction (Ma, J. K., Carrell, C. J., Mathews, F. S., and Davidson, V. L. (2006) Biochemistry 45, 8284-8293). One consequence of the P52G mutation was to reposition the side chain of Met51, which is present at the MADH-amicyanin interface. To examine the precise role of Met51 in this interprotein ET reaction, Met51 was converted to Ala, Lys, and Leu. The Kd for complex formation of M51A amicyanin was unchanged but the experimentally determined electronic coupling increased from 12 cm-1 to 142 cm-1, and the reorganization energy increased from 2.3 to 3.1 eV. The rate and salt dependence of the proton transfer-gated ET reaction from N-quinol MADH to amicyanin is also changed by the M51A mutation. These changes in ET parameters and rates for the reactions with M51A amicyanin were similar to those caused by the P52G mutation and indicated that the ET reaction had become gated by a similar process, most likely a conformational rearrangement of the protein ET complex. The results of the M51K and M51L mutations also have consequences on the kinetic mechanism of regulation of the interprotein ET with effects that are intermediate between what is observed for the reaction of the native amicyanin and M51A amicyanin. These data indicate that the loss of the interactions involving Pro52 were primarily responsible for the change in Kd for P52G amicyanin, while the interactions involving the Met51 side chain are entirely responsible for the change in ET parameters and conversion of the true ET reaction of native amicyanin into a conformationally gated ET reaction.  相似文献   

3.
Sun D  Li X  Mathews FS  Davidson VL 《Biochemistry》2005,44(19):7200-7206
Amicyanin is a type I copper protein that mediates electron transfer (ET) from methylamine dehydrogenase (MADH) to cytochrome c-551i. Pro(94) resides in the "ligand loop" of amicyanin, a sequence of amino acids that contains three of the four copper ligands. ET from the reduced O-quinol tryptophan tryptophylquinone of MADH to oxidized P94A amicyanin is a true ET reaction that exhibits values of electronic coupling (H(AB)) and reorganization energy (lambda) that are the same as for the reaction of native amicyanin. In contrast, the parameters for the ET reaction from reduced P94A amicyanin to oxidized cytochrome c-551i have been significantly altered as a consequence of the mutation. These values of H(AB) and lambda are 8.3 cm(-)(1) and 2.3 eV, respectively, compared to values of 0.3 cm(-)(1) and 1.2 eV for the reaction of native reduced amicyanin. The crystal structure of reduced P94A amicyanin exhibits two alternate conformations with the positions of the copper 1.4 A apart [Carrell, C. J., Sun, D., Jiang, S., Davidson, V. L., and Mathews, F. S. (2004) Biochemistry 43, 9372-9380]. In one of these, conformation B, a water molecule has replaced Met(98) as a copper ligand, and the ET distance to the heme of the cytochrome is increased by 1.4 A. Analysis of these structures suggests that the true k(ET) for ET from the copper in conformation B to heme would be much less than for ET from conformation A. A novel kinetic mechanism is proposed to explain these data in which the reduction of Cu(2+) by methylamine dehydrogenase is a true ET reaction while the oxidation of Cu(1+) by cytochrome c-551i is kinetically coupled ET. By comparison of the temperature dependence of the observed rate of the coupled ET reaction from reduced P94A amicyanin to cytochrome c-551i with the predicted rates and temperature dependence for the true ET reaction from conformation A, it was possible to determine the K(eq) and values of DeltaH degrees and DeltaS degrees that are associated with the non-ET reaction that modulates the observed ET rate.  相似文献   

4.
The complete amino acid sequence of the blue copper protein amicyanin of Thiobacillus versutus, induced when the bacterium is grown on methylamine, has been determined as follows: QDKITVTSEKPVAAADVPADAVVVGIEKMKYLTPEVTIKAGETVYWVNGEVMPHNVA FKKGIVGEDAFRGEMMTKDQAYAITFNEAGSYDYFCTPHPFMRGKVIVE. The four copper ligand residues in this 106-residue-containing polypeptide chain are His54, Cys93, His96, and Met99. The Thiobacillus amicyanin is 52% similar to the amicyanin of Pseudomonas AM1, the only other copper protein known with the same spacing between the second histidine ligand and the methionine ligand. T. versutus amicyanin contains no cysteine bridge and is more closely related to the plant copper protein plastocyanin than to the bacterial copper protein azurin. Alignment of the two known amicyanin sequences with the consensus sequence of the plastocyanins and comparison with the known three-dimensional structure of poplar leaves plastocyanin reveals that the bacterial proteins have the same overall structure with two beta-sheets packed face to face. The major structural differences between the amicyanins and the plastocyanins appear to be located in two of the five loops that connect the six identified beta-strands of the amicyanins. The first of these two loops, connecting strands F and G, contains a ligand histidine and must have a different conformation from the same loop in the plastocyanins because it is shorter by two amino acids. Further differences occur in the loop connecting the strands D and E. This loop contains only 17 residues in amicyanin whereas the corresponding loop of plastocyanin contains 25 residues. Despite these differences the amicyanins appear much closer related to the plastocyanins than to the azurins. The present findings demonstrate that the occurrence of blue copper proteins with clearly plastocyanin-like features is not restricted to photosynthetic redox chains.  相似文献   

5.
Zhu Z  Jones LH  Graichen ME  Davidson VL 《Biochemistry》2000,39(30):8830-8836
Methylamine dehydrogenase (MADH) and amicyanin form a physiologic complex which is required for interprotein electron transfer. The crystal structure of this protein complex is known, and the importance of certain residues on amicyanin in its interaction with MADH has been demonstrated by site-directed mutagenesis. In this study, site-directed mutagenesis of MADH, kinetic data, and thermodynamic analysis are used to probe the molecular basis for stabilization of the protein complex by an interprotein salt bridge between Arg99 of amicyanin and Asp180 of the alpha subunit of MADH. This paper reports the first site-directed mutagenesis of MADH, as well as the construction, heterologous expression, and characterization of a six-His-tagged MADH. alpha Asp180 of MADH was converted to arginine to examine the effect on complex formation with native and mutant amicyanins. This mutation had no effect on the parameters for methylamine oxidation by MADH, but significantly affected its interaction with amicyanin. Of the native and mutant proteins that were studied, their observed order of affinity for each other was as follows: native MADH and native amicyanin > native MADH and R99D amicyanin > alpha D180R MADH and native amicyanin > alpha D180R MADH and R99D amicyanin, and alpha D180R MADH and R99L amicyanin. The alpha D180R mutation also eliminated the ionic strength dependence of the reaction of MADH with amicyanin that is observed with wild-type MADH. Interestingly, the inverse mutation pair of alpha D180R MADH and R99D amicyanin did not restore the favorable salt bridge, but instead disrupted complex formation much more severely than did either individual mutation. These results are explained using molecular modeling and thermodynamic analysis of the kinetic data to correlate the energy contributions of specific stabilizing and destabilizing interactions that are present in the wild-type and mutant complexes. A model is also proposed to describe the sequence of events that leads to stable complex formation between MADH and amicyanin.  相似文献   

6.
A ternary electron transfer protein complex has been crystallized and a preliminary structure investigation has been carried out. The complex is composed of a quinoprotein, methylamine dehydrogenase (MADH), a blue copper protein, amicyanin, and a c-type cytochrome (c551i). All three proteins were isolated from Paracoccus denitrificans. The crystals of the complex are orthorhombic, space group C222(1) with cell dimensions a = 148.81 A, b = 68.85 A, and c = 187.18 A. Two types of isomorphous crystals were prepared: one using native amicyanin and the other copper-free apo-amicyanin. The diffraction data were collected at 2.75 A resolution from the former and at 2.4 A resolution from the latter. The location of the MADH portion was determined by molecular replacement. The copper site of the amicyanin molecule was located in an isomorphous difference Fourier while the iron site of the cytochrome was found in an anomalous difference Fourier. The MADH from P. denitrificans (PD-MADH) is an H2L2 hetero-tetramer with the H subunit containing 373 residues and the L subunit 131 residues, the latter containing a novel redox cofactor, tryptophan tryptophylquinone (TTQ). The amicyanin of P. denitrificans contains 105 residues and the cytochrome c551i contains 155 residues. The ternary complex consists of one MADH tetramer with two molecules of amicyanin and two of c551i, forming a hetero-octamer; the octamer is located on a crystallographic diad. The relative positions of the three redox centers--i.e., the TTQ of MADH, the copper of amicyanin, and the heme group of c55li--are presented.  相似文献   

7.
Sun D  Davidson VL 《Biochemistry》2003,42(6):1772-1776
Within the methylamine dehydrogenase-amicyanin-cytochrome c-551i complex, electrons are transferred from tryptophan tryptophylquinone (TTQ) to heme via the type I copper center of amicyanin. Mutation of Pro94 of amicyanin to Phe increases the redox potential of the copper center within the protein complex by approximately 195 mV. This introduces a large energy barrier for the second electron transfer (ET) step in this three-protein ET chain. As a consequence of this mutation, the ET rate from TTQ to copper exhibits about a 6-fold increase and the ET rate from copper to heme exhibits about a 100-fold decrease. These changes in ET rate are consistent with the predictions of Marcus theory. Temperature dependence studies of these reactions indicate that the reorganization energies for the ET to and from the copper center are unchanged by the P94F mutation, despite the large change in redox potential that it causes. Steady-state kinetic studies indicate that despite the large energy barrier for the ET from copper to heme, methylamine-dependent reduction of heme by the three-protein complex with P94F amicyanin goes to completion. The turnover number for this steady-state reaction, however, is decreased 50-fold relative to that of the native complex. As a consequence of the P94F mutation, the rate constant for the unfavorable uphill ET reaction from copper to heme has become the rate-limiting step in the overall reaction. The evolutionary implications of the effects of this mutation on the function of this naturally occurring simple ET chain are discussed.  相似文献   

8.
Mutation of Pro94 to phenylalanine or alanine significantly alters the redox properties of the type I copper center of amicyanin. Each mutation increases the redox midpoint potential (E(m)) value by at least 140 mV and shifts the pK(a) for the pH dependence of the E(m) value to a more acidic value. Atomic resolution (0.99-1.1 A) structures of both the P94F and P94A amicyanin have been determined in the oxidized and reduced states. In each amicyanin mutant, an electron-withdrawing hydrogen bond to the copper-coordinating thiolate sulfur of Cys92 is introduced by movement of the amide nitrogens of Phe94 and Ala94 much closer to the thiolate sulfur than in wild-type amicyanin. This is the likely explanation for the much more positive E(m) values which result from each of these mutations. The observed decrease in the pK(a) value for the pH dependence of the E(m) value that is seen in the mutants seems to be correlated with steric hindrance to the rotation of the His95 copper ligand which results from the mutations. In wild-type amicyanin the His95 side chain undergoes a redox and pH-dependent conformational change which accounts for the pH dependence of the E(m) value of amicyanin. The reduced P94A amicyanin exhibits two alternate conformations with the positions of the copper 1.4 A apart. In one of these conformations, a water molecule appears to have replaced Met98 as a copper ligand. The relevance of these structures to the electron transfer properties of P94F and P94A amicyanin are also discussed.  相似文献   

9.
The crystal structure of the complex between the quinoprotein methylamine dehydrogenase (MADH) and the type I blue copper protein amicyanin, both from Paracoccus denitrificans, has been determined at 2.5-A resolution using molecular replacement. The search model was MADH from Thiobacillus versutus. The amicyanin could be located in an averaged electron density difference map and the model improved by refinement and model building procedures. Nine beta-strands are observed within the amicyanin molecule. The copper atom is located between three antiparallel strands and is about 2.5 A below the protein surface. The major intermolecular interactions occur between amicyanin and the light subunit of MADH where the interface is largely hydrophobic. The copper atom of amicyanin and the redox cofactor of MADH are about 9.4 A apart. One of the copper ligands, His 95, lies between the two redox centers and may facilitate electron transfer between them.  相似文献   

10.
Methylamine dehydrogenase (MADH) is produced by a range of gram-negative methylotrophic and autotrophic bacteria, and allows the organisms to utilise methylamine as the sole source of carbon. The enzyme catalyses the oxidation of methylamine to formaldehyde and ammonia, leaving it in a two-electron reduced state. To complete the catalytic cycle, MADH is reoxidised via an electron transfer (ET) chain. The redox center in the enzyme is the organic cofactor tryptophan tryptophylquinone (TTQ) derived from the posttranslational modification of two Trp residues in the protein. This cofactor has spectral features in the visible region, which change during catalytic turnover, defining spectrally distinct reaction intermediates that reflect the electronic state of the TTQ. In the case of the Paracoccus denitrificans enzyme the physiologic ET chain involves the protein redox partner amicyanin (a blue copper protein). A stable binary (MADH/amicyanin) complex can be formed, and its crystal structure has been solved to 2.5 A resolution by Chen et al. [Biochemistry 21 (1992) 4959]. These crystals were shown to be competent for catalysis and ET by Merli et al. [J. Biol. Chem. 271 (1996) 9177] using single crystal polarised absorption spectroscopy. Through a novel combination of single crystal visible microspectrophotometry, X-ray crystallography and freeze-trapping, we have trapped reaction intermediates of the enzyme in complex with its physiological redox partner amicyanin in the crystalline state. We will present data confirming that catalysis and ET in the binary complex crystals can be tracked by single crystal visible microspectrophotometry. We will also show that the reaction pathway is unperturbed by the presence of cryoprotectant solution, enabling direct freeze-trapping of reaction intermediates within the crystal. We will present new data demonstrating that the binary complex crystals are also capable of exhibiting UV light-dependent oxidase activity, as observed in solution [Biochim. Biophys. Acta 1364 (1998) 297].  相似文献   

11.
The obligate methylotroph Methylomonas sp. strain J produces two azurins (Az-iso1 and Az-iso2) as candidates for electron acceptor from methylamine dehydrogenase (MADH) in the electron-transfer process involving the oxidation of methylamine to formaldehyde and ammonia. The X-ray crystallographic study indicated that Az-iso2 gives two types of crystals (form I and form II) with polyethylene glycol (PEG4000) and ammonium sulfate as the precipitants, respectively. Comparison between the two Az-iso2 structures in forms I and II reveals the remarkable structural changes at the top surface of the molecule around the copper atom. Az-iso2 possesses Gly43 instead of Val43 or Ala43, which is unique among all other azurins around the copper ligand His46, inducing the remarkable structural change in the loop region from Gly37 to Gly43. When the structure of Az-iso2 is superimposed on that of amicyanin in the ternary complex composed of MADH, amicyanin, and cytochrome c(551), the loop of Az-iso2 deeply overlaps with the light subunit of MADH. However, the Az-iso2 molecule is probably able to avoid any steric hindrance with the cognate MADH to form the complex for intermolecular electron-transfer reaction, since the loop containing Gly43 is flexible. We discuss why the electron-transfer activity of Az-iso2 is fivefold higher than that of Az-iso1.  相似文献   

12.
To investigate the structural control mechanisms in the metal site of amicyanin when interacting with MADH, redox-inactive Ag+- and Cd2+-substituted amicyanins were studied with perturbed angular correlations of -rays (PAC) spectroscopy. PAC experiments on 111mCd-substituted amicyanin revealed two different metal-site structures, which are very likely in dynamic exchange on a ~5 ns timescale. Only one structure binds to MADH. The dissociation constants, K d, are 9±2 M with MADHred and 38±11 M with MADHox, indicating that the Cd-amicyanin binding affinity is regulated by the MADH redox state. PAC experiments on 111Ag-substituted amicyanin also showed two different forms of Ag-amicyanin, probably reflecting relaxation from Ag to Cd geometry. No binding of Ag-amicyanin to MADH could be observed with PAC, suggesting that the K d is larger than 43 M, based on the 95% confidence limit. NMR revealed large chemical shift differences between native copper amicyanin and both metal-substituted forms. Affected residues are found up to 15 Å away from the metal ion. The Ag+- and Cd2+-substituted amicyanins demonstrate no change in coordination as a function of pH, contrary to Cu+-amicyanin which shows protonation of the copper ligand His96 with pK a=6.8. It is concluded that, contrary to other blue copper proteins, Ag+-amicyanin is not a close mimic of Cu+-amicyanin, and that structural changes in the metal site have large effects on the affinity for the redox partner.Electronic Supplementary Material Supplementary material is available in the online version of this article at Abbreviations AOM angular overlap model - HSQC heteronuclear single-quantum coherence - MADH methylamine dehydrogenase - MADHox oxidized MADH - MADHred reduced MADH - NOESY nuclear Overhauser effect spectroscopy - NQI nuclear quadrupole interaction - PAC perturbed angular correlations of -rays - TOCSY total correlation spectroscopy  相似文献   

13.
Ma JK  Mathews FS  Davidson VL 《Biochemistry》2007,46(29):8561-8568
Mutation of the axial Met ligand of the type 1 copper site of amicyanin to Ala or Gln yielded M98A amicyanin, which exhibits typical axial type 1 ligation geometry but with a water molecule providing the axial ligand, and M98Q amicyanin, which exhibits significant rhombic distortion of the type 1 site (Carrell, C. J., Ma, J. K., Antholine, W. E., Hosler, J. P., Mathews, F. S., and Davidson, V. L. (2007) Biochemistry 46, 1900-1912). Despite the change of the axial ligand, the M98Q and M98A mutations had little effect on the redox potential of copper. The true electron transfer (ET) reactions from O-quinol methylamine dehydrogenase to oxidized native and mutant amicyanins revealed that the M98A mutation had little effect on kET, but the M98Q mutation reduced kET 45-fold. Thermodynamic analysis of the latter showed that the decrease in kET was due to an increase of 0.4 eV in the reorganization energy (lambda) associated with the ET reaction to M98Q amicyanin. No change in the experimentally determined electronic coupling or ET distance was observed, confirming that the mutation had not altered the rate-determining step for ET and that this was still a true ET reaction. The basis for the increased lambda is not the nature of the atom that provides the axial ligand because each uses an oxygen from Gln in M98Q amicyanin and from water in M98A amicyanin. Comparisons of the distance of the axial copper ligand from the equatorial plane that is formed by the other three copper ligands in isomorphous crystals of native and mutant amicyanins at atomic resolution indicate an increase in distance from 0.20 A in the native to 0.42 A in M98Q amicyanin and a slight decrease in distance for M98A amicyanin. This correlates with the rhombic distortion caused by the M98Q mutation that is clearly evident in the EPR and visible absorption spectra of the protein and suggests that the extent of rhombicity of the type 1 copper site influences the magnitude of lambda.  相似文献   

14.
Soluble quinoprotein dehydrogenases oxidize a wide range of sugar, alcohol, amine, and aldehyde substrates. The physiological electron acceptors for these enzymes are not pyridine nucleotides but are other soluble redox proteins. This makes these enzymes and their electron acceptors excellent systems with which to study mechanisms of long-range interprotein electron transfer reactions. The tryptophan tryptophylquinone (TTQ)-dependent methylamine dehydrogenase (MADH) transfers electrons to a blue copper protein, amicyanin. It has been possible to alter the rate of electron transfer by using different redox forms of MADH, varying reaction conditions, and performing site-directed mutagenesis on these proteins. From kinetic and thermodynamic analyses of the reaction rates, it was possible to determine whether a change in rate is due a change in Delta G(0), electronic coupling, reorganization energy or kinetic mechanism. Examples of each of these cases are discussed in the context of the known crystal structures of the electron transfer protein complexes. The pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase transfers electrons to a c-type cytochrome. Kinetic and thermodynamic analyses of this reaction indicated that this electron transfer reaction was conformationally coupled. Quinohemoproteins possess a quinone cofactor as well as one or more c-type hemes within the same protein. The structures of a PQQ-dependent quinohemoprotein alcohol dehydrogenase and a TTQ-dependent quinohemoprotein amine dehydrogenase are described with respect to their roles in intramolecular and intermolecular protein electron transfer reactions.  相似文献   

15.
The crystal structure of an electron transfer complex of aromatic amine dehydrogenase (AADH) and azurin is presented. Electrons are transferred from the tryptophan tryptophylquinone (TTQ) cofactor of AADH to the type I copper of the cupredoxin azurin. This structure is compared with the complex of the TTQ-containing methylamine dehydrogenase (MADH) and the cupredoxin amicyanin. Despite significant similarities between the two quinoproteins and the two cupredoxins, each is specific for its respective partner and the ionic strength dependence and magnitude of the binding constant for each complex are quite different. The AADH-azurin interface is largely hydrophobic, covering approximately 500 A(2) of surface on each molecule, with one direct hydrogen bond linking them. The closest distance from TTQ to copper is 12.6 A compared with a distance of 9.3 A in the MADH-amicyanin complex. When the MADH-amicyanin complex is aligned with the AADH-azurin complex, the amicyanin lies on top of the azurin but is oriented quite differently. Although the copper atoms differ in position by approximately 4.7 A, the amicyanin bound to MADH appears to be rotated approximately 90 degrees from its aligned position with azurin. Comparison of the structures of the two complexes identifies features of the interface that dictate the specificity of the protein-protein interaction and determine the rate of interprotein electron transfer.  相似文献   

16.
Cobalt(II) amicyanin was prepared by replacing the copper of the type I copper protein amicyanin from Paracoccus denitrificans with cobalt. The structure of the protein and the metal center have been characterized by X-ray crystallography and paramagnetic NMR spectroscopy. The crystal structure indicates that Met98, which provides an axial sulfur ligand in native amicyanin, is no longer bound to the metal in cobalt(II) amicyanin and that a water molecule is recruited from solvent to form the fourth metal ligand. This results in a tetrahedral coordination geometry for the cobalt ion. NMR studies in solution also indicate that the side chain of the methionine residue interacts less strongly with the metal in P. denitrificans amicyanin than in Paracoccus versutus amicyanin. The cobalt(II) amicyanin crystal structure is different from that of cobalt-substituted azurin in which the carbonyl of a glycine residue provides this equivalent ligand. In cobalt(II) amicyanin that residue is a proline, for which the oxygen is structurally inaccessible, so that the water occupies the position held by the glycine carbonyl in cobalt(II) azurin. Such a metal coordination involving water has not previously been reported for a native or metal-substituted type I copper protein.  相似文献   

17.
Interprotein electron transfer (ET) occurs between the tryptophan tryptophylquinone (TTQ) prosthetic group of aromatic amine dehydrogenase (AADH) and copper of azurin. The ET reactions from two chemically distinct reduced forms of TTQ were studied: an O-quinol form that was generated by reduction by dithionite, and an N-quinol form that was generated by reduction by substrate. It was previously shown that on reduction by substrate, an amino group displaces a carbonyl oxygen on TTQ, and that this significantly alters the rate of its oxidation by azurin (Hyun, Y-L., and Davidson V. L. (1995) Biochemistry 34, 12249-12254). To determine the basis for this change in reactivity, comparative kinetic and thermodynamic analyses of the ET reactions from the O-quinol and N-quinol forms of TTQ in AADH to the copper of azurin were performed. The reaction of the O-quinol exhibited values of electronic coupling (H(AB)) of 0.13 cm(-1) and reorganizational energy (lambda) of 1.6 eV, and predicted an ET distance of approximately 15 A. These results are consistent with the ET event being the rate-determining step for the redox reaction. Analysis of the reaction of the N-quinol by Marcus theory yielded an H(AB) which exceeded the nonadiabatic limit and predicted a negative ET distance. These results are diagnostic of a gated ET reaction. Solvent deuterium kinetic isotope effects of 1.5 and 3.2 were obtained, respectively, for the ET reactions from O-quinol and N-quinol AADH indicating that transfer of an exchangeable proton was involved in the rate-limiting reaction step which gates ET from the N-quinol, but not the O-quinol. These results are compared with those for the ET reactions from another TTQ enzyme, methylamine dehydrogenase, to amicyanin. The mechanism by which the ET reaction of the N-quinol is gated is also related to mechanisms of other gated interprotein ET reactions.  相似文献   

18.
A novel blue copper protein was constructed by replacing the C-terminal loop of amicyanin (Paracoccus versutus) by the homologous loop of rusticyanin. The C-terminal loop of both amicyanin and rusticyanin contains three (His, Cys, Met) of the four copper ligands. The amicyanin mutant exhibits all spectroscopic properties normally encountered for blue copper sites. The midpoint potential (369 mV) is the highest reported value for an amicyanin mutant. Cyclic voltammetry and NMR studies of the reduced form indicate that, in contrast to wild-type amicyanin and all amicyanin mutants described so far, the C-terminal histidine ligand does not protonate in the accessible pH range (pKa<4.5).  相似文献   

19.
Sun D  Chen ZW  Mathews FS  Davidson VL 《Biochemistry》2002,41(47):13926-13933
Methylamine dehydrogenase (MADH) possesses an alpha(2)beta(2) structure with each smaller beta subunit possessing a tryptophan tryptophylquinone (TTQ) prosthetic group. Phe55 of the alpha subunit is located where the substrate channel from the enzyme surface opens into the active site. Site-directed mutagenesis of alphaPhe55 has revealed roles for this residue in determining substrate specificity and binding monovalent cations at the active site. It is now shown that the alphaF55A mutation also increases the rate of the true electron transfer (ET) reaction from O-quinol MADH to amicyanin. The reorganization energy associated with the ET reaction is decreased from 2.3 to 1.8 eV. The electronic coupling associated with the ET reaction is decreased from 12 to 3 cm(-1). The crystal structure of alphaF55A MADH in complex with its electron acceptors, amicyanin and cytochrome c-551i, has been determined. Little difference in the overall structure is seen, relative to the native complex; however, there are significant changes in the solvent content of the active site and substrate channel. The crystal structure of alphaF55A MADH has also been determined with phenylhydrazine covalently bound to TTQ in the active site. Phenylhydrazine binding significantly perturbs the orientation of the TTQ rings relative to each other. The ET results are discussed in the context of the new and old crystal structures of the native and mutant enzymes.  相似文献   

20.
The type I copper center of amicyanin was replaced with a binuclear CuA center. To create this model CuA protein, a portion of the amino acid sequence that contains three of the ligands to the native type I copper center of Paracoccus denitrificans amicyanin was replaced with the corresponding portion of sequence that provides five ligands for the CuA center of cytochrome c oxidase from P. denitrificans. UV-visible and electron paramagnetic resonance spectroscopy confirm that the engineered protein as isolated possesses the mixed-valence Cu1.5Cu1.5 (purple) CuA center. Comparison of the spectroscopic properties of this CuA amicyanin with those of the CuA centers of other natural and engineered CuA proteins suggests that the spectroscopic features may be dictated more by the protein host than the sequence of the CuA loop. Novel reactions for a simple CuA model protein are also described. In contrast to other natural and engineered CuA proteins, the fully reduced CuA amicyanin may be reoxidized by molecular oxygen to the mixed-valence state. It is also shown that CuA amicyanin can serve as an electron donor and an electron acceptor for other redox proteins. The mixed-valence form accepts electrons from cytochromes c-551i and c-550 from P. denitrificans. The fully reduced form donates electrons to native and P94F amicyanin. The function as either an electron donor or acceptor is consistent with the measured redox potential of CuA amicyanin of +273 mV. These data indicate that this CuA amicyanin will be a particularly useful model protein for structure-function studies of reactivity and the electron transfer properties of the CuA redox center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号