首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《植物生态学报》2014,38(10):1029
Aims Grassland desertification is being accelerated because of adverse climate change effects and unsustainable land uses, resulting in several major environmental problems. However, there are few studies on the economics spectrum of different plant functional types in desert steppe. The objectives of the current study are to examine the relationships among leaf functional traits of native plant species, to compare the functional traits among different plant functional types, and to determine whether an economic spectrum exists for the majority of species in the desert steppe of Damao Banner, Nei Mongol, China.
Methods Photosynthetic and chlorophyll fluorescence parameters, specific leaf area (SLA), and leaf nitrogen contents across 24 species of different functional types were measured in situ in the desert steppe ecosystem. Non-parametric tests were used to analyze leaf trait differences in plant species of different functional types. Linear regression analysis was used to determine the relationships among leaf traits in different plant species. Finally, a comprehensive analysis on these leaf traits in different plant species was conducted using the principal component analysis. All data analyses were performed using SPSS 16.0 (SPSS, Chicago, USA).
Important findings Significant differences among plant functional types were found in most of the leaf traits. SLA and mass-based nitrogen concentration (Nmass) in grasses were 2.39 and 1.20 folds, respectively, of that in shrubs; area-based photosynthetic capacity (Aarea), SLA, and photosynthetic nitrogen use efficiency (PNUE) in annual species were 1.93, 2.13, and 4.24 folds, respectively, of that in perennial species; and Aarea, SLA, and PNUE in C4 species were 2.25, 1.73, and 3.61 folds, respectively, of that in C3 species. Almost all relationships significantly differed (p < 0.01) among the leaf traits, with exception of the relationships between Aarea and area-based nitrogen concentration (Narea) and between quantum yield of PSII electron transport (ΦPSII) and SLA, implying that an economic spectrum may exist in the desert steppe ecosystem. The relationships of Narea, mass-based photosynthetic capacity (Amass), and PNUE with SLA were most significantly strong (R2 = 0.54, 0.62, 0.60, respectively; p < 0.01). Results in this study suggest that the annuals, grasses, and C4 species might be located at the end of the leaf economic spectrum with high area-based photosynthetic rate, high nitrogen concentration on mass basis, short leaf lifespan, and high SLA; whereas the perennials, shrubs, and C3 species could be located at the another end of the economic spectrum with contrasting traits.  相似文献   

2.
A test of the generality of leaf trait relationships on the Tibetan Plateau   总被引:5,自引:0,他引:5  
He JS  Wang Z  Wang X  Schmid B  Zuo W  Zhou M  Zheng C  Wang M  Fang J 《The New phytologist》2006,170(4):835-848
Leaf mass per area (LMA), nitrogen concentration (on mass and area bases, N(mass) and N(area), respectively), photosynthetic capacity (A(mass) and A(area)) and photosynthetic nitrogen use efficiency (PNUE) are key foliar traits, but few data are available from cold, high-altitude environments. Here, we systematically measured these leaf traits in 74 species at 49 research sites on the Tibetan Plateau to examine how these traits, measured near the extremes of plant tolerance, compare with global patterns. Overall, Tibetan species had higher leaf nitrogen concentrations and photosynthetic capacities compared with a global dataset, but they had a slightly lower A(mass) at a given N(mass). These leaf trait relationships were consistent with those reported from the global dataset, with slopes of the standardized major axes A(mass)-LMA, N(mass)-LMA and A(mass)-N(mass) identical to those from the global dataset. Climate only weakly modulated leaf traits. Our data indicate that covarying sets of leaf traits are consistent across environments and biogeographic regions. Our results demonstrate functional convergence of leaf trait relationships in an extreme environment.  相似文献   

3.
We aimed to identify marker traits indicating the functional types of plants in the European Northeast. We try to answer the following questions. Which ecological factors make the largest contribution to identifying the functional types of plants in the North and can CO2-exchange and related traits be used as markers? The data were collected from 1000-km latitudinal gradient across middle, north, and far north boreal forests in the east border of Europe. Comparative analysis of 102 species from 36 plant families enabled us to determine the marker traits indicating plant functional types. Competitor species have maximal plant height, comparatively low leaf dry matter content (LDMC), and accumulate high amounts of nitrogen in leaves. These species also have comparatively high photosynthetic and respiration rates. Ruderal species have low values of LDMC, and maximal photosynthetic rate, respiration rate, and photosynthetic nitrogen-use efficiency (PNUE). Slow-growing stress tolerators have a low photosynthetic rate, low respiration rate, and low levels of nitrogen and PNUE. The specific leaf area (SLA) of these plants shows a highly significant correlation with the light regime. In the boreal zone, SLA was found to be more closely related to light availability than to the plant functional type, indicating that SLA is unsuitable for use as a marker trait. We found strong correlations between plant height, respiration rate, and photosynthetic activity and soil nutrition according to Ellenberg values. Soil mineral element contents and acidity were found to have a significant influence on the functional types of plants.  相似文献   

4.
Aims Ecological systems, especially soils, have been recently recognized as an important source of atmospheric nitric oxide (NO). However, the study on the contribution of plants to atmospheric NO budget is significantly lagged. The specific objectives of this study are to reveal the phylogenetic variation in NO emission potential existing in various plant species and find out the possible leaf traits affecting NO emission potential.Methods We measured NO emission potential, leaf N and C content, C:N ratio, specific leaf area, net photosynthetic rate (P n) and estimated photosynthetic N use efficiency (PNUE) of 88 plant species. Further investigation of the relationships between NO emission potential and leaf traits were performed by simple linear regression analysis and pair-wise correlation coefficients analysis.Important findings Major results are as follows: (1) NO emission from plant species exhibited large variations, ranging from 0 to 41.7 nmol m ?2 h-1, and the species frequency distributions of NO emission potential could be fitted to a log-normal curve. (2) Among 88 species, NO emission potential was the highest in Podocarpus macrophyllus, but lowest in Zanthoxylum nitidum and Vernicia montana. (3) NO emission potential has strong correlation to leaf N content, P n and PNUE. The variations in NO emission potential among diverse plant species may be closely related to leaf N level and net photosynthetic ability.  相似文献   

5.
Li  Chunhuan  Yu  Hailong  Xu  Yixin  Zhu  Wanwan  Wang  Pan  Huang  Juying 《Plant Ecology》2022,223(4):407-421

Leaf functional traits are important for characterizing plant nutrient strategies. The C:N:P stoichiometric balance in soils and plants, which could indicate types of nutrient limitation, is altered under changing precipitation patterns. However, whether such alterations affect leaf functional traits remains unclear. We conducted a three-year simulated precipitation experiment in a desert steppe in northwestern China to determine changes in leaf photosynthetic traits and nutrient conservation traits in five plant species and tested the relationships of these traits with soil and leaf C:N:P stoichiometry. The five species showed few changes in their leaf traits under drought conditions, but they adjusted these traits (especially P traits) under extremely wet conditions (50% increase in precipitation). Improved leaf photosynthetic N and P use, lowered leaf P uptake, and enhanced leaf N resorption might help Lespedeza potaninii to rely less on soil nutrients in extremely wet environments than other species do. Leaf photosynthetic traits were regulated primarily by soil and leaf C:N:P stoichiometry. Leaf nutrient conservation traits were controlled by both leaf C:N:P stoichiometry and soil properties (i.e., enzyme activity and microbial biomass), a condition especially true for P traits. The results suggest that precipitation-induced alteration in the C:N:P stoichiometric balance might have important influences on plant nutrient use strategies and even on the nutrient cycling of desert steppes.

  相似文献   

6.
The photosynthesis–nitrogen relationship is significantly different among species. Photosynthetic capacity per unit leaf nitrogen, termed as photosynthetic nitrogen-use efficiency (PNUE), has been considered an important leaf trait to characterise species in relation to their leaf economics, physiology, and strategy. In this review, I discuss (1) relations between PNUE and species ecology, (2) physiological causes and (3) ecological implications of the interspecific difference in PNUE. Species with a high PNUE tend to have high growth rates and occur in disturbed or high productivity habitats, while those with a low PNUE occur in stressful or low productivity habitats. PNUE is an important leaf trait that correlates with other leaf traits, such as leaf mass per area (LMA) and leaf life span, irrespective of life form, phylogeny, and biomes. Various factors are involved in the interspecific difference. In particular, nitrogen allocation within leaves and the mesophyll conductance for CO2 diffusion are important. To produce tough leaves, plants need to allocate more biomass and nitrogen to make thick cell walls, leading to a reduction in the mesophyll conductance and in nitrogen allocation to the photosynthetic apparatus. Allocation of biomass and nitrogen to cell walls may cause the negative relationship between PNUE and LMA. Since plants cannot maximise both PNUE and leaf toughness, there is a trade-off between photosynthesis and persistence, which enables the existence of species with various leaf characteristics on the earth.  相似文献   

7.
While foliar photosynthetic relationships with light, nitrogen, and water availability have been well described, environmental factors driving vertical gradients of foliar traits within forest canopies are still not well understood. We, therefore, examined how light availability and vapour pressure deficit (VPD) co-determine vertical gradients (between 12 and 42 m and in the understorey) of foliar photosynthetic capacity (Amax), 13C fractionation (∆), specific leaf area (SLA), chlorophyll (Chl), and nitrogen (N) concentrations in canopies of Fagus sylvatica and Abies alba growing in a mixed forest in Switzerland in spring and summer 2017. Both species showed lower Chl/N and lower SLA with higher light availability and VPD at the top canopy. Despite these biochemical and morphological acclimations, Amax during summer remained relatively constant and the photosynthetic N-use efficiency (PNUE) decreased with higher light availability for both species, suggesting suboptimal N allocation within the canopy. ∆ of both species were lower at the canopy top compared to the bottom, indicating high water-use efficiency (WUE). VPD gradients strongly co-determined the vertical distribution of Chl, N, and PNUE in F. sylvatica, suggesting stomatal limitation of photosynthesis in the top canopy, whereas these traits were only related to light availability in A. alba. Lower PNUE in F. sylvatica with higher WUE clearly indicated a trade-off in water vs. N use, limiting foliar acclimation to high light and VPD at the top canopy. Species-specific trade-offs in foliar acclimation to environmental canopy gradients may thus be considered for scaling photosynthesis from leaf to canopy to landscape levels.  相似文献   

8.
以山西翼城翅果油树(Elaeagnus mollis)自然保护区的翅果油树为研究对象,利用LI-3000A叶面积测定仪测量其单叶面积,用Li-6400便携式光合作用测定系统测定单位叶面积饱和光合速率(Aaraa),用H2SO4-H2O2消煮法测定叶氮含量,计算叶性参数比叶面积(SLA)、单位叶重量饱和光合速率(Amass)、光合氮利用率(PNUE)和单位重量叶氮含量(Nmass)的值,并研究它们与径级之间的关系.结果表明:随着翅果油树径级的增加,SLA、Nmass、Aarea、Amass和PNUE值先下降后上升,当翅果油树径级为7.5 cm左右时,SLA、Nmass、Aarea、Amass和PNUE值均降到最小值,表明径级为7.5 cm左右的翅果油树其光合能力最弱、光合氮利用率较低且生存压力较大.翅果油树叶性参数是研究翅果油树种群动态变化的有效指标,可为研究翅果油树种群动态提供更为便捷的方法.  相似文献   

9.
There is a close phylogenetic relationship between Paphiopedilum and Cypripedium, but these two genera diverge considerably in terms of their leaf traits. To understand the evolution and the ecophysiological significance of leaf traits, we investigated the leaf traits of three Paphiopedilum species and three Cypripedium species in southwestern China. Cypripedium tibeticum and C. flavum showed a significantly higher light-saturated photosynthetic rate (P(max) ), stomatal conductance (g(s) ), photosynthetic nitrogen utilization efficiency (PNUE) and specific leaf area (SLA), but lower ratio of leaf carbon to nitrogen content (C/N) and leaf construction cost (CC) than Paphiopedilum. These leaf traits of Cypripedium suggest its high resource use efficiency and high growth rate reflecting adaptation to a short growing period and abundant soil nutrients and water in alpine habitats. Conversely, the low P(max) , g(s) , PNUE, SLA and the ratio of chlorophyll a to chlorophyll b (Chl a/b), but high leaf nitrogen investment in light-harvesting component (P(L) ), CC and C/N in Paphiopedilum indicate its adaptation to a low light, nutrient-poor and limited soil water habitats in karst areas. As a sympatric species of Paphiopedilum, although C. lentiginosum retained the phylogenetic leaf traits of Cypripedium, such as high mass-based light-saturated photosynthetic rate (P(max-M) ), g(s) and PNUE, it had some similar leaf traits to those of Paphiopedilum, such as low mesophyll conductance (g(m) ) and Chl a/b, and high P(L) , which reflected an adaptation to the same habitat. Our results show that the evolution of the leaf traits of Paphiopedilum and Cypripedium are shaped by both phylogeny and environment.  相似文献   

10.
Synthesis This study compared the decomposability of leaf, twig and wood litter from 27 co‐occurring temperate rainforest tree species in New Zealand. We found that interspecific variation in decomposition was not coordinated across the three litter types. Analysis of the relationships between functional traits and decomposition revealed that traits predictive of wood decomposition varied among the species independently from traits predictive of the decomposition of leaf and twig litter. We conclude that efforts to understand how tree species influence C, N and P dynamics in forested ecosystems through the decomposition pathway need to consider the functional traits of multiple plant structures. Plant functional traits are increasingly used to evaluate changes in ecological and ecosystem processes. However our understanding of how functional traits coordinate across different plant structures, and the implications for trait‐driven processes such as litter decomposition, remains limited. We compared the functional traits of green leaves and leaf, twig and wood litter among 27 co‐occurring tree species from New Zealand, and quantified the loss of mass, N and P from the three litter types during decomposition. We hypothesised that: a) the functional traits of green leaves, and leaf, twig and wood litter are co‐ordinated so that species which produce high quality leaves and leaf litter will also produce high quality twig and wood litter, and b) the decomposability of leaf, twig and wood litter is coordinated because breakdown of all three litter types is driven by similar combinations of traits. Trait variation across species was co‐ordinated between leaves, twigs and wood when angiosperm and gymnosperm species were considered in combination, or when angiosperms were considered separately, but trait coordination was poor for gymnosperms. There was little coordination among the three litter types in their decomposability, especially when angiosperms and gymnosperms were considered separately; this was caused by the decomposability of each of the three litter types, at least partially, being driven by different functional traits or trait combinations. Our findings indicate that although interspecific variation in the functional traits of trees can be coordinated among leaves, twigs and wood, different or unrelated traits predict the decomposition of these different structures. Furthermore, leaf‐level analyses of functional traits are not satisfactory proxies for function of whole trees and related ecological processes. As such, efforts to understand how tree species influence C, N and P dynamics in forested ecosystems through the decomposition pathway need to consider functional traits of other plant structures.  相似文献   

11.
Feng YL  Fu GL  Zheng YL 《Planta》2008,228(3):383-390
Comparisons between invasive and native species may not characterize the traits of invasive species, as native species might be invasive elsewhere if they were introduced. In this study, invasive Oxalis corymbosa and Peperomia pellucida were compared with their respective noninvasive alien congeners. We hypothesized that the invasive species have higher specific leaf (SLA) than their respective noninvasive alien congeners, and analyzed the physiological and ecological consequences of the higher SLA. Higher SLA was indeed the most important trait for the two invaders, which was associated with their lower leaf construction cost, higher nitrogen (N) allocation to photosynthesis and photosynthetic N use efficiency (PNUE). The higher N allocation to photosynthesis of the invaders in turn increased their PNUE, N content in photosynthesis, biochemical capacity for photosynthesis, and therefore light-saturated photosynthetic rate. The above resource capture-, use- and growth-related traits may facilitate the two invaders' invasion, while further comparative studies on a wider range of invasive and noninvasive congeners are needed to understand the generality of this pattern and to fully assess the competitive advantages afforded by these traits.  相似文献   

12.
The roles of photosynthesis‐related traits in invasiveness of introduced plant species are still not well elucidated, especially in nutrient‐poor habitats. In addition, little effort has been made to determine the physiological causes and consequences of the difference in these traits between invasive and native plants. To address these problems, we compared the differences in 16 leaf functional traits related to light‐saturated photosynthetic rate (Pmax) between 22 invasive and native plants in a nutrient‐poor habitat in northeast China. The invasive plants had significantly higher Pmax, photosynthetic nitrogen‐ (PNUE), phosphorus‐ (PPUE), potassium‐ (PKUE) and energy‐use efficiencies (PEUE) than the co‐occurring natives, while leaf nutrient concentrations, construction cost (CC) and specific leaf area were not significantly different between the invasive and native plants. The higher PNUE contributed to higher Pmax for the invasive plants, which in turn contributed to higher PPUE, PKUE and PEUE. CC changed independently with other traits such as Pmax, PNUE, PPUE, PKUE and PEUE, showing two trait dimensions, which may facilitate acclimation to multifarious niche dimensions. Our results indicate that the invasive plants have a superior resource‐use strategy, i.e. higher photosynthesis under similar resource investments, contributing to invasion success in the barren habitat.  相似文献   

13.
赖小红  王海洋  钟雨航  林立  李名扬 《生态学报》2019,39(21):8058-8067
叶功能性状能反映植物对环境变化的适应策略,利用开顶式熏气法,对9种常见园林植物进行为期20天的NO2熏气实验,分析不同NO2浓度熏气下叶片形态结构指标(单叶干重、单叶面积、比叶面积)、光合生理指标(光合速率、荧光参数)及化学性状指标(叶N含量、叶P含量、N:P比值)的差异,从而探讨以上植物叶性状对NO2污染的短期响应。结果表明,不同植物叶性状对不同浓度NO2污染的响应存在显著差异,即不同植物应对NO2污染的适应策略不同,同种植物在不同浓度NO2熏气下叶性状指标变化趋势相同,但变化幅度不同,可见同种植物对不同NO2浓度的响应策略也存在差异;大部分叶性状指标间表现出显著的相关性,但叶N含量与比叶面积间未发现显著相关性,表明叶经济谱性状间权衡机制的稳定性在个体尺度上可能会发生改变。研究结果揭示了不同植物对NO2污染的适应与响应差异,对预测城市NO2污染可能带来的植物功能性状的协同进化以及植物生态策略的改变具有重要意义。  相似文献   

14.
The aim of this study was to systematically analyze the potential and limitations of using plant functional trait observations from global databases versus in situ data to improve our understanding of vegetation impacts on ecosystem functional properties (EFPs). Using ecosystem photosynthetic capacity as an example, we first provide an objective approach to derive robust EFP estimates from gross primary productivity (GPP) obtained from eddy covariance flux measurements. Second, we investigate the impact of synchronizing EFPs and plant functional traits in time and space to evaluate their relationships, and the extent to which we can benefit from global plant trait databases to explain the variability of ecosystem photosynthetic capacity. Finally, we identify a set of plant functional traits controlling ecosystem photosynthetic capacity at selected sites. Suitable estimates of the ecosystem photosynthetic capacity can be derived from light response curve of GPP responding to radiation (photosynthetically active radiation or absorbed photosynthetically active radiation). Although the effect of climate is minimized in these calculations, the estimates indicate substantial interannual variation of the photosynthetic capacity, even after removing site‐years with confounding factors like disturbance such as fire events. The relationships between foliar nitrogen concentration and ecosystem photosynthetic capacity are tighter when both of the measurements are synchronized in space and time. When using multiple plant traits simultaneously as predictors for ecosystem photosynthetic capacity variation, the combination of leaf carbon to nitrogen ratio with leaf phosphorus content explains the variance of ecosystem photosynthetic capacity best (adjusted R2 = 0.55). Overall, this study provides an objective approach to identify links between leaf level traits and canopy level processes and highlights the relevance of the dynamic nature of ecosystems. Synchronizing measurements of eddy covariance fluxes and plant traits in time and space is shown to be highly relevant to better understand the importance of intra‐ and interspecific trait variation on ecosystem functioning.  相似文献   

15.
At the scale of the local plant community, we know very little about how spatial and temporal environmental heterogeneity affects the diversity in types and levels of plant defenses. If environmental heterogeneity is an important mechanism influencing plant defense traits, then defense expression should co‐vary spatially with environmental conditions and change as succession progresses. In this study, we examined how spatial heterogeneity and succession influence putative resistance and tolerance trait levels in late goldenrod Solidago altissima. We quantified the spatial distributions of herbivore damage and traits associated with resistance (leaf toughness, phenolics), tolerance (specific leaf area, relative growth rate, leaf addition rate and leaf senescence rate), and fitness (height, diameter, inflorescence biomass) of goldenrods within replicate early‐ and late‐successional fields. Also, we characterized the local neighborhood (stem density, canopy cover, ground vegetative cover) and edaphic conditions (soil moisture, pH, N) surrounding each target ramet, and determined relationships between these environmental variables and goldenrod trait levels. The distribution of traits within fields was strongly non‐random, and defense‐trait levels were more strongly spatially structured (i.e. autocorrelated) in late‐ than in early‐successional fields. Also, defense traits were most strongly correlated with aspects of the local plant neighborhood, and these relationships differed in important ways between successional stages. In late‐successional fields, tolerance trait specific leaf area was positively correlated with canopy cover and negatively correlated with stem density. In early‐successional fields, the relationship between ground vegetative cover and resistance (i.e. 1 – damage) was significantly stronger than in late‐successional fields. A novel insight from this study is the possibility that changes in the biotic environment during succession may shift the expression of defense from a resistance to a tolerance strategy in our system. This study highlights the context dependence of plant defense trait levels, which may promote their spatial and temporal variability in heterogeneous landscapes.  相似文献   

16.
以漓江水陆交错带为研究区,分两个条带分别量测了适生植物的5个叶性状指标:最大净光合速率(A_(max))、比叶重(LMA)、单位质量叶片全氮含量(N_(mass))、单位质量叶片全磷含量(P_(mass))、单位质量叶片全钾含量(K_(mass))。研究重度淹没带与微度淹没带不同功能型植物叶性状间的差异,分析并讨论重度淹没带叶性状间的关系与全球尺度是否存在差异,探究重度淹没带植物对水淹生境的生理响应机制。结果如下:(1)重度淹没带植物叶片的A_(mass)、N_(mass)、P_(mass)显著高于微度淹没带。(2)乔木、灌木叶片的LMA均显著高于草本植物,而A_(mass)、PPUE均显著低于草本植物。(3)重度淹没带草本叶性状指标的N_(mass)、P_(mass)、PNUE均显著高于微度微度淹没带,而乔木、灌木的叶性状在两个条带的差异则不显著。(4)重度淹没带植物叶性状关系与全球尺度基本一致,其植物叶片具有低LMA,高A_(mass)、Nmas s、P_(mass)。分析可知,重度淹没带植物在出露期提高叶片光合效率及相关营养水平可能是其适应水淹胁迫特殊生境的关键策略之一;不同功能型植物对同一环境的适应能力存在一定的差异,草本对于水淹环境的响应更为积极,适应能力更好;重度淹没带也存在叶经济谱,其植物在经济谱中属于"快速投资-收益"型物种。  相似文献   

17.
气候变化和人为干扰导致草原荒漠化加剧, 引发了严重的环境问题。因此, 对荒漠草原植物与环境变化关系的研究愈加迫切, 分析比较荒漠草原不同功能型物种叶片经济谱具有重要意义。该研究通过测定内蒙古荒漠草原生态系统不同功能型植物叶片的光合及叶绿素荧光参数、比叶面积和叶片氮素含量, 验证了荒漠草原植物叶片经济谱的存在, 明确了各功能型植物叶片性状间的关系及其在叶片经济谱中的位置。荒漠草原不同功能型植物叶片性状差异明显, 草本植物的比叶面积(SLA)、单位质量叶氮含量(Nmass)分别是灌木的2.39倍和1.20倍; 一年生植物单位面积最大净光合速率(Aarea)、SLA、光合氮利用效率(PNUE)分别是多年生植物的1.93倍、2.13倍和4.24倍; C4植物的AareaSLAPNUE分别是C3植物的2.25倍、1.73倍和3.61倍。除Aarea与单位面积叶氮含量(Narea)、PSII的实际光化学效率(ΦPSII)与SLA之间不存在显著相关关系外, 叶片性状间存在广泛的相关关系, 且均达到极显著水平。这验证了叶片经济谱在内蒙古荒漠草原植物中也同样存在。进一步分析表明, 一年生植物、草本植物、C4植物叶片在叶片经济谱中位于靠近薄叶、光合能力强、寿命短的一端; 而多年生植物、灌木、C3植物叶片靠近厚叶、光合能力弱、寿命长的一端。这说明荒漠草原中不同功能型植物可通过权衡其经济性状间的关系而采取不同的适应策略, 对于荒漠草原生态系统管理具有重要的理论指导意义。  相似文献   

18.
Background and AimsLeaf functional traits are strongly tied to growth strategies and ecological processes across species, but few efforts have linked intraspecific trait variation to performance across ontogenetic and environmental gradients. Plants are believed to shift towards more resource-conservative traits in stressful environments and as they age. However, uncertainty as to how intraspecific trait variation aligns with plant age and performance in the context of environmental variation may limit our ability to use traits to infer ecological processes at larger scales.MethodsWe measured leaf physiological and morphological traits, canopy volume and flowering effort for Artemisia californica (California sagebrush), a dominant shrub species in the coastal sage scrub community, under conditions of 50, 100 and 150 % ambient precipitation for 3 years.Key ResultsPlant age was a stronger driver of variation in traits and performance than water availability. Older plants demonstrated trait values consistent with a more conservative resource-use strategy, and trait values were less sensitive to drought. Several trait correlations were consistent across years and treatments; for example, plants with high photosynthetic rates tended to have high stomatal conductance, leaf nitrogen concentration and light-use efficiency. However, the trade-off between leaf construction and leaf nitrogen evident in older plants was absent for first-year plants. While few traits correlated with plant growth and flowering effort, we observed a positive correlation between leaf mass per area and performance in some groups of older plants.ConclusionsOverall, our results suggest that trait sensitivity to the environment is most visible during earlier stages of development, after which intraspecific trait variation and relationships may stabilize. While plant age plays a major role in intraspecific trait variation and sensitivity (and thus trait-based inferences), the direct influence of environment on growth and fecundity is just as critical to predicting plant performance in a changing environment.  相似文献   

19.
Soil fertility and nutrient-related plant functional traits are in general only moderately related, hindering the progress in trait-based prediction models of vegetation patterns. Although the relationships may have been obscured by suboptimal choices in how soil fertility is expressed, there has never been a systematic investigation into the suitability of fertility measures. This study, therefore, examined the effect of different soil fertility measures on the strength of fertility–trait relationships in 134 natural plant communities. In particular, for eight plot-mean traits we examined (1) whether different elements (N or P) have contrasting or shared influences, (2) which timescale of fertility measures (e.g. mineralization rates for one or five years) has better predictive power, and (3) if integrated fertility measures explain trait variation better than individual fertility measures. Soil N and P had large mutual effects on leaf nutrient concentrations, whereas they had element-specific effects on traits related to species composition (e.g. Grime''s CSR strategy). The timescale of fertility measures only had a minor impact on fertility–trait relationships. Two integrated fertility measures (one reflecting overall fertility, another relative availability of soil N and P) were related significantly to most plant traits, but were not better in explaining trait variation than individual fertility measures. Using all fertility measures together, between-site variations of plant traits were explained only moderately for some traits (e.g. 33% for leaf N concentrations) but largely for others (e.g. 66% for whole-canopy P concentration). The moderate relationships were probably due to complex regulation mechanisms of fertility on traits, rather than to a wrong choice of fertility measures. We identified both mutual (i.e. shared) and divergent (i.e. element-specific and stoichiometric) effects of soil N and P on traits, implying the importance of explicitly considering the roles of different elements to properly interpret fertility–trait relationships.  相似文献   

20.
Quantifying relationships between plant functional traits and abiotic gradients is valuable for evaluating potential responses of forest communities to climate change. However, the trajectories of change expected to occur in tropical forest functional characteristics as a function of future climate variation are largely unknown. We modeled community level trait values of Costa Rican rain forests as a function of current and future climate, and quantified potential changes in functional composition. We calculated per‐plot community weighted mean (CWM) trait values for leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen (N) and phosphorus (P) content, and wood basic specific gravity (WSG), for tree and palm species in 127 0.25 ha plots. We modeled the response of CWM traits to current temperature and precipitation gradients using generalized additive modeling. We then predicted and mapped CWM traits values under current and future climate, and quantified potential changes under a global warming scenario (RCP8.5, year 2050). We calculated the area within the multi trait functional space occupied by forest plots under both current and future climate, and determined potential changes in functional space occupied by forest plots. Overall, precipitation predicted CWM traits better than temperature. Models indicated increases in CWM SLA, N and P, and a decrease in CWM LDMC under climate change. Lowland forest communities converged on a single direction of change towards more acquisitive CWM trait values, indicating a change in forest functional composition resulting from a changed climate. Functional space occupied by forest plots was reduced by 50% under the future climate. Functional composition changes may have further effects on forests ecosystem services. Assessing functional trait spatial‐gradients can help bridge the gap between species‐based biogeography and biogeochemical approaches to strengthen biodiversity and ecosystem services conservation efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号