首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang H  West M 《Biometrika》2009,96(4):821-834
We present Bayesian analyses of matrix-variate normal data with conditional independencies induced by graphical model structuring of the characterizing covariance matrix parameters. This framework of matrix normal graphical models includes prior specifications, posterior computation using Markov chain Monte Carlo methods, evaluation of graphical model uncertainty and model structure search. Extensions to matrix-variate time series embed matrix normal graphs in dynamic models. Examples highlight questions of graphical model uncertainty, search and comparison in matrix data contexts. These models may be applied in a number of areas of multivariate analysis, time series and also spatial modelling.  相似文献   

2.
We introduce three algorithms for learning generative models of molecular structures from molecular dynamics simulations. The first algorithm learns a Bayesian-optimal undirected probabilistic model over user-specified covariates (e.g., fluctuations, distances, angles, etc). L1 regularization is used to ensure sparse models and thus reduce the risk of over-fitting the data. The topology of the resulting model reveals important couplings between different parts of the protein, thus aiding in the analysis of molecular motions. The generative nature of the model makes it well-suited to making predictions about the global effects of local structural changes (e.g., the binding of an allosteric regulator). Additionally, the model can be used to sample new conformations. The second algorithm learns a time-varying graphical model where the topology and parameters change smoothly along the trajectory, revealing the conformational sub-states. The last algorithm learns a Markov Chain over undirected graphical models which can be used to study and simulate kinetics. We demonstrate our algorithms on multiple molecular dynamics trajectories.  相似文献   

3.
For the computational analysis of biological problems-analyzing data, inferring networks and complex models, and estimating model parameters-it is common to use a range of methods based on probabilistic logic constructions, sometimes collectively called machine learning methods. Probabilistic modeling methods such as Bayesian Networks (BN) fall into this class, as do Hierarchical Bayesian Networks (HBN), Probabilistic Boolean Networks (PBN), Hidden Markov Models (HMM), and Markov Logic Networks (MLN). In this review, we describe the most general of these (MLN), and show how the above-mentioned methods are related to MLN and one another by the imposition of constraints and restrictions. This approach allows us to illustrate a broad landscape of constructions and methods, and describe some of the attendant strengths, weaknesses, and constraints of many of these methods. We then provide some examples of their applications to problems in biology and medicine, with an emphasis on genetics. The key concepts needed to picture this landscape of methods are the ideas of probabilistic graphical models, the structures of the graphs, and the scope of the logical language repertoire used (from First-Order Logic [FOL] to Boolean logic.) These concepts are interlinked and together define the nature of each of the probabilistic logic methods. Finally, we discuss the initial applications of MLN to genetics, show the relationship to less general methods like BN, and then mention several examples where such methods could be effective in new applications to specific biological and medical problems.  相似文献   

4.
Hidden Markov Models (HMMs) are practical tools which provide probabilistic base for protein secondary structure prediction. In these models, usually, only the information of the left hand side of an amino acid is considered. Accordingly, these models seem to be inefficient with respect to long range correlations. In this work we discuss a Segmental Semi Markov Model (SSMM) in which the information of both sides of amino acids are considered. It is assumed and seemed reasonable that the information on both sides of an amino acid can provide a suitable tool for measuring dependencies. We consider these dependencies by dividing them into shorter dependencies. Each of these dependency models can be applied for estimating the probability of segments in structural classes. Several conditional probabilities concerning dependency of an amino acid to the residues appeared on its both sides are considered. Based on these conditional probabilities a weighted model is obtained to calculate the probability of each segment in a structure. This results in 2.27% increase in prediction accuracy in comparison with the ordinary Segmental Semi Markov Models, SSMMs. We also compare the performance of our model with that of the Segmental Semi Markov Model introduced by Schmidler et al. [C.S. Schmidler, J.S. Liu, D.L. Brutlag, Bayesian segmentation of protein secondary structure, J. Comp. Biol. 7(1/2) (2000) 233-248]. The calculations show that the overall prediction accuracy of our model is higher than the SSMM introduced by Schmidler.  相似文献   

5.
MOTIVATION: Cellular processes cause changes over time. Observing and measuring those changes over time allows insights into the how and why of regulation. The experimental platform for doing the appropriate large-scale experiments to obtain time-courses of expression levels is provided by microarray technology. However, the proper way of analyzing the resulting time course data is still very much an issue under investigation. The inherent time dependencies in the data suggest that clustering techniques which reflect those dependencies yield improved performance. RESULTS: We propose to use Hidden Markov Models (HMMs) to account for the horizontal dependencies along the time axis in time course data and to cope with the prevalent errors and missing values. The HMMs are used within a model-based clustering framework. We are given a number of clusters, each represented by one Hidden Markov Model from a finite collection encompassing typical qualitative behavior. Then, our method finds in an iterative procedure cluster models and an assignment of data points to these models that maximizes the joint likelihood of clustering and models. Partially supervised learning--adding groups of labeled data to the initial collection of clusters--is supported. A graphical user interface allows querying an expression profile dataset for time course similar to a prototype graphically defined as a sequence of levels and durations. We also propose a heuristic approach to automate determination of the number of clusters. We evaluate the method on published yeast cell cycle and fibroblasts serum response datasets, and compare them, with favorable results, to the autoregressive curves method.  相似文献   

6.
This article presents a statistical method for detecting recombination in DNA sequence alignments, which is based on combining two probabilistic graphical models: (1) a taxon graph (phylogenetic tree) representing the relationship between the taxa, and (2) a site graph (hidden Markov model) representing interactions between different sites in the DNA sequence alignments. We adopt a Bayesian approach and sample the parameters of the model from the posterior distribution with Markov chain Monte Carlo, using a Metropolis-Hastings and Gibbs-within-Gibbs scheme. The proposed method is tested on various synthetic and real-world DNA sequence alignments, and we compare its performance with the established detection methods RECPARS, PLATO, and TOPAL, as well as with two alternative parameter estimation schemes.  相似文献   

7.
Hidden Markov modelling is a powerful and efficient digital signal processing strategy for extracting the maximum likelihood model from a finite length sample of noisy data. Assuming the number of states in the model is known, then the state levels, transition probabilities, initial state distribution and the noise variance can be estimated. We investigate the applicability of this technique in membrane channel kinetics not only as a parameter estimator, but also as an aid to discriminating between various model types according to their statistical likelihood. We survey three representative classes of channel dynamics, namely: aggregated Markov models, semi-Markov models (with asymptotically convergent transition probabilities), and coupled Markov models; reformulating each within a discrete-time hidden Markov model framework. We then provide numerical evidence of the effectiveness of the procedure using simulated channel data and hence show that the correct model, as well as the model parameters, can be discerned. We also demonstrate that the model likelihood can be used to indicate the approximate number of states in the model.  相似文献   

8.
Rasmussen TK  Krink T 《Bio Systems》2003,72(1-2):5-17
Multiple sequence alignment (MSA) is one of the basic problems in computational biology. Realistic problem instances of MSA are computationally intractable for exact algorithms. One way to tackle MSA is to use Hidden Markov Models (HMMs), which are known to be very powerful in the related problem domain of speech recognition. However, the training of HMMs is computationally hard and there is no known exact method that can guarantee optimal training within reasonable computing time. Perhaps the most powerful training method is the Baum-Welch algorithm, which is fast, but bears the problem of stagnation at local optima. In the study reported in this paper, we used a hybrid algorithm combining particle swarm optimization with evolutionary algorithms to train HMMs for the alignment of protein sequences. Our experiments show that our approach yields better alignments for a set of benchmark protein sequences than the most commonly applied HMM training methods, such as Baum-Welch and Simulated Annealing.  相似文献   

9.

Background  

Hidden Markov Models (HMMs) have been extensively used in computational molecular biology, for modelling protein and nucleic acid sequences. In many applications, such as transmembrane protein topology prediction, the incorporation of limited amount of information regarding the topology, arising from biochemical experiments, has been proved a very useful strategy that increased remarkably the performance of even the top-scoring methods. However, no clear and formal explanation of the algorithms that retains the probabilistic interpretation of the models has been presented so far in the literature.  相似文献   

10.
Most ab initio gene predictors use a probabilistic sequence model, typically a hidden Markov model, to combine separately trained models of genomic signals and content. By combining separate models of relevant genomic features, such gene predictors can exploit small training sets and incomplete annotations, and can be trained fairly efficiently. However, that type of piecewise training does not optimize prediction accuracy and has difficulty in accounting for statistical dependencies among different parts of the gene model. With genomic information being created at an ever-increasing rate, it is worth investigating alternative approaches in which many different types of genomic evidence, with complex statistical dependencies, can be integrated by discriminative learning to maximize annotation accuracy. Among discriminative learning methods, large-margin classifiers have become prominent because of the success of support vector machines (SVM) in many classification tasks. We describe CRAIG, a new program for ab initio gene prediction based on a conditional random field model with semi-Markov structure that is trained with an online large-margin algorithm related to multiclass SVMs. Our experiments on benchmark vertebrate datasets and on regions from the ENCODE project show significant improvements in prediction accuracy over published gene predictors that use intrinsic features only, particularly at the gene level and on genes with long introns.  相似文献   

11.
12.

Background  

Molecular database search tools need statistical models to assess the significance for the resulting hits. In the classical approach one asks the question how probable a certain score is observed by pure chance. Asymptotic theories for such questions are available for two random i.i.d. sequences. Some effort had been made to include effects of finite sequence lengths and to account for specific compositions of the sequences. In many applications, such as a large-scale database homology search for transmembrane proteins, these models are not the most appropriate ones. Search sensitivity and specificity benefit from position-dependent scoring schemes or use of Hidden Markov Models. Additional, one may wish to go beyond the assumption that the sequences are i.i.d. Despite their practical importance, the statistical properties of these settings have not been well investigated yet.  相似文献   

13.
Functional connectivity concerns the correlated activity between neuronal populations in spatially segregated regions of the brain, which may be studied using functional magnetic resonance imaging (fMRI). This coupled activity is conveniently expressed using covariance, but this measure fails to distinguish between direct and indirect effects. A popular alternative that addresses this issue is partial correlation, which regresses out the signal of potentially confounding variables, resulting in a measure that reveals only direct connections. Importantly, provided the data are normally distributed, if two variables are conditionally independent given all other variables, their respective partial correlation is zero. In this paper, we propose a probabilistic generative model that allows us to estimate functional connectivity in terms of both partial correlations and a graph representing conditional independencies. Simulation results show that this methodology is able to outperform the graphical LASSO, which is the de facto standard for estimating partial correlations. Furthermore, we apply the model to estimate functional connectivity for twenty subjects using resting-state fMRI data. Results show that our model provides a richer representation of functional connectivity as compared to considering partial correlations alone. Finally, we demonstrate how our approach can be extended in several ways, for instance to achieve data fusion by informing the conditional independence graph with data from probabilistic tractography. As our Bayesian formulation of functional connectivity provides access to the posterior distribution instead of only to point estimates, we are able to quantify the uncertainty associated with our results. This reveals that while we are able to infer a clear backbone of connectivity in our empirical results, the data are not accurately described by simply looking at the mode of the distribution over connectivity. The implication of this is that deterministic alternatives may misjudge connectivity results by drawing conclusions from noisy and limited data.  相似文献   

14.
MOTIVATION: There is a growing interest in extracting statistical patterns from gene expression time-series data, in which a key challenge is the development of stable and accurate probabilistic models. Currently popular models, however, would be computationally prohibitive unless some independence assumptions are made to describe large-scale data. We propose an unsupervised conditional random fields (CRF) model to overcome this problem by progressively infusing information into the labelling process through a small variable voting pool. RESULTS: An unsupervised CRF model is proposed for efficient analysis of gene expression time series and is successfully applied to gene class discovery and class prediction. The proposed model treats each time series as a random field and assigns an optimal cluster label to each time series, so as to partition the time series into clusters without a priori knowledge about the number of clusters and the initial centroids. Another advantage of the proposed method is the relaxation of independence assumptions.  相似文献   

15.
《BBA》2013,1827(7):861-868
Forty-three years ago, Kok and coworkers introduced a phenomenological model describing period-four oscillations in O2 flash yields during photosynthetic water oxidation (WOC), which had been first reported by Joliot and coworkers. The original two-parameter Kok model was subsequently extended in its level of complexity to better simulate diverse data sets, including intact cells and isolated PSII-WOCs, but at the expense of introducing physically unrealistic assumptions necessary to enable numerical solutions. To date, analytical solutions have been found only for symmetric Kok models (inefficiencies are equally probable for all intermediates, called “S-states”). However, it is widely accepted that S-state reaction steps are not identical and some are not reversible (by thermodynamic restraints) thereby causing asymmetric cycles. We have developed a mathematically more rigorous foundation that eliminates unphysical assumptions known to be in conflict with experiments and adopts a new experimental constraint on solutions. This new algorithm termed STEAMM for S-state Transition Eigenvalues of Asymmetric Markov Models enables solutions to models having fewer adjustable parameters and uses automated fitting to experimental data sets, yielding higher accuracy and precision than the classic Kok or extended Kok models. This new tool provides a general mathematical framework for analyzing damped oscillations arising from any cycle period using any appropriate Markov model, regardless of symmetry. We illustrate applications of STEAMM that better describe the intrinsic inefficiencies for photon-to-charge conversion within PSII-WOCs that are responsible for damped period-four and period-two oscillations of flash O2 yields across diverse species, while using simpler Markov models free from unrealistic assumptions.  相似文献   

16.
17.
Linkage disequilibrium (LD) is defined as a stochastic dependence between alleles at two or more loci. Although understanding LD is important in the study of the genetics of many species, little attention has been paid on how a covariance structure between many loci distributed across the genome should be represented. Given that biological systems at the cellular level often involve gene networks, it is appealing to evaluate LD from a network perspective, i.e., as a set of associated loci involved in a complex system. We applied a Markov network (MN) to study LD using data on 1,279 markers derived from 599 wheat inbred lines. The MN attempts to account for association between two markers, conditionally on the remaining markers in the network model. In this study, the recovery of the structure of a LD network was done through two variants of pseudo-likelihoods subject to an L1 penalty on the MN parameters. It is shown that, while the L1-regularized Markov network preserves features of a Bayesian network (BN), the nodes in the resulting networks have fewer links. The resulting sparse network, encoding conditional independencies, provides a clearer picture of association than marginal LD metrics, and a sparse graph eases interpretation markedly, since it includes a smaller number of edges than a BN. Thus, an L1-regularized sparse Markov network seems appealing for representing conditional LD with high-dimensional genomic data, where variables, e.g., single nucleotide polymorphism markers, are expected to be sparsely connected.  相似文献   

18.
Protein structure prediction methods typically use statistical potentials, which rely on statistics derived from a database of know protein structures. In the vast majority of cases, these potentials involve pairwise distances or contacts between amino acids or atoms. Although some potentials beyond pairwise interactions have been described, the formulation of a general multibody potential is seen as intractable due to the perceived limited amount of data. In this article, we show that it is possible to formulate a probabilistic model of higher order interactions in proteins, without arbitrarily limiting the number of contacts. The success of this approach is based on replacing a naive table‐based approach with a simple hierarchical model involving suitable probability distributions and conditional independence assumptions. The model captures the joint probability distribution of an amino acid and its neighbors, local structure and solvent exposure. We show that this model can be used to approximate the conditional probability distribution of an amino acid sequence given a structure using a pseudo‐likelihood approach. We verify the model by decoy recognition and site‐specific amino acid predictions. Our coarse‐grained model is compared to state‐of‐art methods that use full atomic detail. This article illustrates how the use of simple probabilistic models can lead to new opportunities in the treatment of nonlocal interactions in knowledge‐based protein structure prediction and design. Proteins 2013; 81:1340–1350. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
An important open problem of computational neuroscience is the generic organization of computations in networks of neurons in the brain. We show here through rigorous theoretical analysis that inherent stochastic features of spiking neurons, in combination with simple nonlinear computational operations in specific network motifs and dendritic arbors, enable networks of spiking neurons to carry out probabilistic inference through sampling in general graphical models. In particular, it enables them to carry out probabilistic inference in Bayesian networks with converging arrows ("explaining away") and with undirected loops, that occur in many real-world tasks. Ubiquitous stochastic features of networks of spiking neurons, such as trial-to-trial variability and spontaneous activity, are necessary ingredients of the underlying computational organization. We demonstrate through computer simulations that this approach can be scaled up to neural emulations of probabilistic inference in fairly large graphical models, yielding some of the most complex computations that have been carried out so far in networks of spiking neurons.  相似文献   

20.
Hidden Markov models (HMMs) are probabilistic models that are well adapted to many tasks in bioinformatics, for example, for predicting the occurrence of specific motifs in biological sequences. MAMOT is a command-line program for Unix-like operating systems, including MacOS X, that we developed to allow scientists to apply HMMs more easily in their research. One can define the architecture and initial parameters of the model in a text file and then use MAMOT for parameter optimization on example data, decoding (like predicting motif occurrence in sequences) and the production of stochastic sequences generated according to the probabilistic model. Two examples for which models are provided are coiled-coil domains in protein sequences and protein binding sites in DNA. A wealth of useful features include the use of pseudocounts, state tying and fixing of selected parameters in learning, and the inclusion of prior probabilities in decoding. AVAILABILITY: MAMOT is implemented in C++, and is distributed under the GNU General Public Licence (GPL). The software, documentation, and example model files can be found at http://bcf.isb-sib.ch/mamot  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号