首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(-)-[3H]Nicotine was found to bind specifically to membranes of human brains obtained at autopsy. The binding was stereospecific, (-)-nicotine being 40 times more potent than (+)-nicotine in displacing labeled (-)-nicotine. Saturation binding studies revealed the presence of two binding sites with dissociation constant (KD) values of 8.1 and 86 nM, and maximum binding capacity (Bmax) values of 36 and 90 fmol/mg protein, respectively. In competition studies, nicotinic agonists were 1,000 times more potent than ganglionic, neuromuscular, and muscarinic blocking drugs in displacing labeled (-)-nicotine. IC50 values for cholinergic drugs of (-)-[3H]nicotine binding were as follows: (-)-nicotine, 0.51 nM; acetylcholine, 12.6 nM; (+)-nicotine, 19.9 nM; cytisine, 27.3 nM; and carbachol, 527 nM. IC50 values of alpha-bungarotoxin, hexamethonium, d-tubocurarine, and atropine were larger than 50 microM. (-)-[3H]Nicotine binding was highest in the nucleus basalis of Meynert and thalamus and lowest in the cerebral cortex and caudate in the brain regions tested. These results suggest that nicotinic cholinergic receptors are present in human brain and that there are regional differences in the density of these receptors.  相似文献   

2.
The in vivo regulation of [3H]acetylcholine [( 3H]ACh) recognition sites on nicotinic receptors in rat brain was examined by administering drugs that increase stimulation of nicotinic cholinergic receptors, either directly or indirectly. After 10 days of treatment with the cholinesterase inhibitor diisopropyl fluorophosphate, [3H]ACh binding in the cortex, thalamus, striatum, and hypothalamus was decreased. Scatchard analyses indicated that the decrease in binding in the cortex was due to a reduction in the apparent density of [3H]ACh recognition sites. In contrast, after repeated administration of nicotine (5-21 days), the number of [3H]ACh recognition sites was increased in the cortex, thalamus, striatum, and hypothalamus. Similar effects were observed in the cortex and thalamus following repeated administration of the nicotinic agonist cytisin. The nicotinic antagonists mecamylamine and dihydro-beta-erythroidine did not alter [3H]ACh binding following 10-14 days of administration. Further, concurrent treatment with these antagonists and nicotine did not prevent the nicotine-induced increase in these binding sites. The data indicate that [3H]ACh recognition sites on nicotinic receptors are subject to up- and down-regulation, and that repeated administration of nicotine results in a signal for up-regulation, probably through protracted desensitization at the recognition site.  相似文献   

3.
Abstract: The binding characteristics of the novel 11C-labeled nicotinic ligands (R,S)-1-methyl-2-(3-pyridyl) azetidine (MPA) and (S)-3-methyl-5-(1-methyl-2-pyrrolidinyl)isoxazole (ABT-418) were investigated in comparison with those of (S)-[11C]nicotine in vitro in the rat brain to be able to predict the binding properties of the new ligands for positron emission tomography studies in vivo. The data from time-resolved experiments for all ligands indicated fast binding kinetics, with the exception of a slower dissociation of [11C]MPA in comparison with (S)-[11C]nicotine and [11C]ABT-418. Saturation experiments revealed for all ligands two nicotinic receptor binding sites with affinity constants (KD values) of 2.4 and 560 nM and binding site densities (Bmax values) of 65.5 and 223 fmol/mg of protein for (S)-[11C]nicotine, KD values of 0.011 and 2.2 nM and Bmax values of 4.4 and 70.7 fmol/mg of protein for [11C]MPA, and KD values of 1.3 and 33.4 nM and Bmax values of 8.8 and 69.2 fmol/mg of protein for [11C]ABT-418. In competing with the 11C-ligands, epibatidine was most potent, followed by cytisine. A different rank order of potencies was found for (?)-nicotine, (+)-nicotine, MPA, and ABT-418 displacing each of the 11C-ligands. Autoradiograms displayed a similar pattern of receptor binding for all ligands, whereby [11C]MPA showed the most distinct binding pattern and the lowest nonspecific binding. We conclude that the three 11C-labeled nicotinic ligands were suitable for characterizing nicotinic receptors in vitro. The very high affinity of [11C]MPA to nicotinic acetylcholine receptors, its low nonspecific binding, and especially the slower dissociation kinetics of the [11C]MPA from the putative high-affinity nicotinic acetylcholine receptor binding site compared with (S)-[11C]nicotine and [11C]ABT-418 raise the level of interest in [11C]MPA for application in positron emission tomography.  相似文献   

4.
[3H] 1-Nicotine was used as a receptor ligand in the intact mouse. It was injected i.v., and radioactivity in brain regions was assayed. Nonspecific binding was estimated by pretreatment with unlabelled 1-nicotine. Radioactivity entered the brain rapidly, was heterogeneously distributed, and declined after 5 min. Estimated specific binding was highest in the medial and posterior cortex, midbrain, thalamus/hypothalamus and medulla/pons; intermediate in the cerebellum, caudate/putamen, frontal and frontoparietal cortex; and lowest in the hippocampus and olfactory bulb. Autoradiography showed similar patterns. Coinjection of unlabelled 1-nicotine reduced specific binding so that it approached estimated nonspecific binding. Nicotinic agonists reduced radioactivity in the thalamus/hypothalamus, but nicotinic antagonists were less active. Non-nicotinic drugs did not reduce brain radioactivity. The results suggest that radiolabelled nicotine may be used for in vivo receptor studies despite problems in estimating nonspecific binding.  相似文献   

5.
The present study demonstrates that [3H]imipramine binds to both high- and low-affinity imipramine binding components on membranes prepared from rat cerebral cortex. Scatchard and computer analyses of saturation experiments using a wide range of [3H]imipramine concentrations (0.5 nM-50 nM) revealed the presence of two binding components. Inhibition experiments in which membranes were incubated with [3H]imipramine and various concentrations of unlabelled imipramine gave shallow inhibition curves with a Hill coefficient of 0.60 +/- 0.04. When dissociation rates of imipramine were studied, biphasic dissociation curves were obtained with apparent half-times of dissociation of 2.5 +/- 0.4 min and 18.5 +/- 2.5 min. Thus analysis of saturation, competition, and dissociation experiments indicate that [3H]imipramine binds to low as well as high-affinity binding sites in rat cortex.  相似文献   

6.
A synthetic derivative of gamma-aminobutyric acid (GABA), SR 95531 [2-(3'-carboxy-2'-propyl)-3-amino-6-p-methoxyphenylpyridazinium bromide], has recently been reported, on the basis of biochemical and in vivo microiontophoretic studies, to be a potent, selective, competitive, and reversible GABAA antagonist. In the present study, the binding of [3H]SR 95531 to washed, frozen, and thawed rat brain membranes was characterized. Specific binding was linear with tissue concentrations, had a pH optimum at neutrality, and was maximal at 4 degrees C after 30 min of incubation. Pretreatment of the membranes with Triton X-100 resulted in a 50% decrease of specific binding. Addition of iodide, thiocyanate, or nitrate to the incubation mixture decreased the affinity of [3H]SR 95531 for its binding site; Na+ had no effect. Subcellular fractionation showed that 74% of the P2 binding was in synaptosomes; 31% of the total homogenate binding was in P2 and 50% in P3. The binding of [3H]SR 95531 was saturable; Scatchard analysis of the saturation isotherm revealed two apparent populations of binding sites (KD of 6.34 nM and Bmax of 0.19 pmol/mg of protein; KD of 32 nM and Bmax of 0.81 pmol/mg of protein). The binding of [3H]SR 95531 was reversible, and association and dissociation kinetics confirmed the existence of two binding sites. Only GABAA ligands were effective displacers of [3H]SR 95531. GABAA antagonists were relatively more potent in displacing [3H]SR 95531 than [3H]GABA; the inverse was true for GABAA agonists. There were marked regional differences in the distribution of binding sites: hippocampus = cerebral cortex greater than thalamus = olfactory bulb = hypothalamus = amygdala = striatum greater than pons-medulla and cerebellum. The surprisingly low density of binding sites in the cerebellum was owing to a marked reduction of Bmax values at both the high- and the low-affinity binding sites. In conclusion, the present results demonstrate specific, high-affinity, saturable, and reversible binding of [3H]SR 95531 to rat brain membranes and strongly suggest that this radioligand labels the GABAA receptor site in its antagonist conformation.  相似文献   

7.
Previous work has shown that [3H]paroxetine is a potent and selective in vitro label for serotonin uptake sites in the mammalian brain. In the present study, [3H]paroxetine was tested in mice as an in vivo label for serotonin uptake sites. Maximum tritium concentration in the whole brain (1.4% of the intravenous dose) was reached 1 h after injection into a tail vein. Distribution of the tracer at 3 h after injection followed the distribution of serotonin uptake sites known from previous in vitro binding studies (r = 0.85). The areas of highest [3H]paroxetine concentration, in decreasing order, were: hypothalamus greater than frontal cortex greater than olfactory tubercles greater than thalamus greater than upper colliculi greater than brainstem greater than hippocampus greater than striatum greater than cerebellum. Preinjection of carrier paroxetine (1 mg/kg) significantly decreased [3H]paroxetine concentration in all areas except in the cerebellum, which is known to contain a relatively low number of specific binding sites. Kinetic studies showed highest specific [3H]paroxetine binding (tissue minus cerebellum) at 2 h after injection and slow clearance of activity thereafter (half-time of dissociation from the hypothalamus, 215 min). The specificity of in vivo [3H]paroxetine binding was studied by preinjecting monoamine uptake blockers or receptor antagonists 5 min before administration of [3H]paroxetine. Serotonergic or muscarinic cholinergic receptor antagonists and dopamine or norepinephrine uptake blockers did not reduce the in vivo binding of [3H]paroxetine. In contrast, there was an excellent correlation (r = 0.99) between the in vivo inhibitory potencies of serotonin uptake blockers in this study and previously published in vitro data on inhibition of [3H] serotonin uptake in brain synaptosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
(E)-N-(3-bromoprop-2-enyl)-2beta-carbomethoxy-3beta-4'-tolyl -nortropane or PE2Br, an analogue of cocaine was labelled with the positron emitter 76Br (T1/2=16 h) for pharmacological evaluation in the rat and PET investigation in the monkey. [76Br]PE2Br was obtained by electrophilic substitution from the tributylstannyl precursor with radiochemical yield of 80%. In vivo biodistribution studies of [76Br]PE2Br (20 MBq/nmol) in rats showed a high uptake in the striatum (2.2% ID/g tissue at 15 min p.i.). The striatum to cerebellum radioactivity ratio was 6 at 1 hour p.i. Striatal uptake of [76Br]PE2Br was almost completely prevented by pretreatment with GBR 12909, but citalopram and maprotiline had no effect, confirming the selectivity of the radioligand for the dopamine transporter. PET imaging of the biodistribution of [76Br]PE2Br in the baboon demonstrated rapid and high uptake in the brain (5% ID at 3 min p.i.). The striatal radioactivity concentration reached a plateau at 20 min p.i. (7% ID/100 mL). The uptake in the cortex and cerebellum was very low. A significantly higher uptake in the thalamus was observed. At 1h p.i., the striatum to cerebellum ratio and thalamus to cerebellum ratio were 8 and 1.9 respectively. In competition experiments the radioactivity in the striatum and the thalamus was displaced by 5 mg/kgof cocaine and 5 mg/kg of GBR 12909, but citalopram and maprotiline had no effect. These results showed that [76Br]PE2Br is in vivo a potent and selective radioligand suitable for PET imagingof the dopamine transporter.  相似文献   

9.
We have studied the characteristics of carbon-11 labeled pyrilamine as a radioligand for investigating histamine H1 receptors in human brain with positron emission tomography (PET). [11C]Pyrilamine is distributed evenly in proportion to cerebral blood flow at initial PET images. Later (after 45-60 min), 11C radioactivity was observed at high concentrations in the frontal and temporal cortex, hippocampus, and thalamus, and at low concentrations in the cerebellum and pons. The regional distribution of the carbon-11 labeled compound in the brain corresponded well with that of the histamine H1 receptors determined in vitro in autopsied materials. In six controls, the frontal and temporal cortices/cerebellum ratio increased during the first 60 min to reach a value of 1.22 +/- 0.071. Intravenous administration of d-chlorpheniramine (5 mg) completely abolished the specific binding in vivo in the frontal cortex and temporal cortex (cortex/cerebellum ratio, 0.955 +/- 0.015). The availability of this method for measuring histamine H1 receptors in vivo in humans will facilitate studies on neurological and psychiatric disorders in which histamine H1 receptors are thought to be abnormal.  相似文献   

10.
The interaction of the nicotinic agonist (R,S)-3-pyridyl-1-methyl-2-(3-pyridyl)-azetidine (MPA) with different nicotinic acetylcholine receptor (nAChR) subtypes was studied in cell lines and rat cortex. MPA showed an affinity (Ki = 1.21 nM) which was higher than anatoxin-a > (−)-nicotine > (+)-[R]nornicotine > (−)-[S]nornicotine > and (+)-nicotine, but lower than cytisine (Ki = 0.46 nM) in competing for (−)-[3H]nicotine binding in M10 cells, which stably express the recombinant 4β2 nAChR subtype. A one-binding site model was observed in all competing experiments between (−)-[3H]nicotine binding and each of the agonists studied in M10 cells. MPA showed a 13-fold higher affinity for (−)-[3H]nicotine binding sites compared to the [3H]epibatidine binding sites in rat cortical membranes. In human neuroblastoma SH-SY5Y cells, which predominantly express the 3 nAChR subunit mRNA, MPA displaced [3H]epibatidine binding from a single population of the binding sites with an affinity in the same nM range as that observed MPA in displacing [3H]epibatidine binding in rat cortical membranes. Chronic treatment of M10 cells with MPA significantly up-regulated the number of (−)-[3H]nicotine binding sites in a concentration dependent manner. Thus MPA appears to have higher affinity to 4-subunit containing receptor subtype than 3-subunit containing receptor subtype of nAChRs. Furthermore MPA binds to 4β2 receptor subtype with higher affinity than (−)-nicotine and behaves, opposite to cytisine, as a full agonist in up-regulating the number of nAChRs. © 1998 Elsevier Science Ltd. All rights reserved.  相似文献   

11.
[3H]Ouabain binding was studied in sections of rabbit somatosensory cortex by quantitative autoradiography and in rabbit brain microsomal membranes using a conventional filtration assay. KD values of 8-12 nM for specific high-affinity binding of [3H]ouabain were found by both methods. High-affinity binding was not uniformly distributed in somatosensory cortex and was localized predominantly to laminae 1, 3, and 4. [3H]Ouabain binding in tissue sections was stimulated by the ligands Mg2+/Pi or Mg2+/ATP/Na+ and was inhibited by K+ (IC50 = 0.7-0.9 mM), N-ethylmaleimide, 5,5'-dithiobis(2-nitrobenzoic acid), and erythrosin B. We conclude that [3H]ouabain is reversibly and specifically bound with high affinity in rabbit brain tissue sections under conditions that favor phosphorylation of Na+,K+-ATPase. Quantitative autoradiography is a powerful tool for assessing the affinity and number of specific ouabain binding sites in brain tissue.  相似文献   

12.
We have characterized the in vitro properties of 3-[3H]methoxy-5-(pyridin-2-ylethynyl)pyridine ([3H]MethoxyPyEP), an analogue of the mGluR(5) receptor subtype antagonist MPEP [2-methyl-6-(phenylethynyl)-pyridine], in rat tissue preparations using tissue homogenates and autoradiography. Binding of [3H]MethoxyPyEP to rat cortex, hippocampus, thalamus and cerebellum membrane preparations revealed saturable, high affinity binding (3.4 +/- 0.4 nM, n = 4 in rat cortex) to a single population of receptors in all regions studied except for cerebellum. Binding was found to be relatively insensitive to pH and insensitive to DTT. High concentrations of NEM both reduce receptor concentration and binding affinity for the radioligand. In time-course studies at room temperature k(on) and k(off) were determined as 2.9 x 10(7) M(-1) min(-1) and 0.11 min(-1) respectively. The rank order of affinities, as assessed by equilibrium competition studies, of a variety of ligands suggested binding of the radioligand selectively to mGluR5 (MPEP > trans-azetidine-2,4-dicarboxylic acid congruent with (S)-4-carboxyphenylglycine congruent with (+)MK801 congruent with CP-101,606 congruent with clozapine congruent with atropine congruent with ketanserin congruent with yohimbine congruent with benoxathian). Autoradiographic studies with [3H]MethoxyPyEP showed that binding was regioselective, with high density of binding in caudate and hippocampus, intermediate binding in thalamus and very low density in the cerebellum. These data show that [3H]MethoxyPyEP is a high affinity radioligand useful for the in vitro study of mGluR5 receptor distribution and pharmacologic properties in brain.  相似文献   

13.
The reversible inhibitor of monoamine oxidase type B (MAO-B) [3H]Ro 16-6491 binds specifically and with high affinity to a single population of binding sites in human frontal cortex crude mitochondria and platelet membranes. In both tissues binding equilibrium was reached after 1 h incubation at 20 degrees C. Dissociation of bound radioactivity was relatively fast at 20 degrees C (t1/2 = 90-120 min) whereas at 0 degrees C [3H]Ro 16-6491 showed the characteristics of a slowly dissociating ligand. Inhibitors and substrates of MAO-B inhibited binding of [3H]Ro 16-6491, whereas MAO-A blockers were much less potent. Ro 16-6491 was also a substrate for MAO-B and a stable unidentified intermediate of the oxidation of Ro 16-6491 possessing high affinity for the enzyme may account for the marked MAO-B inhibitory effect of the drug. According to this hypothesis Ro 16-6491 would behave as a mechanism-based reversible inhibitor. In conclusion, [3H]Ro 16-6491 binds selectively to MAO-B and represents an excellent new radioligand probe for studying the regional tissue distribution of this enzyme in normal and pathological conditions.  相似文献   

14.
The binding properties of the 125I-labeled phencyclidine derivative N-[1-(3-[125I]iodophenyl)cyclohexyl]piperidine (3-[125I]iodo-PCP), a new ligand of the N-methyl-D-aspartate (NMDA)-gated ionic channel, were investigated. Association and dissociation kinetic curves of 3-[125I]iodo-PCP with rat brain homogenates were well described by two components. About 32% of the binding was of fast association and fast dissociation, and the remaining binding was of slow association and slow dissociation. Saturation curves of 3-[125I]iodo-PCP also were well described using two binding sites: one of a high affinity (KDH = 15.8 +/- 2.3 nM) and the other of a low affinity (KDL = 250 +/- 40 nM). 3-Iodo-PCP inhibited the binding of 3-[125I]iodo-PCP with inhibition curves that were well fitted by a two-site model. The binding constants (KiH, BmaxH; KiL, BmaxL) so obtained were close to those obtained in saturation experiments. Ligands of NMDA-gated ionic channels also inhibited the binding of 3-[125I]iodo-PCP with two constants, KiH and KiL. There was a very good correlation (r = 0.987) between the affinities of these ligands to bind to NMDA-gated ionic channels and their potencies to inhibit the binding of 3-[125I]iodo-PCP with a high affinity. Moreover, the regional distribution of the high-affinity binding of 3-[125I]-iodo-PCP paralleled that of tritiated N-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP). In contrast to that of [3H] TCP, the binding of 3-[125I]iodo-PCP to well-washed rat brain membranes was fast and insensitive to glutamate and glycine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
In a postmortem study of nicotinic receptors in human brain, cigarette smoking was found to be associated with increased (-)-[3H]nicotine binding to membranes prepared from gyrus rectus (Brodmann area 11) (p less than 0.001), hippocampal neocortex (Brodmann area 27), cerebellar cortex (p less than 0.01), hippocampal formation (Ammon's horn + subiculum), and the median raphe nuclei of the midbrain (p less than 0.05) but not the medulla oblongata. Analysis of the binding data suggested that the increased binding reflected an increase in the density of the receptors rather than a change in their affinity for (-)-nicotine. The effects of smoking were not influenced significantly by either the sex or age of the subject. It is concluded that smoking evokes an increase in high-affinity nicotine binding similar to that observed previously in animals treated chronically with nicotine and that the effect of smoking on these sites is probably caused by the nicotine present in the tobacco smoke.  相似文献   

16.
Nicotinic cholinergic receptor binding sites labeled by [3H]acetylcholine were measured in the cerebral cortices, thalami, striata, and hypothalami of rats lesioned by intraventricular injection of either 6-hydroxydopamine or 5, 7-dihydroxytryptamine. In addition, [3H]acetylcholine binding sites were measured in the cerebral cortices of rats lesioned by injection of ibotenic acid into the nucleus basalis magnocellularis. [3H]Acetylcholine binding was significantly decreased in the striata and hypothalami of both 6-hydroxydopamine- and 5,7-dihydroxytryptamine-lesioned rats. There was no change in binding in the cortex or thalamus by either lesion. Ibotenic acid lesions of the nucleus basalis magnocellularis, which projects cholinergic axons to the cortex, did not alter [3H]acetylcholine binding. These results provide evidence for a presynaptic location of nicotinic cholinergic binding sites on catecholamine and serotonin axons in the striatum and hypothalamus.  相似文献   

17.
We studied [3H]N-[1-(2-thienyl)cyclohexyl]-3,4-piperidine [( 3H]TCP) binding to human frontal cortex obtained at autopsy from 10 histologically normal controls and eight histopathologically verified cases with Alzheimer-type dementia (ATD). Extensively washed membrane preparations were used to minimize the effects of endogenous substances. In ATD frontal cortex, the total concentration (Bmax) of [3H]TCP binding sites was significantly reduced by 40-50%. The apparent dissociation constant (KD) values showed no significant change. The reduction in binding capacity was also apparent in Triton X-100-treated membrane preparations, and there was a linear correlation between the number of [3H]TCP binding sites and that of N-methyl-D-aspartate (NMDA)-sensitive [3H]glutamate binding sites. [3H]TCP binding sites spared in ATD brains retained the affinity for the ligand and the reactivity to NMDA, L-glutamate, and glycine. These results suggest that the primary change in NMDA receptor-ion channel complex in ATD brains is the reduction of its number, possibly reflecting the loss of neurons bearing these receptor complexes, and that the functional linkage within the receptor complexes spared in ATD brains remains normal.  相似文献   

18.
The characteristics of [3H]ouabain binding were examined in various areas of rat brain. In the striatum, Scatchard analysis revealed a single class of "high-affinity" binding sites with an apparent binding affinity (KD) of 10.4 +/- 0.9 nM and an estimated binding capacity (Bmax) of 7.6 +/- 1.9 pmol/mg protein. Similar monophasic Scatchard plots were found in the brainstem, cerebellum, hypothalamus, and frontal cerebral cortex. [3H]Ouabain binding to rat brain was sodium- and ATP-dependent and strongly inhibited by potassium. Proscillariden A was the most potent cardiac glycoside tested in inhibiting specific [3H]ouabain binding to brain membranes, and the rank order of inhibitory potencies for a series of cardiac glycosides was similar to that previously reported for inhibition of heart Na,K-ATPase. To assess whether the high-affinity binding sites for [3H]ouabain were localized to neuronal or nonneuronal membranes, the effect of discrete kainic acid lesions on striatal [3H]ouabain binding was examined. Kainic acid lesions of the striatum reduced [3H]ouabain binding to striatal homogenates by 79.6 +/- 1.6%. This suggests that the "high-affinity" [3H]ouabain binding sites measured in our experiments are localized to neuronal elements. Thus, the high-affinity binding of [3H]ouabain to brain membranes may selectively label a neuronal form or conformation of Na,K-ATPase.  相似文献   

19.
Presynaptic nicotinic acetylcholine receptors on striatal nerve terminals modulate the release of dopamine. We have compared the effects of a number of nicotinic agonists and antagonists on a perfused synaptosome preparation preloaded with [3H]dopamine. (-)-Nicotine, acetylcholine, and the nicotinic agonists cytisine and 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), at micromolar concentrations, stimulated the release of [3H]dopamine from striatal nerve terminals. Carbamylcholine was a much weaker agonist. The actions of (-)-nicotine, cytisine, and DMPP were inhibited by low concentrations of the nicotinic antagonists dihydro-beta-erythroidine, mecamylamine, pempidine, and neosurugatoxin; alpha-bungarotoxin was without effect, and extending the time of exposure to this toxin resulted in only very modest inhibition. This pharmacology points to a specific nicotinic receptor mechanism that is clearly distinct from that at the neuromuscular junction. Atropine failed to antagonise the effects of acetylcholine and carbamylcholine, suggesting that no muscarinic component is involved. The nicotinic receptor ligands (-)-[3H]nicotine and 125I-alpha-bungarotoxin bound to specific sites enriched in the synaptosome preparation. Drugs tested on the perfused synaptosomes were examined for their ability to interact with these two ligand binding sites in brain membranes. The differential sensitivity to the neurotoxins alpha-bungarotoxin and neosurugatoxin of the 125I-alpha-bungarotoxin and (-)-[3H]nicotine binding sites, respectively, leads to a tentative correlation of the (-)-[3H]nicotine site with the presynaptic nicotinic receptor on striatal nerve terminals.  相似文献   

20.
The binding of [3H]PK 11195 and [3H]Ro 5-4864 to membrane preparations from cerebral cortex and peripheral tissues of various species was studied. [3H]PK 11195 (0.05-10 nM) bound with high affinity to rat and calf cerebral cortical and kidney membranes. [3H]Ro 5-4864 (0.05-30 nM) also successfully labeled rat cerebral cortical and kidney membranes, but in calf cerebral cortical and kidney membranes, its binding capacity was only 3 and 4%, respectively, of that of [3H]PK 11195. Displacement studies showed that unlabeled Ro 5-4864, diazepam, and flunitrazepam were much more potent in displacing [3H]PK 11195 from rat cerebral cortex and kidney membranes than from calf tissues. The potency of unlabeled Ro 5-4864 in displacing [3H]PK 11195 from the cerebral cortex of various other species was also tested, and the rank order of potency was rat = guinea pig greater than cat = dog greater than rabbit greater than calf. Analysis of these displacement curves revealed that Ro 5-4864 bound to two populations of binding sites from rat and calf kidney and from rat, guinea pig, rabbit, and calf cerebral cortex but to a single population of binding sites from cat and dog cerebral cortex. Using [3H]PK 11195 as a ligand, the rank order of binding capacity in cerebral cortex of various species was cat greater than calf greater than guinea pig greater than rabbit greater than dog greater than rat, whereas when [3H]Ro 5-4864 was used, the rank order of binding capacity was cat greater than guinea pig greater than rat greater than rabbit greater than calf greater than dog.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号