首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the role of p38alpha stress-kinase in regulation of premature senescence program, stimulated by histone deacetylase inhibitor--sodium butyrate (NaB)--after application to rodent transformed cell lines. Investigation was performed on the E1A + cHa-ras transformants selected from mice embryonic fibroblasts null at the p38alpha kinase gene or null fibroblasts at the PPM1D gene, which encoded phosphatase Wip1. Absence of Wip1 led to constitutive activation of p38alpha kinase. It was revealed that after NaB treatment both cell lines completely stopped proliferation due to irreversible cell cycle arrest in G1/S phase. In both cell lines sodium butyrate induced sustained block of prolifaration due to irreversible cell cycle arrest in G1/S phase. Following sodium butyrate treatment cells expressed marker of senescence--beta-galactosidase activity (SA-beta-Gal). Long-term (during several days) NaB treatment of cells led to partial restoration of actin cytoskeleton, focal adhesion contacts and heterochromatin focus formation (SAHF) in the nucleus of senescent cells. Obtained data allow us to suppose that irreversible process of cellular senescence activated by sodium butyrate can occur in the absence of functionally active p38 kinase by means of other ways of cell cycle suppression.  相似文献   

2.
The role of JNK1,2 stress kinases in the regulation of premature senescence stimulated by sodium butyrate (NaB), a histone deacetylase inhibitor, has been studied. It was found that NaB did not block the cell cycle in E1A+cHa-ras transformants selected from embryonic mouse fibroblasts with jnk1,2 stress-kinase gene knockout (mERasJNK?/? cells). Even long-term (five days) NaB treatment did not block cell cycle distribution or cell proliferation, nor did it induce cellular hypertrophy or activate SA-β-galactosidase activity, a senescence marker. The data show that JNK stress kinases are involved in senescence induced in E1A+cHa-ras mouse transformants by NaB. It is possible to suggest that JNK1,2 have tumor suppressor properties because the process of senescence, which prevents tumor cell proliferation, does not occur if they are absent.  相似文献   

3.
The role of p38α stress-kinase in the regulation of the premature senescence program induced by the histone deacetylase inhibitor sodium butyrate (NaB) was studied in rodent transformed cell lines. The study was carried out on E1A+cHa-ras transformants obtained from mouse embryonic fibroblasts null for the Mapk14 gene encoding p38α stress-kinase (the mERasp38?/? cell line), or for the PPM1D gene encoding the Wip1 phosphatase (the mERas Wip1?/? cell line), whose absence led to constitutive activation of p38α kinase. It was found that after NaB treatment both cell lines completely stopped proliferation due to irreversible G1/S cell cycle arrest. In both lines a marker of senescence appeared—the activity of β-galactosidase (SA-β-Gal). As well, treatment of the cells with NaB for several days led to morphological cell changes, such as partial readjustment of the actin cytoskeleton, spreading on the substrate, and heterochromatin focus formation (SAHF) in the senescent cell nuclei. These data allow us to suggest that, in the absence of functionally active p38α kinase, the NaB-induced irreversible process of cellular senescence may occur via alternative pathways for downregulation of the cell cycle.  相似文献   

4.
The capacity of HDAC inhibitor sodium butyrate to induce senescence in cells derived from rat embryonic fibroblasts transformed by E1A+E1B19 kDa oncogenes has been studied. These transformants are resistant to apoptosis in response to gamma-irradiation and growth factor deprivation. The process of cell senescence was investigated by the analysis of cell growth curves, G1/S and G2/M cell cycle arrest, and senescent associated beta-galactosidase expression. The irreversibility of sodium butyrate antiproliferative activity was analyzed by clonogenic assay. We show that sodium butyrate suppresses proliferation and induces senescence in the E1A+E1B19 kDa transformed cells. Interestingly, NaB induces growth arrest due to accumulation of cells in G2/M phase, these cells are not tetraploid but mainly binuclear. Thus, in case of NaB induced senescence in E1A+E1B19 kDa transformed fibroblasts, the observed suppression of cell proliferation may be the result of cytokinesis failure leading to formation of binuclear and multinuclear cells incapable to proliferate.  相似文献   

5.
We studied the capability of E1A + cHa-ras and E1A + E1B19kDa transformants to undergo the G1/S arrest of the cell cycle following depletion of serum growth factors. It has been shown that serum starvation induced the G1/S arrest both in normal rat embryo fibroblasts (REF) and in E1A + E1B19kDa transformants, whereas E1A + cHa-ras transformed cells lost this feature. To analyse the mechanisms underlying these differences, we studied the expression of p27/KIP, its intracellular distribution and association with E1A oncoproducts. The content of the p27/KIP inhibitor of cyclin-dependent kinases was found to change a little upon transformation by two complementary oncogene pairs. However, serum starvation for 24 h led to a significant increase in the content of p27/KIP in E1A + E1B19kDa transformants, while E1A + cHa-ras cells accumulated p27/KIP less markedly. According to the immunofluorescence study, the p27/KIP inhibitor is located in the nucleus of both normal and transformed cells. Moreover, serum starvation did not lead to its inhibition due to redistribution to the cytoplasm in both cell lines. Also, we were unable to detect association of p27/KIP with E1A oncoproducts in immunoprecipitated complexes. The obtained data indicate that, in contrast to E1A + cHa-ras transformants, in E1A + E1B19kDa cells the p27/KIP inhibitor is functional and it is capable of inducing the G1/S block after serum starvation.  相似文献   

6.
The capability of REF cells transformed by EA + E1B-19 kDa and EA + cHa-ras oncogenes to realize the G1/S cell cycle arrest upon serum starvation was studied. The amount of cyclin-kinase inhibitor protein p27/Kip was shown to increase in both normal and transformed cells. However, the p27/Kip-bound cyclin-kinase complexes of transformed cells were found to be active, implying the functional inactivation of p27/Kip inhibitor. Nevertheless, in contrast to E1A + cHa-ras transformants, E1A + E1B-19 kDa transformants undergo the G1 cell cycle arrest. The G1 cell cycle block correlates with the decrease in cyclinE-Cdk2 activity. Since cyclinE-Cdk2 complexes need Thr-160 phosphorylation of Cdk2 by CAK-kinase for full activity, we have analysed the Cdk-7 associated activity upon serum starvation using gst-Cdk2 as a substrate. Serum starvation did not affect CAK activity either in E1A + cHa-ras or in E1A + E1B-19 kDa transformants. Thus, selective suppression of cyclineE-Cdk2 activity in E1A + E1B-19 kDa transformants upon serum starvation does not arise from the action of cyclin-kinase inhibitors, or from change in CAK activity.  相似文献   

7.
The capacity of HDAC inhibitor sodium butyrate to induce senescence in cells derived from rat embryonic fibroblasts and transformed by E1A + E1B19 kDa oncogene has been studied. These transformants are resistant to apoptosis in response to γ-irradiation and the deprivation of growth factors. The process of cell senescence was investigated by analyzing cell growth curves, G1/S and G2/M cell cycle arrest and senescent associated β-galactosidase expression. The irreversibility of the antiproliferative activity of sodium butyrate was analyzed by clonogenic assay.  相似文献   

8.
Transformed rat embryo fibroblasts E1A + cHa-ras known to possess high proapoptotic sensitivity and not to be arrested after DNA damage or upon serum starvation, were transfected with bcl-2 gene using calcium-phosphate precipitation method. Triple transformants E1A + cHa-ras + bcl-2 appeared to be protected from damage- and serum depletion-induced apoptosis and to restore cell cycle checkpoint control. Using the method of flow cytometry we have shown that these transformants are arrested in different phases of cell cycle in response to irradiation, adriamycin treatment and serum deprivation. Overexpression of bcl-2 in E1A + cHa-ras-transformed cells entirely suppresses adriamycin-induced apoptosis and significantly reduces the level of apoptosis triggered by irradiation and growth factor withdrawal, as we have revealed by the test of clonogenic survival and electrophoretic analysis of oligonucleosomal DNA fragmentation. Our results have demonstrated, for the first time, that the oncogenic Ras co-immunoprecipitates with transfected Bcl-2 in E1A + cHa-ras + bcl-2 transformed cells after irradiation but not after adriamycin treatment. Bcl-2-Ras complexes were also observed in transformants E1A + cHa-ras + bcl-2 after serum starvation. Taken together, these data suggest that Bcl-2 and Ras interaction might play a crucial role in the cell cycle checkpoints restoration and apoptotic events regulation in transformants E1A + cHa-ras + bcl-2 exposed to DNA-damaging factors or growth factor-deprived.  相似文献   

9.
10.
11.
We have studied the role of the stress kinases p38 and JNK1,2 in premature senescence induced by sodium butyrate (NaBut), a histone deacetylase inhibitor, in mouse embryonic fibroblasts transformed by E1A+cHa-Ras oncogenes. It was found that transformants from p38 knockout cells are able to implement NaBut-induced senescence exhibited by cell cycle arrest, inhibition of proliferation, hypertrophic changes associated with mTORC1 activation and SA-β-galactosidase activity. In jnk1,2 knockouts, the NaButinduced senescence program was inhibited. NaBut-induced senescence in p38 knockouts closely correlates with mTORC1 activation shown by inhibiting mTORC1 with rapamycin. In jnk1,2 knockouts, mTORC1 complex is not activated. We believe that JNK1,2 kinases are required for mTORC1 activation and exhibition of premature senescence markers induced by NaBut in E1A+cHa-Ras transformants.  相似文献   

12.
Rat embryonic fibroblasts, transformed with E1A and cHa-ras oncogenes, are unable to stop in the cell cycle checkpoints under growth factor withdrawal and genotoxic stresses (Bulavin et al., 1999). In the present paper, we showed that sodium butyrate, an inhibitor of histone deacetyase activity, decreased the share of cells being in S-phase, and caused G1/S and G2/M blocks of the cell cycle in the transformants. By means of RT-PCR and immunoblotting, we found that NaB significantly changed the expression of genes involved in proliferation: cyclins D1, A, E and cyclin-dependent kinases Cdk2 and Cdk4, whereas the amount of p21Waf1 and p27Kip1 inhibitors greatly increased. Along with accumulation of p21Waf1 protein content, that of Cdk2-bound p21 increases. Taken together, these data allow to suggest that NaB treatment does evidently restore the capability of p21Waf1 to inhibit cyclin-kinase activity. One may suppose that inhibition of HDAC activity by sodium butyrate leads to activation of yet unknown HDAC-dependent genes, which is followed by restoration of p21Waf1 function in spite of the E1A oncogene expression.  相似文献   

13.
14.
Expression of human adenovirus type 5 E1A oncogene in normal rodent cells leads to disruption of the G1/S cell cycle arrest realization in response to DNA damage. It has been shown here that rat embryo fibroblasts transformed by E1Aad5 oncogene in complementation with E1B-19 kDa gene realize the irradiation-induced transient G1/S arrest, which depends on selective suppression of CyclinE-Cdk2 activity despite functional inactivation of p21Waf1 inhibitor. Inhibitor p21Waf1 is not revealed in complexes with cyclins E and A in E1A + E1B-19 kDa transformants, however, it is not due to p21Waf1 interaction with E1A oncoproteins, because the E1A-p21Waf1 complex formation in E1A + cHa-ras transformants does not prevent the high level of CycIE, A-p21Waf1 association. In the case of p21Waf1 inactivation, the main way of cyclin-kinase activity regulation in E1A + E1B-19 kDa cells may be Cdk2 phosphorylation. However, irradiation of E1A + E1B-19 kDa transformed cells induces no changes in CAK (Cdk7-associated) kinase activity and in the protein level of Cdc25A phosphatase, which are responsible for activating Thr160 phosphoralation and Tyr15 dephosphorylation on Cdk2. Using phospho-Tyr15-Cdk2 specific antibodies, no increase of phosphorylation at Tyr15 position on immunoprecipitated Cdk2 was detected after irradiation. It seems likely that in the case of inactivated inhibitor p21Waf1 the transient G1/S block after irradiation in E1A + E1B-19 kDa transformants depends on suppression of Cycl-E-Cdk2 activity caused by inhibition of Thr160 Cdk2 phosphorylation, but his occurs with the involvement of other kinases rather than CAK.  相似文献   

15.
16.
A comparative study was made of reactive oxygen species (ROS) in rat embryo fibroblasts and their transformants. Primary rat embryo fibroblasts (REF), REF transformed by the complementing oncogenes E1A plus cHa-ras (cell line E1A + Ras), and REF transformed by E1A plus E1B-19 kDa (cell line E1A + E1B) were studied. ROS generation was measured with microfluorometric assay using fluorescent probe 2',7'-dichlorofluorescin diacetate. It has been shown that the block of REF and E1A + 1B cells in the G1/S under serum-starved conditions (0.5% serum) for 24-48 h was paralleled by a decrease in ROS generation. Activation of serum-starved REF and E1A + 1B cells with 10% serum resulted in reactivation of cell cycle and gradual increase in ROS generation. The maximum intracellular level of ROS correlated in time with the phase of DNA synthesis. Serum-starved E1A + Ras cells were not stopped in the G1/S and ROS production of these cells was not dependent on serum growth factors. The prolonged cultivation of E1A + Ras cells in the medium with low serum content (0.5%) caused a sharp increase in ROS generation, which was accompanied by apoptotic death.  相似文献   

17.
Introduction of bcl-2 gene in EIA + c-Ha-ras-transformed rat embryo fibroblasts, which are unable to be arrested after damaging influences and possess high proapoptotic sensitivity, results not only in suppression of cell death but also in re-establishment of cell cycle block following DNA damage and serum starvation. Flow cytometry showed that E1A + c-Ha-ras + bcl-2-transformants treated with DNA-intercalator adriamycin are capable of being arrested at G1/S boundary for a long time (for less than 5 days). According to the growth curve data, the number of Bcl-2-overexpressing cells remanins constant for a week of cultivation with adriamycin. Clonogenic efficacy of E1A + c-Ha-ras + bcl-2-cells is brought to no already in 16 h after adriamycin addition. Apoptotic death, revealed by oligonucleosomic fragmentation of DNA, as well as cell death, occurring due to mitotic catastrophe, after adriamycin treatment are almost absent in Bcl-2-overexpressing transformants, as compared with parental E1A + c-Ha-ras-transformants. Bcl-2 introduction in E1A + c-Ha-ras-transformants is accompanied by a rise of SA beta-Gal (Senescence Associated beta-Galactosidase) activity, which is commonly considered to be a marker of cell senescence. Adriamycin treatment of E1A + c-Ha-ras + bcl-2-transformants results in a much higher rise in SA beta-Gal activity, as compared with untreated cells. Co-immunoprecipitation experiments demonstrated the introduction of Bcl-2 to result in formation of Bcl-2 complexes with early region E1A oncoproducts, which are thought to be responsible for proapoptotic susceptibility of E1A-expressing transformants. The data obtained lead to suggestion that bcl-2 transfer to E1A + c-Ha-ras-transformants may induce a switch from the cell death program on the program of senescence after DNA damage, due, presumably, to Bcl-2 interaction with the apoptosis activator the viral oncoprotein E1A.  相似文献   

18.
E1A + c-Ha-ras-transformants overexpressing bcl-2 oncogene are able to be arrested at the G1/S boundary of the cell cycle after DNA damage and upon serum starvation, this cell cycle blockage being accompanied by a decrease in the activity of cyclin E--Cdk2 complexes. Roscovitine-induced inhibition of cyclin-dependent kinases (Cdks) activity does not result in the G1/S arrest of E1A + c-Ha-ras + bcl-2-transformants. Roscovitine treatment causes an accumulation of G2/M cells, mainly at the expense of mitotic cells. However, the expression of Bcl-2 oncoproducts does not re-establish the regulation of mitotic events broken by introduction of E1A and c-Ha-ras oncogenes in normal cells, as revealed by the treatment of E1A + c-Ha-ras + bcl-2-transformants with nocodazole inducing mitotic arrest in normal cells. In spite of the elevated expression of antiapoptotic bcl-2 gene in transformants, nocodazole treatment results in mass apoptotic death preceded by polyploidy. Roscovitine also induces apoptosis with no polyploid cell accumulation being observed. Inhibition of Cdks activity with Roscovitine, as well as violation of microtubule depolymerization with nocodazole result in the apoptotic death in the tested cell lines sensitive (E1A + c-Ha-ras) and resistant (E1A + c-Ha-ras + bcl-2) to damaging agents. Thus, the application of Roscovitine, a specific inhibitor of Cdks, suggests that the decrease in Cdks activity in E1A + c-Ha-ras + bcl-2-transformants is not likely to be responsible for G1/S cell cycle arrest realization after damaging influences. Moreover, an antiproliferative effect of Bcl-2 in E1A + c-Ha-ras-transformants is restricted by restoration of cell cycle events at G1/S and G2/M boundaries, and does not concern the program of mitotic events regulation.  相似文献   

19.
Introduction of the E1A early region of the human adenovirus type 5 impairs the ability of mammalian cells to arrest the cell cycle at G1/S after damage. Two-parameter fluorescent-activated cell sorting (FACS) with iododeoxyuridine revealed the radiation-induced G1/S arrest in rat embryo fibroblasts transformed with the complementing E1A + E1B-19 kDa oncogenes. This was due to selective inhibition of CycIE/Cdk2-associated kinase activity, while activities of type 2 kinase and of CyclA/Cdk2 complexes remained unchanged. The inhibitor of G1-phase cyclin kinases, p21/Waf1, was accumulated and interacted with target kinases both in normal and in transformed cells after irradiation. As shown by immunoprecipitation, p21/Waf1 formed complexes with the E1A on coproducts in the transformants, which possibly accounted for its functional inactivation. Kinase modification in cyclin-kinase complexes was assumed to play a key role in regulation of cyclin-dependent kinases in the transformants with inactivated p21/Waf1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号