首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bacillus sphaericus is a mosquitocidal bacterium recently developed as a commercial larvicide that is used worldwide to control pestiferous and vector mosquitoes. Whereas B. sphaericus is highly active against larvae of Culex and Anopheles mosquitoes, it is virtually nontoxic to Aedes aegypti, an important vector species. In the present study, we evaluated the capacity of the cytolytic protein Cyt1A from Bacillus thuringiensis subsp. israelensis to enhance the toxicity of B. sphaericus toward A. aegypti. Various combinations of these two materials were evaluated, and all were highly toxic. A ratio of 10:1 of B. sphaericus to Cyt1A was 3, 600-fold more toxic to A. aegypti than B. sphaericus alone. Statistical analysis showed this high activity was due to synergism between the Cyt1A toxin and B. sphaericus. These results suggest that Cyt1A could be useful in expanding the host range of B. sphaericus.  相似文献   

2.
The interaction of two cytolytic toxins, Cyt1Ab from Bacillus thuringiensis subsp. medellin and Cyt2Ba from Bacillus thuringiensis subsp. israelensis, with Bacillus sphaericus was evaluated against susceptible and resistant Culex quinquefasciatus and the nonsensitive species Aedes aegypti. Mixtures of B. sphaericus with either cytolytic toxin were synergistic, and B. sphaericus resistance in C. quinquefasciatus was suppressed from >17,000- to 2-fold with a 3:1 mixture of B. sphaericus and Cyt1Ab. This trait may prove useful for combating insecticide resistance and for improving the activity of microbial insecticides.  相似文献   

3.
The interaction of two cytolytic toxins, Cyt1Ab from Bacillus thuringiensis subsp. medellin and Cyt2Ba from Bacillus thuringiensis subsp. israelensis, with Bacillus sphaericus was evaluated against susceptible and resistant Culex quinquefasciatus and the nonsensitive species Aedes aegypti. Mixtures of B. sphaericus with either cytolytic toxin were synergistic, and B. sphaericus resistance in C. quinquefasciatus was suppressed from >17,000- to 2-fold with a 3:1 mixture of B. sphaericus and Cyt1Ab. This trait may prove useful for combating insecticide resistance and for improving the activity of microbial insecticides.  相似文献   

4.
The 2362 strain of Bacillus sphaericus (Bs) Neide is a highly mosquitocidal bacterium used in commercial bacterial larvicides primarily to control mosquitoes of the genus Culex. Unfortunately, Bs is at high risk for selecting resistance in mosquito populations, because its binary toxin apparently only binds to a single receptor type on midgut microvilli. A potential key strategy for delaying resistance to insecticidal proteins is to use mixtures of toxins that act at different targets within the insect, especially mixtures that interact synergistically. We tested this hypothesis for delaying the phenotypic expression of resistance by exposing Culex quinquefasciatus Say larvae to Bs alone or in combination with Cyt1A from Bacillus thuringiensis subsp. israelensis. Two laboratory lines of Cx. quinquefasciatus, one sensitive to Bs and the other containing Bs resistance alleles, were subjected to intensive selection pressure for 20 generations with either Bs 2362 or a 3:1 mixture of Bs 2362+Cyt1A. At the end of the study, the sensitive line had evolved >1000-fold resistance when selected with Bs alone, whereas the parallel line selected with Bs+Cyt1A exhibited only low resistance toward this mixture (RR95, 1.4). Similar results were observed in the lines containing Bs resistance alleles. Both lines selected with Bs+Cyt1A exhibited substantial resistance to Bs in the absence of Cyt1A. Although selection with Bs+Cyt1A did not prevent the underlying evolution of resistance to Bs, these results suggest that a mixture of Bs with other endotoxins, particularly one like Bs+Cyt1A in which the components interact synergistically, will provide longer lasting and more effective mosquito control than Bs alone.  相似文献   

5.
Differences in biological features of immature and adult Aedes aegypti, as well as variability in vector competence, seem consistent with the existence of genetic variation among subpopulations and adaptation to local conditions. This work aims to compare the bionomics of four Ae. aegypti subpopulations derived from different geographical regions reared under temperate conditions. Life statistics of three Ae. aegypti subpopulations from the provinces of Córdoba, Salta, and Misiones were studied based on horizontal life tables. The Rockefeller strain was used as a control. The development time required to complete the larva and pupa stages varied from 6.91 to 7.95 and 1.87 to 2.41 days, respectively. Significant differences were found in mean larval development time between the Córdoba and Orán subpopulations. The larva‐pupa development time was similar in all the subpopulations. However, survival values varied significantly between the Orán and San Javier subpopulations. The proportion of emergent males did not differ from females within each subpopulation nor among them. Adult longevity was similar among the subpopulations. The average number of eggs laid by each female was significantly different. The Rockefeller strain laid a significantly greater number of eggs (463.99 eggs/female) than the rest of the subpopulations. Moreover, differences in the demographic growth parameter Ro were detected among the four subpopulations. The differences obtained in larval development time, larva‐pupa survival values, and net reproductive rates among the subpopulations might reflect underlying genetic differences as a result of colonization from different regions that probably involve adaptations to local conditions.  相似文献   

6.
This work shows in vitro processing of Bacillus thuringiensis svar. isralensis Cry toxins and the capacity of the active fragments to bind the midgut microvilli of Aedes aegypti larvae. Processing of Cry11Aa, Cry4Aa and Cry4Ba yielded double fragments of 38-30, 45-20 and 45-18 kDa, respectively. Competition assays showed that all active (125)I-Cry toxins are able to specifically bind to brush border membrane fractions and they might share a common class of binding sites. The values of IC(50) suggested that toxins do not display high affinity for the receptors from brush border membrane fractions, while dissociation assays showed that binding was irreversible, indicating the insertion of toxins in the cell membrane.  相似文献   

7.
Dengue is a growing public health problem in many tropical and subtropical countries worldwide. At present, the only method of controlling or preventing the disease is to eliminate its vector, Aedes aegypti (L.) (Diptera: Culicidae). In the current study, an experimental larvicide tablet formulation XL-47 based on Bacillus thuringiensis serovar israelensis (Bti) and containing 4.8% of technical powder was developed. This formulation was evaluated against Ae. aegypti in three different sets of experiments, under field-simulated conditions: two experiments were indoors and under partial sunlight exposure and one experiment was outdoors with sunlight exposure. Larvae were added throughout the experiment two times per week, and the residual larvicidal activity was recorded daily. Pupal formation was reduced in the containers with Bti by > 80% in relation to the containers without treatment for 12 wk; to our knowledge, this is the longest period of control reported for a Bti tablet formulation outdoors under sunlight exposure. Moreover, samples from the top, middle, and bottom of the water column were collected to perform bacterial plate counts and toxicity assays. The Bti population and the active ingredient of the tablet formulation remained mainly at the bottom of the containers and mosquito larvae reached the formulation by diving and shredding the tablet's material. In conclusion, the experimental tablet formulation XL-47 showed an inhibition of pupal formation that lasted for long periods under sunlight exposure.  相似文献   

8.
Structure? activity relationships of nine thiophenes, 2,2′: 5′,2″‐terthiophene ( 1 ), 2‐chloro‐4‐[5‐(penta‐1,3‐diyn‐1‐yl)thiophen‐2‐yl]but‐3‐yn‐1‐yl acetate ( 2 ), 4‐(2,2′‐bithiophen‐5‐yl)but‐3‐yne‐1,2‐diyl diacetate ( 3 ), 4‐[5‐(penta‐1,3‐diyn‐1‐yl)thiophen‐2‐yl]but‐3‐yne‐1,2‐diyl diacetate ( 4 ), 4‐(2,2′‐bithiophen‐5‐yl)‐2‐hydroxybut‐3‐yn‐1‐yl acetate ( 5 ), 2‐hydroxy‐4‐[5‐(penta‐1,3‐diyn‐1‐yl)thiophen‐2‐yl]but‐3‐yn‐1‐yl acetate ( 6 ), 1‐hydroxy‐4‐[5‐(penta‐1,3‐diyn‐1‐yl)thiophen‐2‐yl]but‐3‐yn‐2‐yl acetate ( 7 ), 4‐(2,2′‐bithiophen‐5‐yl)but‐3‐yne‐1,2‐diol ( 8 ), and 4‐[5‐(penta‐1,3‐diyn‐1‐yl)thiophen‐2‐yl]but‐3‐yne‐1,2‐diol ( 9 ), isolated from the roots of Echinops transiliensis, were studied as larvicides against Aedes aegypti. Structural differences among compounds 3, 5 , and 8 consisted in differing AcO and OH groups attached to C(3″) and C(4″), and resulted in variations in efficacy. Terthiophene 1 showed the highest activity (LC50, 0.16 μg/ml) among compounds 1 – 9 , followed by bithiophene compounds 3 (LC50, 4.22 μg/ml), 5 (LC50, 7.45 μg/ml), and 8 (LC50, 9.89 μg/ml), and monothiophene compounds 9 (LC50, 12.45 μg/ml), 2 (LC50, 14.71 μg/ml), 4 (LC50, 17.95 μg/ml), 6 (LC50, 18.55 μg/ml), and 7 (LC50, 19.97 μg/ml). These data indicated that A. aegypti larvicidal activities of thiophenes increase with increasing number of thiophene rings, and the most important active site in the structure of thiophenes could be the tetrahydro‐thiophene moiety. In bithiophenes, 3, 5 , and 8 , A. aegypti larvicidal activity increased with increasing number of AcO groups attached to C(3″) or C(4″), indicating that AcO groups may play an important role in the larvicidal activity.  相似文献   

9.
The increased incidence of vector-borne diseases and insecticide resistance in mosquitos constitute public health concerns in the tropics. Biological control is an effective alternative in the management of Aedes aegypti Linnaeus populations. Lysinibacillus sphaericus a bacterium proved to be harmless for non-target organisms has shown promising entomopathogenic activity. In Colombia, the control of A. aegypti using L. sphaericus has not been contemplated as part of vector control programmes. To assess the susceptibility of three A. aegypti populations to a L. sphaericus formulation consisting of vegetative cells of 2362 and III(3)7 strains, simulated-field bioassays were conducted in the municipalities of Ricaurte in Cundinamarca and Tauramena in Casanare, as well as in the municipal inspection of San Joaquin, Cundinamarca. Sixty larvae were deposited in a test device, which contained nine litres of chlorine-free tap water and 100 ml of the bacterial formulation (109 CFU/ml). Six replicates were set-up for treatment with bacteria and for the control. Larvae mortality was recorded at 24 and 48 hr. The three A. aegypti populations were susceptible to L. sphaericus formulation with a mortality rate higher than 90% at 48 hr. The formulation of L. sphaericus comprised of vegetative cells of 2362 and III(3)7 strains showed promising results that could guarantee the implementation of this formulation to control of A. aegypti populations.  相似文献   

10.
Insecticide susceptibility of a 1995 Townsville Aedes aegypti (L.) population was investigated in the laboratory according to World Health Organization guidelines. Using baseline data from two Townsville populations (1955 and 1989), larval bioassays detected significant increases in susceptibility to synthetic pyrethroids and malathion, and significant reductions in susceptibility to most organophosphates and propoxur. Adult bioassays detected significant resistance to bendiocarb and DDT. Comparison of larval data with the international reference ROCK strain showed substantial resistance to have developed to malathion and fenthion. Further analysis revealed the presence of distinct substrains in the baseline 1989 population, which displayed varying levels of temephos susceptibility. We concluded that susceptibility investigations should assess mosquito populations collected from many sites within an area rather than taking a single population from one site, and that the 1989 Ae. aegypti colony would be unsuitable for use as a susceptible reference population.  相似文献   

11.
In light of the challenges to control Aedes aegypti and the critical role that it plays as arbovirus vector, it is imperative to adopt strategies that provide fast, efficient and environmentally safe control of the insect population. In the present study, we synthesized six indole derivatives (C1‐C6) and examined their larvicidal activity and persistence against Ae. aegypti larvae, as well as their toxicity towards Raw 264.7 macrophages, Vero cells, Chlorella vulgaris BR017, Scenedesmus obliquus BR003, Caenorhabditis elegans N2 and Galleria mellonella. Among the bioactive compounds (C1, C2, C4 and C5), C2 exerted the strongest larvicidal activity against Ae. aegypti, with LC50 = 1.5 μg/ml (5.88 µM) and LC90 = 2.4 μg/ml (9.50 µM), indicating that the presence of chlorine or bromine groups in the aromatic ring improved the larvicidal activity of the indole derivatives. C1, C2, C4 and C5 did not reduce viability of RAW 264.7 macrophages, Vero cells, C. elegans N2 and G. mellonella. Compounds C1, C2 and C5 did not affect the growth of C. vulgaris BR017 and S. obliquus BR003. Analysis of larvicidal persistence under laboratory conditions revealed that the effect of compounds C1, C2, C4 and C5 lasted for 30 days and caused 100% of larvae mortality within few hours. Altogether, our findings demonstrate that the indole derivatives C1, C2, C4 and C5 effectively control Ae. aegypti larvae population, without clear signs of toxicity to mammalian cells, algae, C. elegans and G. mellonella.  相似文献   

12.
INTRODUCTION: In Cali, Colombia, catch basins (streetside storm drains) are one of the main larval habitats of Aedes aegypti and Culex quinquefasciatus. Since 1999, these mosquitoes have been controlled by the Secretaría de Salud Municipal (Secretary of Municipal Public Health) using the larvicide triflumuron. Because of high densities of these mosquitoes that remain in the city, treatment failure was suspected -possibly insecticide resistance of the target species. OBJECTIVES: The efficacy of triflumuron and VectoMax (biorational mixture of Bacillus thuringiensis var. israelensis plus Bacillus sphaericus) were evaluated in the control of A. aegypti and C. quinquefasciatus in catch basins. The residual effect of a single application of the biorational formulation was determined in catch basins during periods of high and low rainfall. MATERIALS AND METHODS: The efficacy of the products was measured in 60 catch basins located in a residential neighborhood of Cali for a period of 90 days. The mean number of immature instars (A. aegypti and C. quinquefasciatus larvae and pupae of both species) was determined biweekly from 40 catch basins with insecticide intervention (20 treated with triflumuron, 20 with VectoMax) and 20 untreated (control group). The residual effect of the biorational larvicide was evaluated biweekly in 10 catch basins during each of the 2 climatic periods. Results. The catch basins treated with VectoMax presented a significantly lower mean number of immature instars of both species compared with the control ( p<0.01). In contrast, the triflumuron treatment significantly reduced only immature instars of A. aegypti compared with the control ( p<0.001). The residual effect of VectoMax was higher during low rainfall compared to the control ( p<0.001). Conclusion. The biorational formulation was the more effective treatment for the control of both species during the period of evaluation (15 days).  相似文献   

13.
Aedes aegypti is a mosquito vector of arboviruses such as dengue, chikungunya, zika and yellow fever that cause important public health diseases. The incidence and gravity of these diseases justifies the search for effective measures to reduce the presence of this vector in the environment. Bioinsecticides are an effective alternative method for insect control, with added ecological benefits such as biodegradability. The current study demonstrates that a chitinolytic enzyme complex produced by the fungus Trichoderma asperellum can disrupt cuticle formation in the L3 larvae phase of A. aegypti, suggesting such biolarvicidal action could be used for mosquito control. T. asperellum was exposed to chitin from different sources. This induction of cell wall degrading enzymes, including chitinase, N-acetylglucosaminidase and β-1,3-glucanase. Groups of 20 L3 larvae of A. aegypti were exposed to varying concentrations of chitinolytic enzymes induced with commercial chitin (CWDE) and larvae cell wall degrading enzymes (L-CWDE). After 72 h of exposure to the CWDE, 100% of larvae were killed. The same percent mortality was observed after 48 h of exposure to L-CWDE at half the CWDE enzyme mixture concentration. Exoskeleton deterioration was further observed by scanning and electron microscopy. Our findings indicate that L-CWDE produced by T. asperellum reflect chitinolytic enzymes with greater specificity for L3 larval biomolecules. This specificity is characterized by the high percentage of mortality compared with CWDE treatments and also by abrupt changes in patterns of the cellular structures visualized by scanning and transmission electron microscopy. These mixtures of chitinolytic enzymes could be candidates, as adjuvant or synergistic molecules, to replace conventional chemical insecticides currently in use.  相似文献   

14.
The efficacy and persistence of Bacillus sphaericus (2362) was compared at three dosage rates in tires that continually contained cadavers of Culiseta incidens (Thomson) versus tires with all dead larvae removed. At treatment rates of 3.75 and 7.5 ppm, the continual presence of cadavers in the tire water resulted in higher mortality rates. At the 15 ppm treatment rate, mortality rates were similar in tires with or without cadavers. Mortality rates increased in all tires 4-6 wk after treatment, suggesting an amplification of the pathogen. The mortality rate did not exceed 90% for greater than 2 wk in any of the tires. At a second site, the efficacy of B. sphaericus, Bacillus thuringiensis var. israelensis, and methoprene was evaluated against C. incidens in tires exposed to full sunlight versus shaded tires. In shaded tires inoculated with B. sphaericus (15 ppm) and B. thuringiensis var. israelensis (15 ppm), mortality exceeded 90% for 5 and 2 wk, and 50% for 10 and 4 wk, for the two bacteria, respectively. Larvae were adequately controlled (greater than 75% mortality) in the sunny tires for approximately 1 wk. The insect growth regulator, methoprene (applied at 2.5 ppm), inhibited the emergence of approximately 90% of the larvae present at the time of treatment, but not of larvae subsequently introduced into either the sunny or shaded tires.  相似文献   

15.
16.
We report here the reappearance of Aedes aegypti in the Rimac district, and summarize the history of this mosquito species in Peru since its first detection in 1852. On March 17 2000 were found Ae. aegypti and Culex quinquefasciatus in Mariscal Castilla town, Flor de Amancaes, San Juan de Amancaes, El Altillo and Santa Rosa in the Rimac district, Lima Province.  相似文献   

17.
18.
Some Egyptian isolates of Bacillus thuringiensis (BT) were grown on economic media contain 4% of fodder yeast in tap water and incubated under shaking conditions for four days. The biological activities of these isolates against Culex pipiens (Diptera: Culicidae) were carried out to determine their effectiveness against field and laboratory strains of 3rd larval instar. All isolates of BT were more pathogenic to laboratory strain. causing up to 84% larval mortality. The insecticidal activities of these isolates were extended to the pupal stage causing a significant effect on pupal mortality in both strains tested. A pronounced effect on adult emergence was noticed with remarkable adult malformations especially in the case of the isolate No. 2. The reproductivety of females was affected significantly by all isolates applied.  相似文献   

19.
Pure crystals of seven Bacillus thuringiensis field isolates from the Lower Silesia region (Poland) were tested against larvae of Aedes aegypti L. and Culex pipiens L. (Culicidae, Diptera). The crystals of OpQ3 phylloplane isolate (belonging to the first biochemical type of B. thuringiensis subsp. japonensis, yoso, jinghongiensis) killed from 68 +/- 7% to 84 +/- 7% of the fourth instar larvae of A. aegypti. The crystals of two other strains (KpF3 and KpC1) of this group caused mortality between 3 +/- 2% and 70 +/- 7%. The LC50 ranged from 3.2 +/- 0.4 to 34.1 +/- 4.8 microg/ml. The effect of B. thulringiensis wratislaviensis H-47 crystals was the lowest with larval mortality from 0% to 17 +/- 3%. No significant (0%-37 +/- 6%) effect of B. thuringiensis crystals on the larvae of C. pipiens was observed. Our results show that the delta-endotoxins of B. thuringiensis act very specifically.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号