首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular mechanisms required for inositol 1,4,5-trisphosphate receptor (InsP(3)R) targeting to specialized endoplasmic reticulum membrane domains are unknown. We report here a direct, high affinity interaction between InsP(3)R and ankyrin-B and demonstrate that this association is critical for InsP(3)R post-translational stability and localization in cultures of neonatal cardiomyocytes. Recombinant ankyrin-B membrane-binding domain directly interacts with purified cerebellar InsP(3)R (K(d) = 2 nm). 220-kDa ankyrin-B co-immunoprecipitates with InsP(3)R in tissue extracts from brain, heart, and lung. Alanine-scanning mutagenesis of the ankyrin-B ANK (ankyrin repeat) repeat beta-hairpin loop tips revealed that consecutive ANK repeat beta-hairpin loop tips (repeats 22-24) are required for InsP(3)R interaction, thus providing the first detailed evidence of how ankyrin polypeptides associate with membrane proteins. Pulse-chase biosynthesis experiments demonstrate that reduction or loss of ankyrin-B in ankyrin-B (+/-) or ankyrin-B (-/-) neonatal cardiomyocytes leads to approximately 3-fold reduction in half-life of newly synthesized InsP(3)R. Furthermore, interactions with ankyrin-B are required for InsP(3)R stability as abnormal InsP(3)R phenotypes, including mis-localization, and reduced half-life in ankyrin-B (+/-) cardiomyocytes can be rescued by green fluorescent protein (GFP)-220-kDa ankyrin-B but not by GFP-220-kDa ankyrin-B mutants, which do not associate with InsP(3)R. These new results provide the first physiological evidence of a molecular partner required for early post-translational stability of InsP(3)R.  相似文献   

2.
Ankyrin-B is a spectrin-binding protein that is required for localization of inositol 1,4,5-trisphosphate receptor and ryanodine receptor in neonatal cardiomyocytes. This work addresses the interaction between ankyrin-B and beta(2)-spectrin in these cells. Ankyrin-B and beta(2)-spectrin are colocalized in an intracellular striated compartment overlying the M-line and distinct from T-tubules, sarcoplasmic reticulum, Golgi, endoplasmic reticulum, lysosomes, and endosomes. Beta(2)-Spectrin is absent in ankyrin-B-null cardiomyocytes and is restored to a normal striated pattern by rescue with green fluorescent protein-220-kDa ankyrin-B. We identified two mutants (A1000P and DAR976AAA) located in the ZU5 domain which eliminate spectrin binding activity of ankyrin-B. Ankyrin-B mutants lacking spectrin binding activity are normally targeted but do not reestablish beta(2)-spectrin in ankyrin-B(+/-) cardiomyocytes. However, both mutant forms of ankyrin-B are still capable of restoring inositol 1,4,5-trisphosphate receptor localization and normal contraction frequency of cardiomyocytes. Therefore, direct binding of beta(2)-spectrin to ankyrin-B is required for the normal targeting of beta(2)-spectrin in neonatal cardiomyocytes. In contrast, ankyrin-B localization and function are independent of beta(2)-spectrin. In summary, this work demonstrates that interaction between members of the ankyrin and beta-spectrin families previously established in erythrocytes and axon initial segments also occurs in neonatal cardiomyocytes with ankyrin-B and beta(2)-spectrin. This work also establishes a functional hierarchy in which ankyrin-B determines the localization of beta(2)-spectrin and operates independently of beta(2)-spectrin in its role in organizing membrane-spanning proteins.  相似文献   

3.
Ankyrins contain significant amino acid identity and are co-expressed in many cell types yet maintain unique functions in vivo. Recent studies have identified the highly divergent C-terminal domain in ankyrin-B as the key domain for driving ankyrin-B-specific functions in cardiomyocytes. Here we identify an intramolecular interaction between the C-terminal domain and the membrane-binding domain of ankyrin-B using pure proteins in solution and the yeast two-hybrid assay. Through extensive deletion and alanine-scanning mutagenesis we have mapped key residues for interaction in both domains. Amino acids (1597)EED(1599) located in the ankyrin-B C-terminal domain and amino acids Arg(37)/Arg(40) located in ANK repeat 1 are necessary for inter-domain interactions in yeast two-hybrid assays. Furthermore, conversion of amino acids EED(1597) to AAA(1597) leads to a loss of function in the localization of inositol 1,4,5-trisphosphate receptors in ankyrin-B mutant cardiomyocytes. Physical properties of the ankyrin-B C-terminal domain determined by circular dichroism spectroscopy and hydrodynamic parameters reveal it is unstructured and highly extended in solution. Similar structural studies performed on full-length 220-kDa ankyrin-B harboring alanine substitutions, (1597)AAA(1599), reveal a more extended conformation compared with wild-type ankyrin-B. Taken together these results suggest a model of an extended and unstructured C-terminal domain folding back to bind and potentially regulate the membrane-binding domain of ankyrin-B.  相似文献   

4.
5.
Protein phosphatase 2A (PP2A) is a multifunctional protein phosphatase with critical roles in excitable cell signaling. In the heart, PP2A function is linked with modulation of beta-adrenergic signaling and has been suggested to regulate key ion channels and transporters including Na/Ca exchanger, ryanodine receptor, inositol 1,4,5-trisphosphate receptor, and Na/K ATPase. Although many of the functional roles and molecular targets for PP2A in heart are known, little is established regarding the cellular pathways that localize specific PP2A isoform activities to subcellular sites. We report that the PP2A regulatory subunit B56alpha is an in vivo binding partner for ankyrin-B, an adapter protein required for normal subcellular localization of the Na/Ca exchanger, Na/K ATPase, and inositol 1,4,5-trisphosphate receptor. Ankyrin-B and B56alpha are colocalized and coimmunoprecipitate in primary cardiomyocytes. Using multiple strategies, we identified the structural requirements on B56alpha for ankyrin-B association as a 13 residue motif in the B56alpha COOH terminus not present in other B56 family polypeptides. Finally, we report that reduced ankyrin-B expression in primary ankyrin-B(+/-) cardiomyocytes results in disorganized distribution of B56alpha that can be rescued by exogenous expression of ankyrin-B. These new data implicate ankyrin-B as a critical targeting component for PP2A in heart and identify a new class of signaling proteins targeted by ankyrin polypeptides.  相似文献   

6.
Ankyrins are a family of adapter proteins required for localization of membrane proteins to diverse specialized membrane domains including axon initial segments, specialized sites at the transverse tubule/sarcoplasmic reticulum in cardiomyocytes, and lateral membrane domains of epithelial cells. Little is currently known regarding the molecular basis for specific roles of different ankyrin isoforms. In this study, we systematically generated alanine mutants of clusters of charged residues in the spectrin-binding domains of both ankyrin-B and -G. The corresponding mutants were evaluated for activity in either restoration of abnormal localization of the inositol trisphosphate receptor in the sarcoplasmic reticulum in mutant mouse cardiomyocytes deficient in ankyrin-B or in prevention of loss of lateral membrane in human bronchial epithelial cells depleted of ankyrin-G by small interfering RNA. Interestingly, ankyrin-B and -G share two homologous sites that result in loss of function in both systems, suggesting that common molecular interactions underlie diverse roles of these isoforms. Ankyrins G and B also exhibit differences; mutations affecting spectrin binding had no effect on ankyrin-B function but did abolish activity of ankyrin-G in restoring lateral membrane biogenesis. Depletion of beta(2)-spectrin by small interfering RNA phenocopied depletion of ankyrin-G and resulted in a failure to form new lateral membrane in interphase and mitotic cells. These results demonstrate that ankyrin-G and beta(2)-spectrin are functional partners in biogenesis of the lateral membrane of epithelial cells.  相似文献   

7.
This report describes a congenital myopathy and major loss of thymic lymphocytes in ankyrin-B (-/-) mice as well as dramatic alterations in intracellular localization of key components of the Ca(2+) homeostasis machinery in ankyrin-B (-/-) striated muscle and thymus. The sarcoplasmic reticulum (SR) and SR/T-tubule junctions are apparently preserved in a normal distribution in ankyrin-B (-/-) skeletal muscle based on electron microscopy and the presence of a normal pattern of triadin and dihydropyridine receptor. Therefore, the abnormal localization of SR/ER Ca ATPase (SERCA) and ryanodine receptors represents a defect in intracellular sorting of these proteins in skeletal muscle. Extrapolation of these observations suggests defective targeting as the basis for abnormal localization of ryanodine receptors, IP3 receptors and SERCA in heart, and of IP3 receptors in the thymus of ankyrin-B (-/-) mice. Mis-sorting of SERCA 2 and ryanodine receptor 2 in ankyrin-B (-/-) cardiomyocytes is rescued by expression of 220-kD ankyrin-B, demonstrating that lack of the 220-kD ankyrin-B polypeptide is the primary defect in these cells. Ankyrin-B is associated with intracellular vesicles, but is not colocalized with the bulk of SERCA 1 or ryanodine receptor type 1 in skeletal muscle. These data provide the first evidence of a physiological requirement for ankyrin-B in intracellular targeting of the calcium homeostasis machinery of striated muscle and immune system, and moreover, support a catalytic role that does not involve permanent stoichiometric complexes between ankyrin-B and targeted proteins. Ankyrin-B is a member of a family of adapter proteins implicated in restriction of diverse proteins to specialized plasma membrane domains. Similar mechanisms involving ankyrins may be essential for segregation of functionally defined proteins within specialized regions of the plasma membrane and within the Ca(2+) homeostasis compartment of the ER.  相似文献   

8.
Na/Ca exchanger activity is important for calcium extrusion from the cardiomyocyte cytosol during repolarization. Animal models exhibiting altered Na/Ca exchanger expression display abnormal cardiac phenotypes. In humans, elevated Na/Ca exchanger expression/activity is linked with pathophysiological conditions including arrhythmia and heart failure. Whereas the molecular mechanisms underlying Na/Ca exchanger biophysical properties are widely studied and generally well characterized, the cellular pathways and molecular partners underlying the specialized membrane localization of Na/Ca exchanger in cardiac tissue are essentially unknown. In this report, we present the first direct evidence for a protein pathway required for Na/Ca exchanger localization and stability in primary cardiomyocytes. We define the minimal structural requirements on ankyrin-B for direct Na/Ca exchanger interactions. Moreover, using ankyrin-B mutants that lack Na/Ca exchanger binding activity, and primary cardiomyocytes with reduced ankyrin-B expression, we demonstrate that direct interaction with the membrane adaptor ankyrin-B is required for the localization and post-translational stability of Na/Ca exchanger 1 in neonatal mouse cardiomyocytes. These results raise exciting new questions regarding potentially dynamic roles for ankyrin proteins in the biogenesis and maintenance of specialized membrane domains in excitable cells.  相似文献   

9.
The release of Ca2+ from intracellular stores is triggered by the second messenger inositol (1,4,5)-trisphosphate (Ins(1,4,5)P3). The regulation of this process is critically important for cellular homeostasis. Ins(1,4,5)P3 is rapidly metabolised, either to inositol (1,4)-bisphosphate (Ins(1,4)P2) by inositol polyphosphate 5-phosphatases or to inositol (1,3,4,5)-tetrakisphosphate (Ins(1,3,4,5)P4) by one of a family of inositol (1,4,5)P3 3-kinases (IP3-3Ks). Three isoforms of IP3-3K have now been identified in mammals; they have a conserved C-terminal catalytic domain, but divergent N-termini. This review discusses the metabolism of Ins(1,4,5)P3, compares the IP3-3K isoforms and addresses potential mechanisms by which their activity might be regulated.  相似文献   

10.
Ankyrins-R, -B, and -G are a family of membrane-associated adaptors required for localization of structurally diverse proteins to specialized membrane domains, including axon initial segments, cardiomyocyte T-tubules, and epithelial cell lateral membranes. Ankyrins are often co-expressed in the same cells and, although structurally similar, have non-overlapping functions. We previously determined that the regulatory domain of ankyrin-B defines specificity between ankyrins B and G in cardiomyocytes. Here, we identify key residues on the surface of an amphipathic alpha-helix unique to the regulatory domain of ankyrin-B that are essential for the function of ankyrin-B in cardiomyocytes. Using circular dichroism, we determined that a peptide representing the predicted helix folds as a helix in solution. Alanine-scanning mutagenesis revealed that residues 1773, 1777, 1780, 1784, and 1788 located in a patch on one surface the helix are critical for ankyrin-B function in cardiomyocytes. In a parallel set of experiments we determined that the molecular co-chaperone human DnaJ homologue 1 (Hdj1)/Hsp40 interacts with the ankyrin-B regulatory domain. Moreover, interaction of Hdj1/Hsp40 with the regulatory domain was mapped by random mutagenesis to same surface of the alpha-helix that is required for ankyrin-B function. These results provide new insight into the molecular basis for specificity between ankyrin-based pathways by defining a key alpha-helix structure in the divergent regulatory domain of ankyrin-B as well as interaction of the helix with Hdj1/Hsp40, the first downstream target for ankyrin-B-specific function.  相似文献   

11.
The relationship between the ability of isolated pleckstrin homology (PH) domains to bind inositol lipids or soluble inositol phosphates in vitro and to localize to cellular membranes in live cells was examined by comparing the PH domains of phospholipase Cdelta(1) (PLCdelta(1)) and the recently cloned PLC-like protein p130 fused to the green fluorescent protein (GFP). The prominent membrane localization of PLCdelta(1)PH-GFP was paralleled with high affinity binding to inositol 1,4,5-trisphosphate (InsP(3)) as well as to phosphatidylinositol 4,5-bisphosphate-containing lipid vesicles or nitrocellulose membrane strips. In contrast, no membrane localization was observed with p130PH-GFP despite its InsP(3) and phosphatidylinositol 4,5-bisphosphate-binding properties being comparable with those of PLCdelta(1)PH-GFP. The N-terminal ligand binding domain of the type I InsP(3) receptor also failed to localize to the plasma membrane despite its 5-fold higher affinity to InsP(3) than the PH domains. By using a chimeric approach and cassette mutagenesis, the C-terminal alpha-helix and the short loop between the beta6-beta7 sheets of the PLCdelta(1)PH domain, in addition to its InsP(3)-binding region, were identified as critical components for membrane localization in intact cells. These data indicate that binding to the inositol phosphate head group is necessary but may not be sufficient for membrane localization of the PLCdelta(1)PH-GFP fusion protein, and motifs located within the C-terminal half of the PH domain provide auxiliary contacts with additional membrane components.  相似文献   

12.
Intracellular inositol 1,4,5-trisphosphate receptors (IP(3)Rs) form tetrameric Ca2+-release channels that are crucial for Ca2+ signalling in many eukaryotic cells. IP(3)R subunits contain an N-terminal, cytoplasmic, ligand binding domain linked by a modulatory domain to a channel-forming, hydrophobic C-terminal domain. We assembled and sequenced cDNAs encoding the SI-/SII+/SIII+ splice variant of the human brain type I IP(3)R, and functionally expressed the full-length receptor, and a C-terminally truncated receptor lacking the final 20% of the protein, in mammalian and insect cells. Both proteins were insoluble, consistent with in vivo immunofluorescence and ligand binding studies. This contrasted with the behaviour of recombinant FIKBP12 (a soluble control protein). The truncated receptor also fractionated with the "membrane" pellet after alkaline carbonate treatment. We conclude that the human type I IP(3)R forms high MW aggregates or complexes in cells when expressed without the C-terminal hydrophobic domain. This behaviour should be considered when expressing and refolding "soluble" human type I IP(3)R domains for structural studies.  相似文献   

13.
Vertebrate ankyrin-B and ankyrin-G exhibit divergent subcellular localization and function despite their high sequence and structural similarity and common origin from a single ancestral gene at the onset of chordate evolution. Previous studies of ankyrin family diversity have focused on the C-terminal regulatory domain. Here, we identify an ankyrin-B-specific linker peptide connecting the ankyrin repeat domain to the ZU52-UPA module that inhibits binding of ankyrin-B to membrane protein partners E-cadherin and neurofascin 186 and prevents association of ankyrin-B with epithelial lateral membranes as well as neuronal plasma membranes. The residues of the ankyrin-B linker required for autoinhibition are encoded by a small exon that is highly divergent between ankyrin family members but conserved in the ankyrin-B lineage. We show that the ankyrin-B linker suppresses activity of the ANK repeat domain through an intramolecular interaction, likely with a groove on the surface of the ANK repeat solenoid, thereby regulating the affinities between ankyrin-B and its binding partners. These results provide a simple evolutionary explanation for how ankyrin-B and ankyrin-G have acquired striking differences in their plasma membrane association while maintaining overall high levels of sequence similarity.  相似文献   

14.
15.
Ankyrin and spectrin were first discovered as binding partners in the membrane skeleton of human erythrocytes. Mutations in genes encoding these proteins cause hereditary spherocytosis. Recent advances reveal that ankyrin and spectrin are required for organization of a surprisingly diverse set of proteins, including ion channels and cell adhesion molecules that are localized in specialized membrane domains in many cell types. New insights into the cell biology of ankyrin and spectrin reveal that these proteins actively participate in assembly of specialized membrane domains in addition to their conventional maintenance role as scaffolding proteins. Recently described inherited human diseases due to defects in spectrin or ankyrin include spinocerebellar ataxia type 5 and a cardiac arrhythmia, termed sick sinus syndrome with bradycardia or ankyrin-B syndrome. Together, these studies identify an emerging paradigm for pathogenesis of human disease where failure in cellular localization of membrane-spanning proteins results in loss of physiological function.  相似文献   

16.
How do inositol phosphates regulate calcium signaling?   总被引:7,自引:0,他引:7  
Activation of a variety of cell surface receptors results in the phospholipase C-catalyzed hydrolysis of the minor plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate, with concomitant formation of inositol 1,4,5-trisphosphate and diacylglycerol. There is strong evidence that inositol 1,4,5-trisphosphate stimulates Ca2+ release from intracellular stores. The Ca2+-releasing actions of inositol 1,4,5-trisphosphate are terminated by its metabolism through two distinct pathways. Inositol 1,4,5-trisphosphate is dephosphorylated by a 5-phosphatase to inositol 1,4-bisphosphate; alternatively, inositol 1,4,5-trisphosphate can also be phosphorylated to inositol 1,3,4,5-tetrakisphosphate by a 3-kinase. Although the mechanism of Ca2+ mobilization is understood, the precise mechanisms involved in Ca2+ entry are not known; the proposal that inositol 1,4,5-trisphosphate secondarily elicits Ca2+ entry by emptying an intracellular Ca2+ pool is considered.  相似文献   

17.
Phosphatidylinositol 4,5-bisphosphate (PIP(2)) fulfils vital signalling roles in an array of cellular processes, yet until recently it has not been possible selectively to visualize real-time changes in PIP(2) levels within living cells. Green fluorescent protein (GFP)-labelled Tubby protein (GFP-Tubby) enriches to the plasma membrane at rest and translocates to the cytosol following activation of endogenous Galpha(q/11)-coupled muscarinic acetylcholine receptors in both SH-SY5Y human neuroblastoma cells and primary rat hippocampal neurons. GFP-Tubby translocation is independent of changes in cytosolic inositol 1,4,5-trisphosphate and instead reports dynamic changes in levels of plasma membrane PIP(2). In contrast, enhanced GFP (eGFP)-tagged pleckstrin homology domain of phospholipase C (PLCdelta1) (eGFP-PH) translocation reports increases in cytosolic inositol 1,4,5-trisphosphate. Comparison of GFP-Tubby, eGFP-PH and the eGFP-tagged C1(2) domain of protein kinase C-gamma [eGFP-C1(2); to detect diacylglycerol] allowed a selective and comprehensive analysis of PLC-initiated signalling in living cells. Manipulating intracellular Ca(2+) concentrations in the nanomolar range established that GFP-Tubby responses to a muscarinic agonist were sensitive to intracellular Ca(2+) up to 100-200 nM in SH-SY5Y cells, demonstrating the exquisite sensitivity of agonist-mediated PLC activity within the range of physiological resting Ca(2+) concentrations. We have also exploited GFP-Tubby selectively to visualize, for the first time, real-time changes in PIP(2) in hippocampal neurons.  相似文献   

18.
We report identification of an ankyrin-B-based macromolecular complex of Na/K ATPase (alpha 1 and alpha 2 isoforms), Na/Ca exchanger 1, and InsP3 receptor that is localized in cardiomyocyte T-tubules in discrete microdomains distinct from classic dihydropyridine receptor/ryanodine receptor "dyads." E1425G mutation of ankyrin-B, which causes human cardiac arrhythmia, also blocks binding of ankyrin-B to all three components of the complex. The ankyrin-B complex is markedly reduced in adult ankyrin-B(+/-) cardiomyocytes, which may explain elevated [Ca2+]i transients in these cells. Thus, loss of the ankyrin-B complex provides a molecular basis for cardiac arrhythmia in humans and mice. T-tubule-associated ankyrin-B, Na/Ca exchanger, and Na/K ATPase are not present in skeletal muscle, where ankyrin-B is expressed at 10-fold lower levels than in heart. Ankyrin-B also is not abundantly expressed in smooth muscle. We propose that the ankyrin-B-based complex is a specialized adaptation of cardiomyocytes with a role for cytosolic Ca2+ modulation.  相似文献   

19.
The formation and degradation of the second messenger D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] are of great metabolic importance, because of its role in the mediation of calcium release from intracellular stores. The concentration of Ins(1,4,5)P3 in the cell is regulated by three signaling enzymes: phospholipase C isoforms release Ins(1,4,5)P3 from the plasma membrane by hydrolysis of phosphatidyl inositol 4,5-bisphosphate, whereas inositol phosphate 5-phosphatases remove it by dephosphorylation and a group of inositol phosphate kinases eliminate it by further phosphorylation at its 3- or 6-hydroxy group. The latter group is formed by the three isoforms of Ins(1,4,5)P3 3-kinase (IP3K) and inositol phosphate multikinase. In this article the tissue specific gene expression, molecular structure, role in calcium oscillations, regulation by calcium calmodulin, by phosphorylation and by intracellular localization of the IP3K isoforms are discussed. Another important aspect is the evolution of diverse inositol phosphate metabolizing enzymes from a eukaryotic founder by different mechanisms of gene diversification. Finally the role of IPMK in calcium signaling will be elucidated in more detail.  相似文献   

20.
Previous studies have shown that most of the inositol 1,4,5-trisphosphate/inositol 1,3,4,5-tetrakisphosphate 5-phosphatase activity of rat hepatocytes is associated with the plasma membrane [Shears, Parry, Tang, Irvine, Michell & Kirk (1987) Biochem. J. 246, 139-147]. We now show that the specific activity of this enzyme is highest in the bile-canalicular domain of the plasma membrane, at the opposite pole of the hepatocyte from the presumed site of receptor-mediated formation of inositol 1,4,5-trisphosphate. In intact hepatocytes and in sealed membrane vesicles originating from the bile-canalicular domain of the plasma membrane, the 5-phosphatase activity was mostly latent and therefore located at the cytoplasmic surface. A substantial amount of 5-phosphatase was also found in rat liver endosomal fractions, particularly a 'late' endosomal subfraction, indicating that this enzyme may be transported between the sinusoidal plasma membrane and other cellular membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号