共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
A New Episomic Element Controlling Fermentative Metabolism and Excretion of Amino Acids by Citrobacter intermedium C3 总被引:1,自引:1,他引:0 下载免费PDF全文
Glutamate excretion by colonies of Citrobacter intermedium C3 was detected by using the auxotrophic strain Leuconostoc mesenteroides P-60. A constant ratio of strain C3 colonies did not excrete glutamate. These colonies were subcultured, and colonial analysis of their descendants established that the change from non-excretor to excretor (Sg(-) --> Sg(+)) is a spontaneous and random process with occurs at a high rate, and that an equilibrium state results from the back-transition Sg(+) --> Sg(-) in large populations. Acridine orange, ethidium bromide, and shaking have a strong influence on Sg(+)-to-Sg(-) interconversion, which suggests that a genetic element like an episome is implicated (S factor). Various auxotrophic mutants of bacterial strain C3 have been cured of the S factor. Strains lacking the S factor (S(-) strains) do not excrete glutamate and lose their fermentative metabolism completely. Consequently, the S factor is different from other extrachromosomal genetic factors whose elimination does not modify central metabolism. The gain of the S factor by infectious transfer has been shown with different C3 auxotrophic mutant strains. Also, the S factor has been transferred to Paracolobactrum intermedium ATCC 11606. These findings suggest that phenotypic changes observed are a consequence of elimination or infectious gain of the S factor, with its autonomous or integrated multiplication. 相似文献
4.
5.
6.
3-羟基丙酸(3-Hydroxypropionic acid,简写3-HP)是多种光学活性物质的前体,被美国能源部列为当今世界12种最具潜力的化工产品之一[1]。目前,3-HP由化学方法合成制备。虽然生产工艺一直在改进,但是由于合成难度大、产品不易分离提纯、产品得率低等原因,生产成本较高,且生产过程存在不 相似文献
7.
Biniam T. Maru Magda Constanti Alberto M. Stchigel Francesc Medina Jesus E. Sueiras 《Biotechnology progress》2013,29(1):31-38
Glycerol is an attractive substrate for biohydrogen production because, in theory, it can produce 3 mol of hydrogen per mol of glycerol. Moreover, glycerol is produced in substantial amounts as a byproduct of producing biodiesel, the demand for which has increased in recent years. Therefore, hydrogen production from glycerol was studied by dark fermentation using three strains of bacteria: namely, Enterobacter spH1, Enterobacter spH2, and Citrobacter freundii H3 and a mixture thereof (1:1:1). It was found that, when an initial concentration of 20 g/L of glycerol was used, all three strains and their mixture produced substantial amounts of hydrogen ranging from 2400 to 3500 mL/L, being highest for C. freundii H3 (3547 mL/L) and Enterobacter spH1 (3506 mL/L). The main nongaseous fermentation products were ethanol and acetate, albeit in different ratios. For Enterobacter spH1, Enterobacter spH2, C. freundii H3, and the mixture (1:1:1), the ethanol yields (in mol EtOH/mol glycerol consumed) were 0.96, 0.67, 0.31, and 0.66, respectively. Compared to the individual strains, the mixture (1:1:1) did not show a significantly higher hydrogen level, indicating that there was no synergistic effect. Enterobacter spH1 was selected for further investigation because of its higher yield of hydrogen and ethanol. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013 相似文献
8.
The production of d-ribose by fermentation has received much attention lately, possibly because of the use of this pentose to synthesize antiviral
and anticancer drugs. This review briefly outlines the methods that have been used to synthesize d-ribose since it was identified in yeast RNA, and focuses in particular on the latest developments in d-ribose fermentation, which have led to d-ribose yields that exceed 90 g/l. Furthermore, the various transketolase-deficient d-ribose-producing mutants that are used, and the biochemical and genetic rationales applied to select them or to enhance their
d-ribose productivities, are dealt with. Attention is also drawn to the unusual pleiotropic characteristics of the mutant strains,
as well as to the industrial and academic applications of d-ribose.
Received: 29 January 1997 / Received revision: 13 March 1997 / Accepted: 15 March 1997 相似文献
9.
10.
11.
12.
Excretion of glutamic acid in Citrobacter intermedius C3 associated with plasmid deoxyribonucleic acid. 下载免费PDF全文
Several mutants of Citrobacter intermedius C3 lacking both the ability to synthesize proline and the ability to excrete glutamic acid were isolated by treatment with nitrosoguanidine. No revertants for either characteristic were obtained from these mutants. The ability to excrete glutamic acid was transferred to those mutants with very high frequencies in mating experience by using auxotropic excreting strains as donors. Moreover, the ability to synthesize proline was transferred together with the ability to excrete glutamic acid when an excreting strain was used as donor. The transconjugants showed a rapid spontaneous curing of both genetic markers. It was shown by two different methods that a band of covalently closed circular deoxyribonucleic acid is present in the cesium chloride gradients corresponding to the wild type and excretor mutants. Nonexcretor mutants described herein lacked such a band. Pro + transformants that were also excretors were obtained with plasmid deoxyribonucleic acid isolated either from wild type or from an excretor mutant. These data strongly indicate that glutamic acid excretion in C. intermedius C3 is related to the presence of extrachromosomal deoxyribonucleic acid. 相似文献
13.
Production of tannase by solid-state fermentation 总被引:2,自引:0,他引:2
R. Chatterjee A. Dutta R. Banerjee B. C. Bhattacharyya 《Bioprocess and biosystems engineering》1996,14(3):159-162
An attempt has been made to optimize the production of enzyme tannase by solid state fermentation (SSF) using the organism Rhizopus oryzae. The best favourable conditions for enzyme production include initial pH 5 with 4 days of incubation period at 40°C and 72% humidity, and 10 g wheat bran soaked in 2.5% tannic acid. 相似文献
14.
Production of a novel bioflocculant by a fed-batch culture of Citrobacter sp. TKF04 was investigated using acetic acid as a sole carbon source. Synthesis of the bioflocculant was favored by dissolved O2 tension at 20% of air saturation and C/N ratio (mol acetic acid/mol ammonium) of 10:1 in the feed solution. Under optimal conditions, 4.6 g crude bioflocculant per liter broth was produced, whose flocculating activity was 22 300 units. This activity was 9 times higher than that of the control (only acetic acid was supplied). 相似文献
15.
16.
Oh YK Park S Seol EH Kim SH Kim MS Hwang JW Ryu DD 《Journal of microbiology and biotechnology》2008,18(3):532-538
For the newly isolated H2-producing chemoheterotrophic bacterium Citrobacter amalonaticus Y19, anaerobic glucose metabolism was studied in batch cultivation at varying initial glucose concentrations (3.5- 9.5 g/l). The carbon-mass and energy balances were determined and utilized to analyze the carbon metabolic-pathways network. The analyses revealed (a) variable production of major metabolites (H2, ethanol, acetate, lactate, CO2, and cell mass) depending on initial glucose levels; (b) influence of NADH regeneration on the production of acetate, lactate, and ethanol; and (c) influence of the molar production of ATP on the production of biomass. The results reported in this paper suggest how the carbon metabolic pathway(s) should be designed for optimal H2 production, especially at high glucose concentrations, such as by blocking the carbon flux via lactate dehydrogenase from the pyruvate node. 相似文献
17.
18.
Yong Chul Shin Young Ho Kim Hyun Soo Lee Young Nam Kim Si Myung Byun 《Biotechnology letters》1987,9(9):621-624
Summary In pullulan production from sucrose byAureobasidium
pullulans, a sugar concentration higher than 5% (w/v) inhibited cell growth and the production of exopolysaccharide. By a fed-batch fermentation, the inhibitory effects of the high sugar concentration were overcome and 58.0 g/1 of exopolysaccharide were obtained from 10% sucrose.Abbreviations m, n
relationship parameters for the growth and non-growth associated product formation
- X, Xmax
biomass and maximum biomass concentration (g cell/1)
- P
product concentration (g exopolysaccharide/1)
-
specific growth rate of cell (hr–1) 相似文献
19.
Calcium gluconate production by Aspergillus niger was investigated in shake flask, rolling shaker, air-lift reactor and stirred reactor. Growth pattern of the organism and fermentation conditions determined the yield of the product. High calcium gluconate production was achieved in air-lift reactor with pellet form of cell growth at moderate specific growth rate and biomass concentration. In another variation of air-lift reactor, when calcium carbonate was confined to a cellulose membrane, calcium gluconate production was maximum (149 g/L). At higher specific growth rate, obtained in shake flask, despite the formation of cell pellets, product formation was low. Physical separation of particulate calcium carbonate and growing cells favoured product formation. In stirred reactor pulpy mycelial growth was obtained and calcium gluconate production was poor. 相似文献
20.
桔青霉生产核酸酶的发酵条件研究 总被引:1,自引:0,他引:1
对通过紫外线和60Co两次育种得到的桔青霉W48高产菌株培养基的单组分和发酵条件进行了优化,最后又用正交实验对培养基的各组分的浓度进行了优化。得到了产酶量最高的培养基组分(质量分数)是:KH2PO40.05%,K2HPO40.03%,酵母膏+蛋白胨0.7%,CaCl20.02%,MgSO40.04%,ZnSO40.03%,葡萄糖5%,pH5.5。最佳发酵条件是:接种量10%,装液量50 mL,摇床转速180 r/min,温度30℃,发酵时间66 h。用最佳培养基和最佳发酵条件发酵生产核酸酶的酶活力为758.10 U/mL,原始菌种产核酸酶的酶活力为272.26 U/mL,提高了2.78倍。 相似文献