首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two novel nicotine-degrading bacterial strains were isolated from tobacco waste and identified as Acinetobacter sp. TW and Sphingomonas sp. TY based on morphology, physiological and biochemical tests, Biolog analysis and 16S rDNA sequencing. The 16S rDNA sequences have been deposited in GenBank under the accession numbers FJ753401 for TW and FJ754274 for TY. The best culture conditions for nicotine degradation were 25–37°C and pH 7.0–8.0 for strain TW and 25–30°C and pH 6.0–7.0 for strain TY. Under the best conditions, the cell growth and nicotine-degradation kinetics of the two isolates were assessed, and 1.0 g/l nicotine was completely degraded within 12 and 18 h for TW and TY, respectively. Moreover, the presence of four widely-used commercial neonicotinoid insecticides in the medium had no effects on nicotine degradation by TW; among the four tested neonicotinoids, only thiamethoxam significantly delayed nicotine degradation by TY. TW and TY were also able to degrade selected neonicotinoids. This is the first report of nicotine degradation by Acinetobacter sp. and Sphingomonas sp. This study showed that these two newly isolated bacteria may be suitable for the disposal of tobacco waste and the reduction of nicotine in tobacco leaves.  相似文献   

2.
A Pseudomonas sp. grew with nicotine optimally 3 g l–1 and at 30 °C and pH 7. Nicotine was fully degraded within 10 h. The resting cells degraded nicotine in tobacco solid waste completely within 6 h in 0.02 m sodium phosphate buffer (pH 7) at maximally 56 mg nicotine h–1 g dry cell–1.  相似文献   

3.
Aims: Isolation and characterization of nicotine‐degrading bacteria with advantages suitable for the treatment of nicotine‐contaminated water and soil and detection of their metabolites. Methods and Results: A novel nicotine‐degrading bacterial strain was isolated from tobacco field soil. Based on morphological and physiochemical properties and sequence of 16S rDNA, the isolate was identified as Pseudomonas sp., designated as CS3. The optimal culture conditions of strain CS3 for nicotine degradation were 30°C and pH 7·0. However, the strain showed broad pH adaptability with high nicotine‐degrading activity between pH 6·0 and 10·0. Strain CS3 could decompose nicotine nearly completely within 24 h in liquid culture (1000 mg L?1 nicotine) or within 72 h in soil (1000–2500 mg kg?1 nicotine) and could endure up to 4000 mg L?1 nicotine in liquid media and 5000 mg kg?1 nicotine in soil. Degradation tests in flask revealed that the strain had excellent stability and high degradation activity during the repetitive degradation processes. Additionally, three intermediates, 3‐(3,4‐dihydro‐2H‐pyrrol‐5‐yl) pyridine, 1‐methyl‐5‐(3‐pyridyl) pyrrolidine‐2‐ol and cotinine, were identified by GC/MS and NMR analyses. Conclusions: The isolate CS3 showed outstanding nicotine‐degrading characteristics such as high degradation efficiency, strong substrate endurance, broad pH adaptability, and stability and persistence in repetitive degradation processes and may serve as an excellent candidate for applications in the bioaugmentation process to treat nicotine‐contaminated water and soil. Also, detection of nicotine metabolites suggests that strain CS3 might decompose nicotine via a unique nicotine‐degradation pathway. Significance and Impact of the Study: The advantage of applying the isolated strain lies in broad pH adaptability and stability and persistence in repetitive use, the properties previously less focused in other nicotine‐degrading micro‐organisms. The strain might decompose nicotine via a nicotine‐degradation pathway different from those of other nicotine‐utilizing Pseudomonas bacteria reported earlier, another highlight in this study.  相似文献   

4.
Ochrobactrum intermedium DN2 was used to degrade nicotine in tobacco waste extracts. The optimal temperature and pH of nicotine degradation by strain DN2 was 30–37 °C and 7.0, respectively. Under these optimal conditions, the average degradation rate of nicotine in a 30L fed-batch culture was 140.5 mg l−1 h−1. The results of this study indicate that strain DN2 may be useful for reducing the nicotine content of reconstituted tobacco.  相似文献   

5.
2-phenylethanol (2-PE), which is extracted naturally from plant or biotechnology processing, is widely used in the food and cosmetics industries. Due to the high cost of 2-PE production, the valorization of waste carbon to produce 2-PE has gained increasing attention. Here, 2-PE was produced by Saccharomyces cerevisiae using tobacco waste extract (TWE) as the substrate. Considering the toxicity of nicotine and its inhibition of 2-PE, the tolerance of S. cerevisiae was first evaluated. The results suggested that the production of 2-PE by S. cerevisiae in TWEs could be carried out at 2·0 mg ml−1 nicotine concentrations and may be inhibited by 1·0 mg ml−1 2-PE. Thus, the compounds in the TWEs prepared at different temperatures were detected, and the results revealed that the TWEs prepared at 140°C contained 2·18 mg ml−1 of nicotine, had total sugar concentrations of 26·8 mg ml−1 and were suitable for 2-PE production. Due to feedback regulation, the 2-PE production was only 1·11 mg ml−1, and the remaining glucose concentration remained at 13·78 mg ml−1, which indicated insufficient glucose utilization. Then, in situ product recovery was further implemented to remove this inhibition; the glucose utilization (the remaining concentration decreased to 3·64 mg ml−1) increased, and the 2-PE production increased to 1·65 mg ml−1. The 2-PE produced in the fermentation broth was first isolated by elution from the resin with 75% ethanol and then by removing the impurities with 2·5% activated charcoal, and pure 2-PE was identified by gas chromatography mass spectrometry. The results of this study suggest that TWE could be an alternative carbon source for 2-PE production. This could provide an outlet tobacco waste as well as reducing the price of natural 2-PE, although more strategies need to be explored to improve the production yield of 2-PE by using TWE.  相似文献   

6.
Aims: The aim was to obtain evidences for lignin degradation by unicellular bacterium Comamonas sp. B‐9. Methods and Results: Comamonas sp. B‐9 was inoculated into kraft lignin‐mineral salt medium (KL‐MSM) at pH 7·0 and 30°C for 7 days of incubation. The bacterial growth, chemical oxygen demand (COD) reduction, secretion of ligninolytic enzymes and productions of low‐molecular‐weight compounds revealed that Comamonas sp. B‐9 was able to degrade kraft lignin (KL). COD in KL‐MSM reduced by 32% after 7 days of incubation. The maximum activities of manganese peroxidase (MnP) of 2903·2 U l?1 and laccase (Lac) of 1250 U l?1 were observed at 4th and 6th day, respectively. The low‐molecular‐weight compounds such as ethanediol, 3, 5‐dimethyl‐benzaldehyde and phenethyl alcohol were formed in the degradation of KL by Comamonas sp. B‐9 based on GC‐MS analysis. Conclusions: This study confirmed that Comamonas sp. B‐9 could utilize KL as a sole carbon source and degrade KL to low‐molecular‐weight compounds. Significance and Impact of the Study: Comamonas sp. B‐9 may be useful in the utilization and bioconversion of lignin and lignin‐derived aromatic compounds in biotechnological applications. Meanwhile, using Comamonas sp. B‐9 in treatment of wastewater in pulp and paper industry is a meaningful work.  相似文献   

7.
Growth responses of Pithophora oedogonia (Mont.) Wittr. and Spirogyra sp. to nine combinations of temperature (15°, 25°, and 35°C) and photon flux rate (50, 100, and 500 μmol·m?2·s?1) were determined using a three-factorial design. Maximum growth rates were measured at 35°C and 500 pmol·m?2·s?1 for P. oedogonia (0.247 d?1) and 25°C and 500 μmol·m?2·s?1 for Spirogyra sp. (0.224 d?1). Growth rates of P. oedogonia were strongly inhibited at 15°C (average decrease= 89%of maximum rate), indicating that this species is warm stenothermal. Growth rates of Spirogyra sp. were only moderately inhibited at 15° and 35°C (average decrease = 36 and 30%, respectively), suggesting that this species is eurythermal over the temperature range employed. Photon flux rate had a greater influence on growth of Spirogyra sp. (31% reduction at 50 pmol·m?2·s?1 and 25°C) than it did on growth of P. oedogonia (16% reduction at 50 μmol·m?2·s?1 and 35°C). Spirogyra sp. also exhibited much greater adjustments to its content of chlorophyll a (0.22–3.34 μg·mg fwt?1) than did P. oedogonia (1.35–3.08 μg·mg fwt?1). The chlorophyll a content of Spirogyra sp. increased in response to both reductions in photon flux rate and high temperatures (35°C). Observed species differences are discussed with respect to in situ patterns of seasonal abundance in Surrey Lake, Indiana, the effect of algal mat anatomy on the internal light environment, and the process of acclimation to changes in temperature and irradiance conditions.  相似文献   

8.
Using particulate methane monooxygenase (pMMO) encoding gene, pmoA-based terminal-restrict fragment length polymorphism (T-RFLP), the methanotrophic communities between rhizospheric soils (RSs) and non-rhizospheric soil (NRSs) of landfill cover (LC), riparian wetland (RW) and rice paddy (RP) were compared before and after pre-incubation of 90 days. The ultimate potential of methane oxidation rate (UPMOR) and gene copy number of pmoA were evaluated in the soil samples after pre-incubation. Compared to the methanotrophic community in the soil samples before pre-incubation, type II methanotrophs, the Methylocystis-Methylosinus group, was mostly increased after pre-incubation, regardless of the soil type. The UPMOR (11.82 ± 0.27 μmol-CH4· g?1 soil-DW·h?1) in the LC-RS was significantly higher than that (9.57 ± 0.14 μmol-CH4· g?1 soil-DW·h?1) in the LC-NRS. However, no significant difference was found between RSs and NRSs in the RW (15.28 ± 0.91 and 13.23 ± 0.69 μmol-CH4· g?1 soil-DW·h?1, respectively) and RP (13.81 ± 1.04 and 12.81 ± 2.40 μmol-CH4· g?1 soil-DW·h?1, respectively) soils. There was no significantly difference in the gene copy numbers of pmoA in the RSs compared with those in the NRSs at all of the sampling sites. This study provides basic metagenomic information about both rhizospheric and non-rhizospheric methanotrophs, which will be helpful in developing a better strategy of biological methane removal from both natural and anthropogenic major methane sources.  相似文献   

9.
Aims: To produce single cell protein (SCP) by using waste capsicum powder produced during capsanthin extraction as a substrate. Methods and results: The extraction [CPM (capsicum powder medium)] from waste capsicum powder was used as culture medium to cultivate four yeast strains. The main composition of CPM was determined. The average concentration of total sugar, total nitrogen and phosphorous of CPM were 16·3, 3·7 g l?1 and 785·4 mg l?1, respectively. Four yeast strains were cultured in two CPMs, and the cell mass, protein content of cells and specific growth rate of cells were determined. Addition of corn steep liquor significantly increased the cell mass production. Presence of capsaicin in CPM did not show inhibition of cell growth of yeast tested. Conclusions: CPM contained sufficient nutrients and could be used as a good medium to produce SCP. Candida utilis 1769 was chosen as the biomass producer because of its highest SCP formation (6·8 g l?1) and higher specific growth rate (0·12 h?1). The amino acid composition of its protein was well balanced. Significance and Impact of the Study: Utilization of waste capsicum powder can reduce environmental pollution and increase protein supply for animal feed.  相似文献   

10.
Edible oil industry produced massive wastewater, which requires extensive treatment to remove pungent smell, high phosphate, carbon oxygen demand (COD), and metal ions prior to discharge. Traditional anaerobic and aerobic digestion could mainly reduce COD of the wastewater from oil refinery factories (WEORF). In this study, a robust oleaginous microalga Desmodesmus sp. S1 was adapted to grow in WEORF. The biomass and lipid content of Desmodesmus sp. S1 cultivated in the WEORF supplemented with sodium nitrate were 5.62 g·L?1 and 14.49%, whereas those in the WEORF without adding nitrate were 2.98 g·L?1 and 21.95%. More than 82% of the COD and 53% of total phosphorous were removed by Desmodesmus sp. S1. In addition, metal ions, including ferric, aluminum, manganese and zinc were also diminished significantly in the WEORF after microalgal growth, and pungent smell vanished as well. In comparison with the cells grown in BG-11 medium, the cilia-like bulges and wrinkles on the cell surface of Desmodesmus sp. S1 grown in WEORF became out of order, and more polyunsaturated fatty acids were detected due to stress derived from the wastewater. The study suggests that growing microalgae in WEORF can be applied for the dual roles of nutrient removal and biofuel feedstock production.  相似文献   

11.

Aims

Bioflocculant production potential of an actinobacteria isolated from a freshwater environment was evaluated and the bioflocculant characterized.

Methods and Results

16S rDNA nucleotide sequence and BLAST analysis was used to identify the actinobacteria and fermentation conditions, and nutritional requirements were evaluated for optimal bioflocculant production. Chemical analyses, FTIR, 1H NMR spectrometry and SEM imaging of the purified bioflocculant were carried out. The 16S rDNA nucleotide sequences showed 93% similarities to three Cellulomonas species (strain 794, Cellulomonas flavigena DSM 20109 and Cellulomonas flavigena NCIMB 8073), and the sequences was deposited in GenBank as Cellulomonas sp. Okoh (accession number HQ537132 ). Bioflocculant was optimally produced at an initial pH 7, incubation temperature 30°C, agitation speed of 160 rpm and an inoculum size of 2% (vol/vol) of cell density 1·5 × 10cfu ml?1. Glucose (88·09% flocculating activity; yield: 4·04 ± 0·33 g l?1), (NH4)2NO3 (82·74% flocculating activity; yield: 4·47 ± 0·55 g l?1) and MgCl2 (90·40% flocculating activity; yield: 4·41 g l?1) were the preferred nutritional source. Bioflocculant chemical analyses showed carbohydrate, protein and uronic acids in the proportion of 28·9, 19·3 and 18·7% in CPB and 31·4, 18·7 and 32·1% in PPB, respectively. FTIR and 1H NMR indicated the presence of carboxyl, hydroxyl and amino groups amongst others typical of glycosaminoglycan. SEM imaging revealed horizontal pleats of membranous sheets closely packed.

Conclusion

Cellulomonas sp. produces bioflocculant predominantly composed of glycosaminoglycan polysaccharides with high flocculation activity.

Significance and Impact of the Study

High flocculation activity suggests suitability for industrial applications; hence, it may serve to replace the hazardous flocculant used in water treatment.  相似文献   

12.
A Pseudomonas sp. grew with nicotine optimally 3 g l(-1) and at 30 degrees C and pH 7. Nicotine was fully degraded within 10 h. The resting cells degraded nicotine in tobacco solid waste completely within 6 h in 0.02 m sodium phosphate buffer (pH 7) at maximally 56 mg nicotine h(-1) g dry cell(-1).  相似文献   

13.
Aims: In this study, we have investigated the biochemical behaviour of Aspergillus sp. (five strains) and Penicillium expansum (one strain) fungi cultivated on waste cooking olive oil. The production of lipid‐rich biomass was the main target of the work. In parallel, the biosynthesis of other extracellular metabolites (organic acids) and enzyme (lipase) and the substrate fatty acid specificity of the strains were studied. Methods and Results: Carbon‐limited cultures were performed on waste oil, added in the growth medium at 15 g l?1, and high biomass quantities were produced (up to c. 18 g l?1, conversion yield of c. 1·0 g of dry biomass formed per g of fat consumed or higher). Cellular lipids were accumulated in notable quantities in almost all cultures. Aspergillus sp. ATHUM 3482 accumulated lipid up to 64·0% (w/w) in dry fungal mass. In parallel, extracellular lipase activity was quantified, and it was revealed to be strain and fermentation time dependent, with a maximum quantity of 645 U ml?1 being obtained by Aspergillus niger NRRL 363. Storage lipid content significantly decreased at the stationary growth phase. Some differences in the fatty acid composition of both cellular and residual lipids when compared with the initial substrate fat used were observed; in various cases, cellular lipids more saturated and enriched with arachidic acid were produced. Aspergillus strains produced oxalic acid up to 5·0 g l?1. Conclusions: Aspergillus and Penicillium strains are able to convert waste cooking olive oil into high‐added‐value products. Significance and Impact of the Study: Increasing fatty wastes amounts are annually produced. The current study provided an alternative way of biovalourization of these materials, by using them as substrates, to produce added‐value compounds.  相似文献   

14.
Several species of fungi were tested for their abilities to degrade (S)-nicotine, of which Pelliculariafilamentosa JTS-208, the pathogen of tobacco damping off disease, and Cunninghamella echinulata IFO-4444, a saprophyte, were found to be able to degrade nicotine. P. filamentosa JTS-208 accumulated nornicotine only in the nicotine medium. C. echinulata IFO-4444 accumulated nornicotine and N-methylmyosmine, the first fungal metabolite, and three unidentified compounds.  相似文献   

15.
Aims: To screen and identify biosurfactant producers from petroleum‐contaminated soil; to use response surface methodology (RSM) for medium optimization to enhance biosurfactant production; and to study the properties of the newly obtained biosurfactant towards pH, temperature and salinity. Methods and Results: We successfully isolated three biosurfactant producers from petroleum‐contaminated soil and identified them through 16S rRNA sequence analysis, which exhibit the highest similarities to Acinetobacter beijerinckii (100%), Kocuria marina (99%) and Kineococcus marinus (99%), respectively. A quadratic response model was constructed through RSM designs, leading to a 57·5% increase of the growth‐associated biosurfactant production by Acinetobacter sp. YC‐X 2 with an optimized medium: beef extract 3·12 g l?1; peptone 20·87 g l?1; NaCl 1·04 g l?1; and n‐hexadecane 1·86 g l?1. Biosurfactant produced by Acinetobacter sp. YC‐X 2 retained its properties during exposure to a wide range of pH values (5–11), high temperatures (up to 121°C) and high salinities [up to 18% (w/v) Na+ and Ca2+], which was more sensitive to Ca2+ than Na+. Conclusions: Two novel biosurfactant producers were isolated from petroleum‐contaminated soil. Biosurfactant from Acinetobacter sp. YC‐X 2 has good properties to a wide range of pH, high temperature and high salinity, and its production was optimized successfully through RSM. Significance and Impact of the Study: The fact, an increasing demand of high‐quality surfactants and the lack of cost‐competitive bioprocesses of biosurfactants for commercial utilization, motivates researchers to develop cost‐effective strategies for biosurfactant production through isolating new biosurfactant producers with special surface‐active properties and optimizing their cultural conditions. Two novel biosurfactant producers in this study will widen our knowledge about this kind of micro‐organism. This work is the first application of RSM designs for cultural optimization of biosurfactant produced by Acinetobacter genus and the first report that biosurfactant may be more sensitive to Ca2+ than Na+.  相似文献   

16.
Aims: To isolate and characterize a potent molybdenum‐reducing bacterium. Methods and Results: A minimal salt medium supplemented with 10 mmol l?1 molybdate, glucose (1·0%, w/v) as a carbon source and ammonium sulfate (0·3%, w/v) as a nitrogen source was used in the screening process. A molybdenum‐reducing bacterium was isolated and tentatively identified as Pseudomonas sp. strain DRY2 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. Strain DRY2 produced 2·4, 3·2 and 6·2 times more molybdenum blue compared to Serratia marcescens strain DRY6, Enterobacter cloacae strain 48 and Eschericia coli K12, respectively. Molybdate reduction was optimum at 5 mmol l?1 phosphate. The optimum molybdate concentration that supported molybdate reduction at 5 mmol l?1 phosphate was between 15 and 25 mmol l?1. Molybdate reduction was optimum at 40°C and at pH 6·0. Phosphate concentrations higher than 5 mmol l?1 strongly inhibited molybdate reduction. Inhibitors of electron transport system such as antimycin A, rotenone, sodium azide and cyanide did not inhibit the molybdenum‐reducing enzyme activity. Chromium, copper, mercury and lead inhibited the molybdenum‐reducing activity. Conclusions: A novel molybdenum‐reducing bacterium with high molybdenum reduction capacity has been isolated. Significance and Impact of the Study: Molybdenum is an emerging global pollutant that is very toxic to ruminants. The characteristics of this bacterium suggest that it would be useful in the bioremediation of molybdenum pollutant.  相似文献   

17.
Aims: Peptones are one of the most expensive constituents of microbial media. This study was undertaken to prepare the peptone from waste chicken feathers through a new process. Methods and Results: The chemical analysis of chicken feather peptone (CFP) was performed. The ability of CFP to support the growth of the three test bacteria in liquid and agar media was comparable to those of three commercial peptones [tryptone peptone (TP), fish peptone and protease peptone (PP)]. Conclusions: CFP was found to be rich in ash (42·1 g 100 g?1), protein (55·8 g 100 g?1) and mineral contents. The maximum biomass yield (3·13 g l?1) and colony number (83 × 108 CFU ml?1) for bacterium Bacillus subtilis were attained with CFP. The maximum biomass yields and colony numbers for Lactobacillus delbrueckii ssp. bulgaricus and Escherichia coli were reached in TP medium. Second high biomass yield (2·64 g l?1) and colony number (75 × 108 CFU ml?1) for E. coli were achieved using CFP. Third high biomass yield (1·29 g l?1) and colony number (90 × 107 CFU ml?1) for Lact. delbrueckii ssp. bulgaricus were obtained in CFP medium. Significance and Impact of the Study: Usability of waste chicken feathers as substrate for bacteria was investigated for the first time in the present study. The peptone may be used in industrial fermentations for production of antibiotics, organic acids, enzymes and biopolymer. It may be also used in clinical microbiology. A new chemical process was developed for peptone preparation. This process may be also employed for peptone preparation from other organic materials, especially fibrose protein‐containing materials.  相似文献   

18.
In this study, we examined the impact of environmental perturbation on the movement of the toxic bloom‐forming alga Heterosigma akashiwo (Hada) Hada ex Y. Hara et Chihara [syn. H. carterae (Hulburt) F.J.R. Taylor] between vegetative and resting cell phases of the life history. Resting state induction, in batch culture, was most effective when vegetative cells were subjected to low temperature (10° C) and darkness for extended time periods. Heterosigma cells in stasis had neither a cell wall nor scales but were surrounded by a calyx, most probably of polysaccharide composition. The resting cell was completely immobile, although both flagella remained attached. Heterosigma resting cells did not require a maturation period before successful activation to the vegetative state could occur. Cell division and motility were impacted sequentially during both the induction and activation phases of resting cell development. Our data show that Heterosigma had an obligate light requirement for resting cell activation. In replete medium, very low light fluences of 5 μmol photons·m ? 2·s ? 1 were as effective as 60 μmol photons·m ? 2·s ? 1 in the initiation of activation. Such sensitivity to extremely low light might give Heterosigma a competitive advantage for bloom formation in nature. Reduced nitrate levels significantly shortened the temporal transition of vegetative cells into the resting cell phase of the life history. Additionally, when resting cells induced in nitrate‐limited medium were activated under nitrate‐replete condition, the efficiency of the activation response was directly correlated to light availability. Both vegetative and resting cells maintained a haploid DNA complement. Rapid amplified polymorphic DNA (RAPD) analysis demonstrated variation in genetic identity among axenic Heterosigma strains. Strain identity influenced success in resting cell induction and survival in stasis. To date, no defined sexual cycle has been described. These observations are discussed in terms of population fitness. The data presented in this report provide a model algal system wherein the molecular events that govern long‐term stasis in an obligately autotrophic organism can now be assessed.  相似文献   

19.
Variations of pigment content in the microscopic conchocelis stage of four Alaskan Porphyra species were investigated in response to environmental variables. Conchocelis filaments were cultured under varying conditions of irradiance and nutrient concentrations for up to 60 d at 11°C and 30 psu salinity. Results indicate that conchocelis filaments contain relatively high concentrations of phycobilins under optimal culture conditions. Phycobilin pigment production was significantly affected by irradiance, nutrient concentration, and culture duration. For Porphyra abbottiae V. Krishnam., Porphyra sp., and Porphyra torta V. Krishnam., maximal phycoerythrin (63.2–95.1 mg · g dwt?1) and phycocyanin (28.8–64.8 mg · g dwt?1) content generally occurred at 10 μmol photons · m?2 · s?1, f/4–f/2 nutrient concentration after 10–20 d of culture. Whereas for Porphyra hiberna S. C. Lindstrom et K. M. Cole, the highest phycoerythrin (73.3 mg · g dwt?1) and phycocyanin (70.2 mg · g dwt?1) content occurred at 10 μmol photons · m?2 · s?1, f nutrient concentration after 60 d in culture. Under similar conditions, the different species showed significant differences in pigment content. P. abbottiae had higher phycoerythrin content than the other three species, and P. hiberna had the highest phycocyanin content. P. torta had the lowest phycobilin content.  相似文献   

20.
Aims: To investigate the influence of yeast extract, peptone, temperature and pH upon protease productivity by Bacillus sp. HTS102 – a novel wild strain isolated from wool of a Portuguese sheep breed (Merino). Methods and Results: A 24 full factorial, central composite design together with response surface methodology was used to carry out the experiments and analyse the results, respectively. Among the individual parameters tested, temperature and peptone concentration produced significant effects upon protease productivity. A high correlation coefficient (R2 = 0·994, P < 0·01) indicated that the empiric second‐order polynomial model postulated was adequate to predict said productivity, with the optimum loci characterized by: temperature of 43°C, peptone content of 1·4 g l?1, pH of 5·1 and yeast extract concentration of 10·0 g l?1. Conclusions: Protease synthesis depends chiefly on temperature and peptone level. The maximum protease activity was more than twice that obtained with the basal medium, so the experimental design and analysis undertaken were effective towards process optimization. Significance and Impact of the Study: Rational choice of processing conditions for maximum protease productivity will be relevant if an economically feasible fermentation process based on Bacillus sp. HTS102 is intended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号