首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein Kinase Activity in Equine Herpesvirus   总被引:1,自引:24,他引:1  
A protein kinase which is intimately associated with equine herpesvirus (equine abortion virus) was found by using adenosine triphosphate-gamma-(32)P as a phosphate donor and virus protein as an acceptor. Consistent demonstration of the activity requires prior removal of phosphohydrolase. The kinase activity requires Mg(2+), is not stimulated by cyclic adenosine monophosphate, but is enhanced by added protamine or arginine-rich histone. The labeled product is resistant to ribonuclease, deoxyribonuclease, and chloroform-methanol but is sensitive to Pronase. Other tests suggest that serine and threonine residues are the acceptor sites. In the in vitro reaction, the incorporation represents an average of approximately 4,500 phosphate residues per virion, and all 17 virus protein bands resolved by polyacrylamide gel electrophoresis appear to be labeled.  相似文献   

2.
Abstract: A new protein kinase modulated by S-100 (tentatively referred to as protein kinase X) was partially purified from pig brain extracts. The activity of protein kinase X, which was independent of Ca2+, was demonstrated when protamine (free base), but not protamine sulfate and other proteins (including histone), was used as substrate. The enzyme activity, found to distribute in both soluble and particulate fractions and to occur at the highest level in brain compared with other tissues (heart, kidney, liver, skeletal muscle, spleen, and testis) of rats, was also modulated by other acidic proteins (calmodulin, troponin C, and stimulatory modulator) in a Ca2+-independent manner. S-100 and other acidic proteins appeared to function as "substrate modifiers" by interacting with protamine (a highly basic protein), but not with the enzyme, thus rendering protamine in the complex a superior phosphate acceptor. The two isoforms of S-100 (i.e., a and b) were equally effective. Although the enzyme was not inhibited by many agents (trifluoperazine, melittin, cytotoxin I, polymyxin B, and spermine) shown to inhibit markedly phospholipid/Ca2+- or calmodulin/Ca2+-stimulated protein kinase, gossypol was found to inhibit specifically protein kinase X. The present findings suggest that S-100, a major acidic protein specific to nervous system, may promote phosphorylation by protein kinase X of certain neural proteins resembling protamine or containing protamine-like domains, in addition to its presumed role of a low-affinity Ca2+-binding protein.  相似文献   

3.
The phosphorylation of two purified vaccinia virus proteins (Acceptors I and II) by a protein kinase isolated from vaccinia virus cores has been studied. Phosphorylation of viral acceptor proteins by the purified enzyme was dependent on the presence of ATP, Mg2+, and protamine or other basic proteins, and was maximal at alkaline pH values. Cyclic mononucleotides did not stimulate the vaccinia protein kinase under a variety of conditions. Protamine, however, was shown to function as an enzyme activator. In its presence, the purified vaccinia protein kinase phosphorylated mainly serine residues in Acceptor I, and predominantly threonine residues in Acceptor II. Phosphorylation of protamine accounted for less than 1% of the total 23P incorporation. Tryptic peptide maps prepared from 32P-labeled Acceptors I and II demonstrated that they contained different labeled peptide sequences and were, therefore, distinct protein species. From additional studies on both purified and virus-associated protein kinase it was concluded that various proteins affected the protein kinase reaction in one of three ways. One class of proteins served as phosphate acceptors, but only when another activator protein was present. A second class consisted of proteins that were strong activators but poor phosphate acceptors. The third class contained proteins that were fair phosphate acceptors, but which also activated the phosphorylation of other acceptor proteins.  相似文献   

4.
The previously described poliovirus-associated protein kinase activity phosphorylates viral proteins VP0 and VP2 as well as exogenous proteins in the presence of Mg2+. In this paper, the effect of Zn2+ on the phosphorylation reaction and the stability of the poliovirus capsid has been studied in detail and compared to that of Mg2+. Phosphorylation patterns of viral and other proteins depend on the divalent cation present. In the presence of Zn2+, phosphorylation of capsid proteins VP2 and VP4 is significantly higher while phosphorylation of VP0 and exogenous phosphate acceptor proteins is not detected. Our results indicate the activation of more than one virus-associated protein kinase by Zn2+. The ion-dependent behavior of the enzyme activities is observed independently of whether the virus was obtained from HeLa or green monkey kidney cells. The poliovirus capsid is destabilized by Zn2+. The destabilization leads to a substantially increased permeability of virus particles to ethidium bromide and RNase, concomitant with decreased infectivity of the sample. This alteration of the poliovirus capsid structure is a prerequisite for effective phosphorylation of viral capsid proteins. The increased level of phosphorylation of viral capsid proteins results in further destabilization of the viral capsid. As a result of the conformational changes, poliovirus-associated protein kinase activities dissociate from the virus particle. High-performance liquid chromatography-purified viral protein VP2 is phosphorylated by the released enzymes on serine, threonine, and tyrosine in the presence of Zn2+. We suggest that the destabilizing effect of phosphorylation on the viral capsid plays a role in uncoating of poliovirus.  相似文献   

5.
Abstract: Cholera toxin catalyzed the ADP-ribosylation of the pituitary protein hormones thyrotropin (TSH), lutropin (LH), follitropin (FSH), human chorionic gonadotropin (hCG). and corticotropin (ACTH)1–24, and ADP-ribosylation of the basic proteins histone subfraction H1 and protamine. Casein and phosvitin, acidic nuclear proteins, did not act as acceptors for toxin-catalyzed ADP-ribosylation. The isolated TSH A and B subunits were tested for their ADP-ribose acceptor activity. The TSH A subunit showed fourfold greater ADP-ribose acceptor activity than the TSH B subunit. The ADP-ribose acceptor protein protamine was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis following incubation with cholera toxin under ADP-ribosylating conditions. [3H]ADP-ribose incorporated into protein from [3H]NAD migrated with the acceptor protein protamine. In the absence of added acceptor protein, the [3H]ADP-ribose incorporated into protein migrated with the A1 fragment of cholera toxin. Cholera toxin A and B subunits were isolated and tested for their ability to catalyze the transfer of ADP-ribose to protamine. The cholera toxin A subunit showed 50-fold greater ADP-ribosyltransferase activity than the B subunit. Our data indicate that a variety of adenohypophyseal hormones and regulatory proteins act as acceptors for toxin-catalyzed ADP-ribosylation. These studies may help in understanding the role of endogenous ADP-ribosyltransferases and the physiological effects of this modification of protein.  相似文献   

6.
Protamine sulfate blocked 125I-PDGF binding to its specific physiological receptor on Swiss mouse 3T3 cells. Reduced 125I-PDGF binding in the presence of protamine sulfate correlated directly with a protamine sulfate dose-dependent decrease in the PDGF-dependent incorporation of [3H]-thymidine into 3T3 cells and a decreased PDGF-stimulated tyrosine-specific protein kinase activity in isolated membrane preparations of 3T3 cells. Protamine sulfate blocked 125I-PDGF binding to simian sarcoma virus transformed cells (SSV-NIH 3T3 and SSV-NP1 cells) and to nontransformed cells in a manner qualitatively identical to unlabelled PDGF. In contrast, protamine sulfate enhanced the specific binding of 125I-EGF by increasing the apparent number of EGF receptors on the cell surface. The increase in 125I-EGF receptor binding was not prevented by cycloheximide nor by actinomycin D. Protamine sulfate did not affect 125I-EGF binding to membranes from 3T3 cells or the EGF-stimulated 3T3 cell membrane tyrosine specific protein kinase activity, suggesting that protamine sulfate may have exposed a population of cryptic EGF receptors otherwise not accessible. Protamine sulfate was fractionated into four active fractions by Sephadex G-50 gel filtration columns; the half maximum inhibition concentration of 125I-PDGF binding to 3T3 cells of protamines I and II (MW approximately 11,000 daltons and 7,000 daltons, respectively) is approximately 0.4 microM. Protamine II (MW approximately 4,800 daltons) was equally active (half maximum inhibition concentration approximately 0.4 microM); protamine IV (MW approximately 3,300 daltons) was substantially less active (half maximum inhibition concentration approximately 2.8 microM). These investigations have extended previous observations that protamine sulfate is a potent inhibitor of PDGF binding and establish that protamine sulfate blocks PDGF binding at the physiological receptor, preventing PDGF initiated biological activities. Protamine sulfate can be used as a reagent to separate the influence of PDGF and EGF on cells with high specificity and has been used to demonstrate that the receptors on simian sarcoma virus transformed 3T3 cells qualitatively respond identically to protamine sulfate as to unlabelled PDGF and are likely identical to those on nontransformed 3T3 cells.  相似文献   

7.
Incubation of purified vaccinia virus with gamma-(32)P-adenosine triphosphate resulted in the incorporation of (32)P into hot trichloroacetic acid-insoluble material. Enzymatic activity was completely dependent on the addition of divalent cations and was stimulated by nonionic detergents and dithiothreitol. Chemical studies demonstrated that serine and threonine residues of 15,000 molecular weight viral polypeptides were phosphorylated. In contrast, the major structural proteins were not phosphorylated or were phosphorylated to a much lesser extent. Added histones and protamine, but not serum albumin, casein, or phosvitin were phosphorylated by the partially disrupted vaccinia virus preparations. The protein kinase was tightly associated with vaccinia virus particles since the specific enzymatic activity remained constant during the final steps of virus purification, the specific activities of many different preparations of virus were similar, and the enzymatic activity cosedimented with vaccinia virus during rate zonal sucrose gradient and potassium tartrate gradient equilibrium centrifugations. Controlled degradation of vaccinia virus, with nonionic detergents and dithiothreitol, indicated that both the protein kinase and the specific phosphate acceptor proteins were located in the virus core.  相似文献   

8.
Protein kinase C (PKC), a protein phosphorylating enzyme, is characterized by its need for an acidic phospholipid and for activators such as Ca2+ and diacylglycerol. The substrate commonly used in experiments with PKC is a basic protein, histone III-S, which needs the activators mentioned. However, protamine, a natural basic substrate for PKC, does not require the presence of cofactor/activator. We report here that protamine can induce the autophosphorylation of PKC in the absence of any PKC-cofactor or activator; this may represent a possible mechanism of cofactor-independent phosphorylation of this protein. It was investigated if protamine itself can act as a PKC-activator and stimulate histone phosphorylation in the manner of Ca2+ and phospholipids. Experiments however showed that protamine is not a general effector of PKC. On the contrary, histone stimulated PKC-mediated protamine phosphorylation and protamine-induced PKC-autophosphorylation. Histone alone did not induce PKC-autophosphorylation. Kinetic studies suggest that histone increases the maximal velocity (Vmax) of protamine kinase activity of PKC without affecting the affinity (Km). Other polycationic proteins such as polyarginine serine and polyarginine tyrosine were not found to influence PKC-mediated protamine phosphorylation, indicating that the observed effects are specific to histone, and are not general for all polycationic proteins. These results suggest that histone can modulate the protamine kinase activity of PKC by stimulating protamine-induced PKC-autophosphorylation.  相似文献   

9.
A protamine kinase from HL60 cells was purified to near homogeneity by DEAE-Sephacel, protamine-agarose, Hydroxylapatite, and S-200 chromatography. It was purified by 75.8-fold through four chromatographic steps, and 0.67% of total activity was recovered. The purified enzyme had an apparent molecular mass of 120 kDa and was activated by Mg(2+) or Mn(2+), but inhibited by Ca(2+). Neither phospholipid nor phorbol ester significantly affected the enzyme activity. Staurosporine was the most potent inhibitor of the enzyme among the protein kinase inhibitors tested, K(252a), H(7), heparin, and staurosporine. The purified protamine kinase exhibited a maximum velocity of 5,000 pmol/min/mg and K(m) of 1.3 mM for protamine sulfate as a substrate. Myelin basic protein and protamine sulfate served as the best substrates for the protamine kinase among those tested. The activity of the protamine kinase remained unchanged upon treatment with PMA, retinoic acid, dimethyl sulfoxide, or 1,25 dihydroxy vitamin D(3) for 15 min, while treatment with a differentiating agent, 1,25 dihydroxy vitamin D(3), for one week increased its activity. These results suggest that protamine kinase in HL60 cells is involved in the late stage of the macrophage-monocytic differentiation pathway and may play a role in maintenance of the differentiation after HL60 cells are committed.  相似文献   

10.
11.
Earlier reports have described a novel protein kinase in cells infected with herpes simplex or pseudorabies viruses. These novel enzymes were characterized by their acceptance of protamine as a substrate and by their differential chromatographic behavior in anion-exchange chromatography. We report that this activity was not present in extracts of uninfected cells or of cells infected with a mutant constructed so as to contain a deletion in the US3 open reading frame mapping in the small component of herpes simplex virus 1 DNA. The activity was present in extracts of cells infected with wild-type virus and with a recombinant in which the US3 open reading frame had been rescued. Our results are consistent with the observation reported earlier that the coding sequences predict an amino acid motif common to protein kinases and lead to the conclusion that the US3 open reading frame encodes a virus-specific protein kinase that is not required for virus growth in cells in culture.  相似文献   

12.
The protein kinase associated with purified herpes simplex virus 1 and 2 virions partitioned with the capsid-tegument structures and was not solubilized by non-ionic detergents and low, non-inhibitory concentrations of urea. The enzyme required Mg2+ or Mn2+ and utilized ATP or GTP. The activity was enhanced by non-ionic detergents and by Na+ even in the presence of high concentrations of of Mg2+, but not by cyclic nucleotides. The enzyme associated with capsid-tegument structures phosphorylated virion polypeptides only; exogenously added substrates (acidic and basic histones, casein, phosphovitin, protamine, and bovine serum albumin) were not phosphorylated. The major phosphorylated species were virion polypeptides (VP) 1-2, 4, 11-12, 13-14, 18.7, 18.8 and 23. VP 18.7 and VP 18.8 have not been previously detected, but may be phosphorylated forms of polypeptides co-migrating with VP 19. Of the remainder, only VP 23 has been previously identified as a capsid protein; the others are constituents of the tegument or of the under surface of the virion envelope. The distribution of the phosphate bound to viral polypeptides varied depending on the Mg2+ concentration and pH. In the absence of dithiothreitol, in vitro phosphate exchange was demonstrable in VP 23 and to a lesser extent in two other polypeptides on sequential phosphorylation frist with saturating amounts off unlabeled ATP and then with [gamma-32P]ATP. Analysis of the virion polypeptides specified by herpes simplex virus 1 X herpes simplex virus 2 recombinants indicates that the genes specifying the polypeptides which serve as a substrate for the protein kinase map in the unique sequences near the left and right reinterated DNA sequences of the L component.  相似文献   

13.
Enzymatic phosphorylation of cytoplasmic proteins by a cyclic nucleotide-independent protein kinase (casein kinase of a classical type) in rat liver is stimulated greatly, sometimes more than 10-fold, by polycations, particularly by basic polypeptides such as polylysine, histone, and protamine. These basic polypeptides themselves do not serve as phosphate acceptors but act as stimulators for the reaction by interacting with cytoplasmic proteins rather than with enzyme. The stimulatory effect varies with substrates employed; with casein and phosvitin the stimulation does not exceed 2- to 3-fold. The cytoplasmic endogenous phosphate acceptor proteins measurable in the presence of basic polypeptides are abundant for this species of protein kinase.  相似文献   

14.
Ebola virus (EBOV) causes a lethal hemorrhagic fever for which there is no approved effective treatment or prevention strategy. EBOV VP35 is a virulence factor that blocks innate antiviral host responses, including the induction of and response to alpha/beta interferon. VP35 is also an RNA silencing suppressor (RSS). By inhibiting microRNA-directed silencing, mammalian virus RSSs have the capacity to alter the cellular environment to benefit replication. A reporter gene containing specific microRNA target sequences was used to demonstrate that prior expression of wild-type VP35 was able to block establishment of microRNA silencing in mammalian cells. In addition, wild-type VP35 C-terminal domain (CTD) protein fusions were shown to bind small interfering RNA (siRNA). Analysis of mutant proteins demonstrated that reporter activity in RSS assays did not correlate with their ability to antagonize double-stranded RNA (dsRNA)-activated protein kinase R (PKR) or bind siRNA. The results suggest that enhanced reporter activity in the presence of VP35 is a composite of nonspecific translational enhancement and silencing suppression. Moreover, most of the specific RSS activity in mammalian cells is RNA binding independent, consistent with VP35's proposed role in sequestering one or more silencing complex proteins. To examine RSS activity in a system without interferon, VP35 was tested in well-characterized plant silencing suppression assays. VP35 was shown to possess potent plant RSS activity, and the activities of mutant proteins correlated strongly, but not exclusively, with RNA binding ability. The results suggest the importance of VP35-protein interactions in blocking silencing in a system (mammalian) that cannot amplify dsRNA.  相似文献   

15.
Phospholipids and regulation of protein kinase reaction   总被引:1,自引:0,他引:1  
Naturally occurring phospholipids such as phosphatidylinositol and phosphatidylserine inhibited cAMP-dependent protein kinase by interacting with the substrate protein (phosphate acceptor). This inhibition was observed both in the presence and absence of cAMP when histone H2B, protamine, and myelin basic protein were used, but was not detected when casein was used as the substrate. Other phospholipids such as phosphatidylethanolamine and phosphatidylcholine did not inhibit the kinase but did stimulate the kinase when protamine served as the substrate. Both cAMP-dependent and cGMP-dependent protein kinases were inhibited by phosphatidylserine when histone H2B was used as substrate. The substrate protein binding to phosphatidylinositol and phosphatidylserine was observed when these phospholipids were added to the incubation mixture, suggesting that direct interaction between the substrate protein and the phospholipids resulted in inhibition of cAMP and cGMP-dependent protein kinase. Thus the substrate protein for protein kinase probably plays an important role in regulating the kinase activity related to various phospholipids.  相似文献   

16.
Ribonucleoprotein particles (RNPs) of vesicular stomatitis virus (VSV) were fractionated by column chromatography through Fractogel TSK HW-55F and by centrifugation through KCl sucrose. Analyses of fractions for protein content and for protein kinase activity indicated that the major peak of kinase activity did not correspond exactly with any of the VSV-specific proteins. Neither anti-NS nor anti-M IgG preparations inhibited protein kinase activity, and IgG did not act as an exogenous phosphate acceptor. Reconstitution of an RNP-enzyme complex did not result in a restoration of protein kinase activity. In vitro translation of VSV-specific poly(A)-containing RNA did not result in any detectable production of kinase activity. Thus, the major RNP-associated kinase is a host cell protein which is tightly bound to the RNP particle.  相似文献   

17.
Phosphorylation of the proteins of human cytomegalovirus (CMV) virions, noninfectious enveloped particles (NIEPs), and dense bodies was investigated. Analyses of particles phosphorylated in vivo showed the following. Virions contain three predominant phosphoproteins (i.e., basic phosphoprotein and upper and lower matrix proteins) and at least nine minor phosphorylated species. NIEPs contain all of these and one additional major species, the assembly protein. Dense bodies contain only one (i.e., lower matrix) of the predominant and four of the minor virion phosphoproteins. Two-dimensional (charge-size) separations in denaturing polyacrylamide gels showed that the relative net charges of the predominant phosphorylated species ranged from the basic phosphoprotein to the more neutral upper matrix protein. In vitro assays showed that purified virions of human CMV have an associated protein kinase activity. The activity was detected only after disrupting the envelope; it had a pH optimum of approximately 9 to 9.5 and required a divalent cation, preferring magnesium to manganese. In vitro, this activity catalyzed phosphorylation of the virion proteins observed to be phosphorylated in vivo. Peptide comparisons indicated that the sites phosphorylated in vitro are a subset of those phosphorylated in vivo, underscoring the probable biological relevance of the kinase activity. Casein, phosvitin, and to a minor extent lysine-rich histones served as exogenous phosphate acceptors. Arginine-rich and lysine-rich histones and protamine sulfate, as well as the polyamines spermine and spermidine, stimulated incorporation of phosphate into the endogenous viral proteins. Virions of all human and simian CMV strains tested showed this activity. Analyses of other virus particles, including three intracellular capsid forms (i.e., A, B, and C capsids), NIEPs, and dense bodies, indicated that the active enzyme was not present in the capsid. Rate-velocity sedimentation of disrupted virions separated the protein kinase activity into two fractions: one that phosphorylated exogenous casein and another that phosphorylated primarily the endogenous virion proteins.  相似文献   

18.
1. Smooth membranes have been prepared from mouse L-cells and found to contain an endogenous protein kinase activity. 2. The enzyme(s) responsible for this activity use ATP, but no other nucleoside triphosphates, to phosphorylate endogenous membrane proteins as well as exogenously-added protein substrates such as phosvitin and casein. 3. Mg2+ is required for enzyme activity, maximal activity is observed at pH 7.5-8.0 and the kinase is not dependent on, or stimulated by, cyclic 3'-5' AMP. 4. The kinase activity is not decreased by the Walsh heat-stable inhibitor of cyclic 3'-5' AMP-dependent protein kinases. 5. Fifty percent or more of the membrane-associated kinase activity can be solubilized by extracting membranes with buffer containing 0.6 M NaCl. 6. The solubilized enzyme resembles the membrane-associated activity in its Mg2+ requirement, pH optimum and independence of cyclic 3'-5' AMP. 7. Phosvitin and casein are better exogenous substrates than histones or protamine for phosphorylation by the enzyme in either the membrane-associated or solubilized state.  相似文献   

19.
C A O'Brian  N E Ward 《Biochemistry》1991,30(9):2549-2554
We recently reported that autophosphorylated rat brain protein kinase C (PKC) catalyzes a Ca2(+)- and phosphatidylserine- (PS-) dependent ATPase reaction. The Ca2(+)- and PS-dependent ATPase and histone kinase reactions of PKC each had a Km app(ATP) of 6 microM. Remarkably, the catalytic fragment of PKC lacked detectable ATPase activity. In this paper, we show that subsaturating concentrations of protein substrates accelerate the ATPase reaction catalyzed by PKC and that protein and peptide substrates of PKC induce ATPase catalysis by the catalytic fragment. At subsaturating concentrations, histone III-S and protamine sulfate each accelerated the ATPase activity of PKC in the presence of Ca2+ and PS by as much as 1.5-fold. At saturating concentrations, the protein substrates were inhibitory. Poly(L-lysine) failed to accelerate the ATPase activity, indicating that the acceleration observed with histone III-S and protamine sulfate was not simply a result of their gross physical properties. Furthermore, histone III-S induced the ATPase activity of the catalytic fragment of PKC, at both subsaturating and saturating histone concentrations. The induction of ATPase activity was also elicited by the peptide substrate Arg-Arg-Lys-Ala-Ser-Gly-Pro-Pro-Val, when the peptide was present at concentrations near its Km app. The induction of the ATPase activity by the nonapeptide provides strong evidence that the binding of phospho acceptor substrates to the active site of PKC can stimulate ATP hydrolysis. Taken together, our results indicate that PKC-catalyzed protein phosphorylation is inefficient, since it is accompanied by Pi production.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The effects of hormonal status on protein kinase activity was examined in homogenates of rat liver. Protein kinase activity was evaluated from incorporation of 32P from [gamma-32P]ATP into protamine or histone as receptor substrates. Protamine phosphorylation in the presence or absence of cyclic AMP exceeded histone phosphorylation by at least a factor or two. Hypophysectomy markedly increased protamine phosphorylation in the presence or absence of saturating amounts of cyclic AMP. In contrast, hypophysectomy only slightly increased cyclic AMP independent phosphorylation of histone. These results could not be amounted for by differences in ATPase or protein phosphase activities. Cortisone (2 mg/day x 3) decreased total protein kinase activity in livers of hypophysectomized rats when protamine was substrate, but had no effect on the total activity toward histone. Growth hormone (100 mug/day x 3) significantly increased histone, but not protamine phosphorylation in livers of hypophysectomized rats. Administration of 5 mug of triiodothyonine/day to hypophysectomized rats also markedly increased the phosphorylation of histone, but not protamine when saturating amounts of cyclic AMP were present. These results support the hypothesis that liver may contain more than one type of protein kinase activity and that the different protein kinase activities can be separately affected by hormones. Such control distal to cyclic AMP might allow selective modulation of cyclic AMP-dependent processes in cells which carry out more than one such process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号