首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 75,000-dalton protein complex involved in DNA binding during transformation was purified from membranes of competent Bacillus subtilis cells. Previous results (Smith et al., J. Bacteriol. 156:101-108, 1983) showed that the complex contained two polypeptides, polypeptide a (molecular weight, 18,000; isoelectric point, 5.0) and polypeptide b (molecular weight, 17,000; isoelectric point, 4.7) in approximately equal amounts. In the present experiments the two polypeptides were extracted from two-dimensional gels and studied separately and in combination with respect to DNA binding and nuclease activities. For DNA binding the interaction of both polypeptides was required. DNA binding occurred efficiently in the presence of EDTA. Nuclease activity was restricted to polypeptide b. The nucleolytic properties of b were identical to those of the native 75,000-dalton complex. Polypeptide a affected b by reducing its nuclease activity. Analysis of the nuclease subunit b on DNA-containing polyacrylamide gels revealed nuclease activities at four different molecular weight positions. These activities were identical to the major competence-specific nuclease activities which were previously implicated in the entry of donor DNA during transformation (Mulder and Venema, J. Bacteriol. 152:166-174, 1982). These results indicate that the 75,000-dalton protein complex is composed of two different competence-specific polypeptides involved in both binding and entry of donor DNA. The possible roles of the two polypeptides in the transformation of B. subtilis are discussed.  相似文献   

2.
The DNA polymerase induced by Bacillus subtilis bacteriophage PBS2 has a Stokes radius of 7.2 in buffers of high ioninc strength, suggesting a molecular weight in the range 145,000 to 195,000. The polypeptide bands observed on gel electrophoresis in dodecyl sulfate have apparent molecular weights of 78,000 and 69,000 (and possibly another 27,000) in equimolar amounts. In buffers of low ionic strength, the enzyme appears to form large aggregates and even precipitates, with about 90% loss of activity. A nuclease activity co-purifies with the PBS2 DNA polymerase and shows similar responses to changes in pH, MgCl2, N-ethylmaleimide, temperature, and dextran sulfate levels. The nuclease produces deoxyribonucleoside 5'monophosphates from denatured DNA containing thymine or uracil. No endonuclease activity is detectable on supercoiled DNA. The inhibition of nuclease activity by added deoxyribonucleoside triphosphates, the DNA-dependent turnover of triphosphates, to free monophosphates during DNA polymerization, the inhibition of nuclease activity by 3'-phosphates on the DNA template-primer, and the pattern of digestion of 5'-[32P]phosphate-labeled DNA all indicate that the PBS2 DNA polymerase-associated hydrolytic activity is a 3' leads to 5'-exonuclease.  相似文献   

3.
Effects of cycloheximide on chromatin biosynthesis.   总被引:10,自引:0,他引:10  
In the presence of sufficient cycloheximide, puromycin or NaCl to quantitatively inhibit protein synthesis in HeLa cells, thymidine incorporation continues at 20% of control rates for 60 to 90 minutes, after which incorporation gradually ceases. Both DNA and protein synthesis revert to control rates in about five minutes after removal of cycloheximide.DNA synthesis in the presence of cycloheximide appears to be a continuation of the replicative process by several criteria. The persistent DNA synthesis in the presence of cycloheximide is abolished by hydroxyurea, which does not inhibit repair synthesis, while ethidium bromide, an inhibitor of mitochondrial DNA synthesis, is without effect. Nuclear DNA is not nicked during incubation in cycloheximide. Low molecular weight Okazaki fragments (4 to 5 S) are both synthesized and processed to high molecular weight DNA in cells treated with cycloheximide. Replication forks, identified in alkaline CsCl gradients by incorporation of bromodeoxyuridine as a density marker just before the addition of cycloheximide, are selectively labeled with radioactive thymidine during DNA synthesis.In the presence of cycloheximide the maturation of DNA intermediates into high molecular weight DNA is defective. All size classes of DNA fragments, normally present during progression of low to high molecular weight DNA, are demonstrable in cells preincubated in cycloheximide for prolonged periods. However, 21 S fragments, intermediate in size between Okazaki pieces and mature, high molecular weight DNA, accumulate in cells treated with cycloheximide, demonstrating a defect in maturation of the 21 S intermediates into high molecular weight DNA. After removal of the cycloheximide, the 21 S DNA fragments are processed to high molecular weight DNA at a significantly impaired rate, requiring about three hours for completion of chain growth as compared to 40 to 60 minutes in controls. The slowed growth of DNA fragments synthesized in the presence of cycloheximide following drug removal is not due to persisting effects of cyeloheximide since DNA synthesis immediately following removal of the drug has chain growth rates similar to that of controls.Pools of chromatin proteins exist in HeLa cells, as demonstrated by a brief, labeled amino acid pulse followed by a chase with cycloheximide. The specific activity of chromatin proteins increases significantly during 60 minutes of cycloheximide inhibition. Histone f2a1 accumulates preferentially during this chase period, suggesting that a supply of this highly conserved histone might be requisite to continued replication.Comparison of chromatin synthesized during cycloheximide treatment with pulse-labeled control chromatin has provided insight into the mechanism of assembly of proteins and DNA into the nucleoprotein complex. The DNA of ch-chromatin2 is more susceptible to nuclease digestion than control chromatin, suggesting that it is deficient in protein content. Upon reversal of cycloheximide inhibition, the recovery of nuclease digestibility of ch-chromatin to control values takes two to three hours, a time similar to that required for conversion of the corresponding 21 S chDNA fragments to high molecular weight DNA. Briefly pulse-labeled (30 to 60 s) DNA in control chromatin also has an enhanced susceptibility to nuclease digestion of the same degree as found in ch-ehromatin. The time of recovery of increased nuclease susceptibility of newly made chromatin DNA (via protein addition) to control levels is about 10 to 15 minutes and corresponds to the time required for synthesis of replicon-sized units of DNA.In addition to being nuclease-sensitive, both cycloheximide and newly synthesized (30 to 60 s) chromatin have lighter buoyant densities in CsCl gradients than bulk chromatin. This property exists for only one to two minutes in controls and is probably due to structural properties distinct from those rendering nuclease sensitivity.Limit digests of chromatin by micrococcal nuclease yield a characteristic pattern of polynucleotides when resolved in polyacrylamide gels. The radioactivity profiles of limit digest polynucleotides from control and ch-chromatin are identical, indicating that pre-existing chromatin proteins remain in place on newly replicated DNA in the same fashion as in mature chromatin.  相似文献   

4.
An enzyme that rapidly catalyzes the hydrolysis of denatured DNA has been partially purified from germinated pea (Pisum sativum) seeds. The nuclease has been characterised as having endonucleolytic activity degrading single stranded DNA at a 15- to 20-fold higher rate than native DNA. From exclusion chromatography on Sephadex G-200 the molecular weight of the enzyme was calculated to be 42,000. The small extent of hydrolysis of native DNA is suggested to be due to the degradation of partially denatured areas in the native molecule. The enzyme shows activity over a broad range of pH but was most active between pH 6.5 and 8.0. The maximum hydrolysis of denatured DNA was observed at 45 °C while with native DNA the temperature optima was 60 °C. The nuclease does not show an absolute requirement for added divalent cations. However, the addition of Mg2+ and Ca2+ results in 40 and 60% stimulation, respectively. EDTA has no effect on enzymatic activity, whereas 8-hydroxyquinoline was inhibitory.  相似文献   

5.
An improved method to obtain high molecular weight DNA from purified macro- and micronuclei of Tetrahymena thermophila is described. Micro- and macronuclear DNA obtained using previously described protocols was degraded and not suitable for the cloning of large (> 100 kb) DNA fragments. Based on the data reported here, we propose that DNA degradation is mainly due to nuclease activity; some micronuclear DNA degradation is due to mechanical shearing as a result of extended periods of blending. We have made modifications to reduce nuclease degradation by minimizing cell lysis, by the early addition of EDTA and by increasing the EDTA concentration (23 mM). To reduce mechanical shearing, cell and nuclear suspensions were blended for shorter periods. High molecular weight micro- and macronuclear DNA was obtained using the new protocol.  相似文献   

6.
DNA polymerases from bakers' yeast.   总被引:21,自引:0,他引:21  
Two DNA polymerases are present in extracts of commercial bakers' yeast and wild type Saccharomyces cerevisiae grown aerobically to late log phase. Yeast DNA polymerase I and yeast DNA polymerase II can be separated by DEAE-cellulose, hydroxylapatite, and denatured DNA-cellulose chromatography from the postmitochondrial supernatants of yeast lysates. The yeast polymerases are both of high molecular weight (greater than 100,000) but are clearly separate species by the lack of immunological cross-reactivity. Analysis of associated enzyme activities and other reaction properties of yeast DNA polymerases provides additional evidence for distinguishing the two species. Enzyme I has no associated nuclease activity but does carry out pyrophosphate exchange and pyrophosphorolysis reactions, and has an associated 3'-exonuclease activity. Enzyme I does not degrade deoxynucleoside triphosphates and cannot utilize a mismatched template. Enzyme II does carry out a template-dependent deoxynucleoside triphosphate degradation reaction and can excise mismatched 3'-nucleotides from suitable template systems. Earlier studies have shown that both Enzyme I and Enzyme II are inhibited by N-ethylmaleimide. The yeast enzymes are not identical to any known eukaryotic or prokaryotic DNA polymerases. In general, Enzyme I appears to be most similar to eukaryotic DNA polymerase alpha and Ezyme II exhibits properties of prokaryotic DNA polymerases II and III.  相似文献   

7.
A DNA helicase from human cells.   总被引:8,自引:6,他引:2       下载免费PDF全文
We have initiated the characterization of the DNA helicases from HeLa cells, and we have observed at least 4 molecular species as judged by their different fractionation properties. One of these only, DNA helicase I, has been purified to homogeneity and characterized. Helicase activity was measured by assaying the unwinding of a radioactively labelled oligodeoxynucleotide (17 mer) annealed to M13 DNA. The apparent molecular weight of helicase I on SDS polyacrylamide gel electrophoresis is 65 kDa. Helicase I reaction requires a divalent cation for activity (Mg2+ greater than Mn2+ greater than Ca2+) and is dependent on hydrolysis of ATP or dATP. CTP, GTP, UTP, dCTP, dGTP, dTTP, ADP, AMP and non-hydrolyzable ATP analogues such as ATP gamma S are unable to sustain helicase activity. The helicase activity has an optimal pH range between pH8.0 to pH9.0, is stimulated by KCl or NaCl up to 200mM, is inhibited by potassium phosphate (100mM) and by EDTA (5mM), and is abolished by trypsin. The unwinding is also inhibited competitively by the coaddition of single stranded DNA. The purified fraction was free of DNA topoisomerase, DNA ligase and nuclease activities. The direction of unwinding reaction is 3' to 5' with respect to the strand of DNA on which the enzyme is bound. The enzyme also catalyses the ATP-dependent unwinding of a DNA:RNA hybrid consisting of a radioactively labelled single stranded oligodeoxynucleotide (18 mer) annealed on a longer RNA strand. The enzyme does not require a single stranded DNA tail on the displaced strand at the border of duplex regions; i.e. a replication fork-like structure is not required to perform DNA unwinding. The purification of the other helicases is in progress.  相似文献   

8.
The influence of polyamines on the various activities of DNA polymerase I from Escherichia coli (EC 2.7.7.7) has been investigated. For all high molecular weight DNAs spermine and spermidine caused up to 80% inhibition when present in high concentrations, i.e. above 1 mM for spermine and 2 mM for spermidine. In the presence of low concentrations of polyamines a small activation was seen for some DNAs. The diamines cadaverine and putrescine had little influence on the rate of synthesis with natural occurring DNAs. In the case of d(A--T)n the activation/inhibition was found to be markedly dependent on the molecular weight of the samples used. With a low molecular weight DNA, 5.6 S, addition of spermidine resulted in up to 3-fold stimulation of activity. The activation was dependent on the concentration of MgCl2 and ionic strength; increasing concentration of these gave a decrease in the degree of activation. Polyamines also had a dramatic effect on the rate of synthesis using the homopolymers (dA)n . (dT)10 and (rA)n . (dT)10 . (20:1) as primers. Putrescine, in particular, increased the activity up to 10-fold with (rA)n . (dT)10 and somewhat less for (dA)n . (dT)10. The apparent Km for the primer (rA)n . (dT)10 decreased approx. 35-fold in the presence of 6.6 mM putrescine. There was no influence on the apparent Km for dTTP. The influence of polyamines on both the 5' leads to 3' and 3' leads to 5' nuclease activity was also investigated. Inhibition of nuclease activity was observed in the presence of polyamines, particularly with spermine. Thus with d(A--T)n and T7 DNA as substrates addition of 0.7 mM spermine resulted in almost complete inhibition of the activity. The dramatic inhibition observed with high concentrations of spermine (spermidine) both in the case of polymerizing and nuclease activity is thought to be due to polyamine-induced aggregation of DNA molecules.  相似文献   

9.
A nuclease activity has been found to appear in preparations of T4 induced polynucleotide kinase which had originally been nuclease free. The nuclease introduced random nicks into T7 DNA suggesting that it was an endonuclease. Destabilization of the kinase molecule by osmotic shock or by the removal of reducing agents, ATP or salts was shown to stimulate the endonuclease appearance. The molecular weight was found to be 32,000 +/- 10% by gel filtration on G100 Sephadex. The nuclease was active over a wide pH range from pH 5.0 to pH 9.2 in a number of buffer systems and required MgCl2 and reducing agent for maximum activity. Sodium azide did not affect the nuclease appearance.  相似文献   

10.
Lu ZG  Zhang CM  Zhai ZH 《Cell research》2004,14(2):134-140
DNA degradation is a biochemical hallmark in apoptosis. It has been demonstrated in many cell types that there are two stages of DNA fragmentation during the apoptotic execution. In the early stage, chromatin DNA is cut into large molecular weight DNA fragments, although the responsible nuclease(s) has not been recognized. In the late stage, the chromatin DNA is cleaved further into short oligonucleosomal fragments by a well-characterized nuclease in apoptosis,the caspase-activated DNase (CAD/DFF40). In this study, we demonstrate that large molecular weight DNA fragmentation also occurs in Xenopus egg extracts in apoptosis. We show that the large molecular weight DNA fragmentation factor (LDFF) is not the Xenopus CAD homolog XCAD. LDFF is activated by caspase-3. The large molecular weight DNA fragmentation activity of LDFF is Mg^2 -dependent and Ca^2 -independent, can occur in both acidic and neutral pH conditions and can tolerate 45℃ treatment. These results indicate that LDFF in Xenopus egg extracts might be a new DNase (or DNases) responsible for the large DNA fragmentation.  相似文献   

11.
T Krüger  C Wild    M Noyer-Weidner 《The EMBO journal》1995,14(11):2661-2669
Restriction of DNA by the Escherichia coli K-12 McrBC restriction endonuclease, which consists of the two subunits McrB and McrC, depends on the presence of modified cytosine residues in a special constellation. From previous work by others it was known that restriction of 5-methylcytosine-containing DNA requires two methylated 5'-PuC sites separated by approximately 40-80 non-defined base pairs. Here we show that binding of the McrBC nuclease is mediated exclusively by the McrB subunit. McrB has a low affinity for non-methylated DNA, with which it forms low molecular weight complexes. The affinity for DNA is significantly increased, with variations depending on the sequence context, by hemi- or fully methylated 5'-PuC sites. Binding to such substrates yields high molecular weight complexes, presumably involving several McrB molecules. Methylation at unique 5'-PuC sites can be sufficient to stimulate DNA binding by McrB. As such substrates are not cleaved by the nuclease, restriction apparently requires the coordinated interaction of molecules bound to neighbouring 5'-PumC sites. The binding properties of McrB exhibit some similarities to recently identified eukaryotic proteins interacting in a non-sequence-specific manner with DNA containing methylated 5'-CpG sequences and might point to a common molecular origin of these proteins. In addition to DNA, McrB also binds GTP, an essential cofactor in DNA restriction by McrBC. McrC neither binds to DNA nor modulates the DNA binding potential of McrB. As McrC is essential for restriction it appears to predominantly function in catalysis.  相似文献   

12.
DNA was immobilized within alginate matrix using an external or an internal calcium source, and then membrane coated with chitosan or poly-L-lysine. Membrane thickness increased with decreasing polymer molecular weight and increasing degree of deacetylation (chitosan). Beads were exposed to a 31,000 molecular weight nuclease to determine the levels of DNA protection offered by different membrane and matrix combinations. Almost total hydrolysis of DNA was observed in alginate beads following nuclease exposure. Less than 1% of total double-stranded DNA remained unhydrolyzed within chitosan- or poly-L-lysine-coated beads, corresponding with an increase in DNA residuals (i.e. double- and single-stranded DNA, polynucleotides, bases). Chitosan membranes did not offer sufficient DNA protection from DNase diffusion since all of the double-stranded DNA was hydrolyzed after 40 min of exposure. Both chitosan and poly-L-lysine membranes reduced the permeability of alginate beads, shown by enhanced retention of DNA residuals after DNase exposure. The highest level of DNA protection within freshly prepared beads was obtained with high molecular weight (197,100) poly-L-lysine membranes coated on beads formed using an external calcium source, where over 80% of the double-stranded DNA remained after 40 min of DNase exposure. Lyophilization and rehydration of DNA beads also reduced permeability to nucleases, resulted in DS-DNA recoveries of 60% for chitosan-coated, 90% for poly-L-lysine-coated, and 95% for uncoated alginate beads.  相似文献   

13.
A survey of the major deoxyribonucleases in Pseudomonas aeruginosa strain PAO was undertaken. Two activities predominated in Brij-58 lysates of this organism. These have been purified from contaminating nuclease activities, and some of their properties have been elucidated. The first was a nuclease that degraded heat-denatured deoxyribonucleic acid (DNA) to mono- and dinucleotides. The activity of this enzyme was confined to single-stranded DNA, and 100% of the substrate was hydrolyzed to acid-soluble material. The Mg2+ optimum is low (1 to 3mM), and the molecular weight is 6 X 10(4). The second predominant activity was an adenosine 5'-triphosphate (ATP)-dependent deoxyribonuclease. This enzyme had an absolute dependence on the presence of ATP Mg2+ concentrations of approximately 10 mM. Five moles of ATP was consumed for each mole of phosphodiester bonds cleaved. The acid-soluble products of the reaction consisted of short oligonucleotides from one to six bases in length. Only 50% of the double-stranded DNA was rendered acid soluble in a limit digest. The molecular weight of this enzyme is 3 X 10(5). The observation of these enzymes in P. aeruginosa is consistent with the possibility that recombinational pathways similar to those of Escherichia coli are operating in this organism.  相似文献   

14.
A DNA ligase has been purified approximately 2,100-fold, to near-homogeneity, from Drosophila melanogaster 6-12-h embryos and was shown to catalyze the formation of 3',5'-phosphodiester bonds. Polypeptides with molecular weights 83,000, 75,000, and 64,000 were observed when the purified enzyme was electrophoresed under denaturing conditions. These polypeptides were shown by partial proteolysis studies and two-dimensional gel analysis to be structurally related. The two smaller polypeptides were presumably derived from the largest, 83,000 molecular weight protein, by proteolysis during purification or in vivo. All three polypeptides formed enzyme-adenylylate complexes in the absence of DNA. Drosophila DNA ligase had a Stokes radius of 45 A, a sedimentation coefficient of 4.3 S, and a frictional ratio of 1.6, yielding a calculated molecular weight of 79,800. These studies indicate that DNA ligase from Drosophila embryos is a monomer. The purified ligase was free of detectable ATPase, nuclease, topoisomerase, and DNA polymerase activities. The enzyme exhibited an absolute requirement for ATP in the joining reaction. A divalent metal was required and N-ethylmaleimide inhibited the reaction. Formation of phosphodiester bonds by Drosophila ligase required the presence of 5'-phosphoryl and 3'-hydroxyl termini. The purified enzyme restored biological activity to endonucleolytically cleaved pBR322 DNA. The specific activity of Drosophila DNA ligase was highest in unfertilized eggs. Developing embryos had 5-10-fold more ligase activity than at any later time in development.  相似文献   

15.
A DNA-stimulated ATP-gamma-phosphohydrolase of molecular weight 75000 was purified from Escherichia coli cells. The ATPase, a globular molecule (identical probably with an ATPase described previously by Richet and Kohiyama in 1976) shows specificity for adenine nucleotides, it prefers single-stranded DNA as the cofactor, it exhibits a complicated mode of response to variations of the cofacter concentration and it is devoid of nuclease activity. Preparations derived from rep3 mutant cells yield widely varying amounts of an apparently normal ATPase.  相似文献   

16.
An endonuclease specific for depurinated native DNA was isolated and partially purified from extracts of barley leaves. The procedure included streptomycin sulphate precipitation, ammonium sulphate fractionation, phosphocellulose, hydroxyapatite and Sephadex G-150 chromatography. Purity of the resulting enzyme was determined by gel electrophoresis and gel chromatography and specificity by testing the activity on intact and depurinated bacterial DNAs. At lower concentrations, the enzyme is specific for DNA containing apurinic sites. At higher concentrations, however, it degrades DNA in a non-specific manner. The nuclease has a pH optimum at 7.6, and a molecular weight of about 18000.  相似文献   

17.
A DNA helicase from Xenopus laevis ovaries   总被引:5,自引:0,他引:5  
E H Poll  R M Benbow 《Biochemistry》1988,27(24):8701-8706
A DNA helicase was extensively purified from Xenopus laevis ovaries. The most purified fraction was free of DNA topoisomerase, DNA polymerase, and nuclease activities. The enzyme had a Stokes radius of 54 A and a sedimentation coefficient of 6-7.3 S, from which a native molecular weight of 140,000-170,000 was calculated. DNA helicase activity required Mg2+ or Mn2+ and was dependent on hydrolysis of ATP or dATP. Monovalent cations, K+ and Na+, stimulated DNA unwinding with an optimum at 130 mM. DNA-dependent ATPase activity copurified with the X. laevis DNA helicase. Double-stranded and single-stranded DNA were both cofactors for the ATPase activity, but single-stranded DNA was more efficient. The molecular weight, monovalent cation dependence, cofactor requirements, and elution from single-stranded DNA-cellulose suggest that the X. laevis DNA helicase is different from previously described eukaryotic DNA helicases.  相似文献   

18.
The ability of high molecular weight chicken erythrocyte chromatin to spontaneously self-assemble into native-like material, after dissociation by high ionic strength and reassociation by salt gradient dialysis, was critically examined. The native conformational state of the reassembled nucleoprotein complex was regenerated to the extent reflected by circular dichroism spectra and thermally induced helix--coil transition of the nucleoprotein DNA. However, internucleosomal packing of approximately 205 base pairs of DNA per repeating unit, as probed by digestion with micrococcal nuclease, was not regenerated upon reassembly and was replaced by a packing of approximately 160 base pairs per repeating unit. Thus, high molecular weight chromatin containing only lysine-rich histones (H1 and H5) and core histones (H2A, H2B, H3, and H4) is not a true self-assembling system in vitro using the salt gradient dialysis system used herein. Circular dichroism and thermal denaturation studies on core chromatin (lysine-rich histones removed) showed that core histones alone are not capable of reassembling high molecular weight DNA into native-like core particles at low temperature (4 degree C). Reassembly at 21 degree C restored the circular dichroism but not the thermal denaturation properties to those characteristic of undissociated core chromatin. Nonetheless, micrococcal nuclease digestions of both reassembled core chromatin products were identical with undissociated native core chromatin. Ressembly in the presence of the complete complement of histones, followed by removal of the lysine-rich histones, did regenerate the thermal denaturation properties of undissociated native core particles. These results indicated multiple functions of the lysine-rich histones in the in vitro assembly of high molecular weight chromatin.  相似文献   

19.
Cleavage of DNA in nuclei and chromatin with staphylococcal nuclease.   总被引:53,自引:0,他引:53  
R Axel 《Biochemistry》1975,14(13):2921-2925
Treatment of either rat liver chromatin or intact nuclei with the enzyme staphylococcal nuclease results in the conversion of about half of the DNA to acid-soluble oligonucleotides. As previously described, mild digestion of nuclei results in the liberation of a series of nucleoprotein particles containing DNA fragments which are all integral multiples of a unit length DNA 185 base pairs in length. Analysis of the kinetics of appearance of these fragments suggests that at least 85% of the nuclear DNA is involved in the formation of the repeating subunit profile. More extensive digestion of nuclei however results in the generation of a series of eight unique DNA fragments containing 160 to 50 base pairs. The series of smaller molecular weight DNA is virtually identical with the profile obtained upon limit digestion of isolated chromatin. By velocity centrifugation we have obtained highly purified preparations of the monomeric nucleoprotein particle. Digestion of this monomeric subunit results in the solubilization of 46% of the DNA and analysis of the resistant DNA again reveals the set of eight lower molecular weight fragments. These data suggest that the initial site of nuclease cleavage in chromatin resides within the DNA bridging the repeating monomeric subunits. Further attack results in cleavage at a set of sites within the monomer liberating a pattern of smaller DNA fragments which probably represents the points of intimate contact between the histones and DNA.  相似文献   

20.
Mitochondrial (Mt) DNA from Podospora anserina was isolated and characterized with respect to density in CsCl, contour length and endonuclease restriction enzymes. The density of Mt DNA for four races examined was 1.694 g/cm3, compared with 1.712 g/cm3 for nuclear DNA. Extraction in the presence of a nuclease inhibitor, aurintricarboxylic acid and isolation in DAPI CsCl gradients allowed us to isolate high molecular weight DNA. Mt DNA isolated by total DNA extraction contained ca. 1% of circular molecules, 31 micron in contour length; Mt DNA isolated from purified mitochondria contained 2--4% of these 31 micron circles. Analysis with Eco RI restriction endonuclease revealed that each of the four races examined, s, A, T and E had a characteristic fragment pattern. Races s and A Mt DNA differed by only one fragment after Eco RI enzymatic digestion; similarly, these two DNA differed by only one or two fragments after Hae III digestion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号