首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A search for regulators of estrogen receptor alpha (ERalpha) expression has yielded a set of microRNAs (miRNAs) for which expression is specifically elevated in ERalpha-negative breast cancer. Here we show distinct expression of a panel of miRNAs between ERalpha-positive and ERalpha-negative breast cancer cell lines and primary tumors. Of the elevated miRNAs in ERalpha-negative cells, miR-221 and miR-222 directly interact with the 3'-untranslated region of ERalpha. Ectopic expression of miR-221 and miR-222 in MCF-7 and T47D cells resulted in a decrease in expression of ERalpha protein but not mRNA, whereas knockdown of miR-221 and miR-222 partially restored ERalpha in ERalpha protein-negative/mRNA-positive cells. Notably, miR-221- and/or miR-222-transfected MCF-7 and T47D cells became resistant to tamoxifen compared with vector-treated cells. Furthermore, knockdown of miR-221 and/or miR-222 sensitized MDA-MB-468 cells to tamoxifen-induced cell growth arrest and apoptosis. These findings indicate that miR-221 and miR-222 play a significant role in the regulation of ERalpha expression at the protein level and could be potential targets for restoring ERalpha expression and responding to antiestrogen therapy in a subset of breast cancers.  相似文献   

4.
5.
The regulator of cell cycle progression, cyclin D1, is up-regulated in breast cancer cells; its expression is, in part, dependent on ERalpha signaling. However, many ERalpha-negative tumors and tumor cell lines (e.g., SKBR3) also show over-expression of cyclin D1. This suggests that, in addition to ERalpha signaling, cyclin D1 expression is under the control of other signaling pathways; these pathways may even be over-expressed in the ERalpha-negative cells. We previously noticed that both ERalpha-positive and -negative cell lines over-express BRCA1-IRIS mRNA and protein. Furthermore, the level of over-expression of BRCA1-IRIS in ERalpha-negative cell lines even exceeded its over-expression level in ERalpha-positive cell lines. In this study, we show that: (1) BRCA1-IRIS forms complex with two of the nuclear receptor co-activators, namely, SRC1 and SRC3 (AIB1) in an ERalpha-independent manner. (2) BRCA1-IRIS alone, or in connection with co-activators, is recruited to the cyclin D1 promoter through its binding to c-Jun/AP1 complex; this binding activates the cyclin D1 expression. (3) Over-expression of BRCA1-IRIS in breast cells over-activates JNK/c-Jun; this leads to the induction of cyclin D1 expression and cellular proliferation. (4) BRCA1-IRIS activation of JNK/c-Jun/AP1 appears to account for this, because in cells that were depleted from BRCA1-IRIS, JNK remained inactive. However, depletion of SRC1 or SRC3 instead reduced c-Jun expression. Our data suggest that this novel signaling pathway links BRCA1-IRIS to cellular proliferation through c-Jun/AP1 nuclear pathway; finally, this culminates in the increased expression of the cyclin D1 gene.  相似文献   

6.
7.
8.
Acquired resistance to endocrine therapy represents a major clinical obstacle to the successful management of estrogen-dependent breast cancers expressing estrogen receptor alpha (ERalpha). Because a switch from ligand-dependent to ligand-independent activation of ERalpha-regulated breast cancer cell growth and survival may define a path to endocrine resistance, enhanced mechanistic insight concerning the ligand-independent fate and function of ERalpha, including a more complete inventory of its ligand-independent cofactors, could identify novel markers of endocrine resistance and possible targets for therapeutic intervention in breast cancer. Here, we identify the deleted in breast cancer 1 gene product DBC-1 (KIAA1967) to be a principal determinant of unliganded ERalpha expression and survival function in human breast cancer cells. The DBC-1 amino terminus binds directly to the ERalpha hormone-binding domain both in vitro and in vivo in a strict ligand-independent manner. Furthermore, like estrogen, the antiestrogens tamoxifen and ICI 182,780 (7alpha,17beta-[9-[(4,4,5,5,5-pentafluoropentyl)sulfinyl]nonyl]estra-1,3,5(10)-triene-3,17-diol) disrupt the DBC-1/ERalpha interaction, thus revealing the DBC-1/ERalpha interface to be a heretofore-unrecognized target of endocrine compounds commonly used in hormonal therapy. Notably, RNA interference-mediated DBC-1 depletion reduces the steady-state level of unliganded but not liganded ERalpha protein, suggesting that DBC-1 may stabilize unliganded ERalpha by virtue of their direct association. Finally, DBC-1 depletion promotes hormone-independent apoptosis of ERalpha-positive, but not ERalpha-negative, breast cancer cells in a manner reversible by endocrine agents that disrupt the DBC-1/ERalpha interaction. Collectively, these findings establish a principal biological function for DBC-1 in the modulation of ERalpha expression and hormone-independent breast cancer cell survival.  相似文献   

9.
10.
Breast epithelial stem cells are thought to be the primary targets in the etiology of breast cancer. Since breast cancers mostly express estrogen and progesterone receptor (ERalpha and PR), we examined the biology of these ERalpha/PR-positive cells and their relationship to stem cells in normal human breast epithelium. We employed several complementary approaches to identify putative stem cell markers, to characterise an isolated stem cell population and to relate these to cells expressing the steroid receptors ERalpha and PR. Using DNA radiolabelling in human tissue implanted into athymic nude mice, a population of label-retaining cells were shown to be enriched for the putative stem cell markers p21(CIP1) and Msi-1, the human homolog of Drosophila Musashi. Steroid receptor-positive cells were found to co-express these stem cell markers together with cytokeratin 19, another putative stem cell marker in the breast. Human breast epithelial cells with Hoechst dye-effluxing "side population" (SP) properties characteristic of mammary stem cells in mice were demonstrated to be undifferentiated "intermediate" cells by lack of expression of myoepithelial and luminal apical membrane markers. These SP cells were 6-fold enriched for ERalpha-positive cells and expressed several fold higher levels of the ERalpha, p21(CIP1) and Msi1 genes than non-SP cells. In contrast to non-SP cells, SP cells formed branching structures in matrigel which included cells of both luminal and myoepithelial lineages. The data suggest a model where scattered steroid receptor-positive cells are stem cells that self-renew through asymmetric cell division and generate patches of transit amplifying and differentiated cells.  相似文献   

11.
12.
13.
The antiestrogen tamoxifen has been widely used for decades as selective estrogen receptor (ER) modulator for ERalpha-positive breast tumors. Tamoxifen significantly reduces tumor recurrence by binding to the activation function-2 (AF-2) domain of the ER. Acquired resistance to tamoxifen in breast cancer patients is a serious therapeutic problem. Antiestrogen-resistant breast cancer often shows increased expression of the epidermal growth factor receptor (EGFR) family members, EGFR and ErbB2. In this report we now show that overexpression of EGFR or activated AKT-2 in MCF-7 cells leads to phosphorylation of Ser167 in the AF-1 domain of ERalpha, enhanced ER-amplified in breast cancer 1 (ER:AIB1) interaction in the presence of tamoxifen, and resistance to tamoxifen. In contrast, transfection of activated MAPK kinase, an immediate upstream activator of MAPK (ERK 1 and 2) into MCF-7 cells leads to phosphorylation of Ser118 in the AF-1 domain of ERalpha, inhibition of ER-amplified in breast cancer 1 (ER:AIB1) interaction in the presence of Tam, and maintenance of sensitivity to tamoxifen. Inhibition of AKT by short inhibitory RNA blocked Ser167 phosphorylation in ER and restored tamoxifen sensitivity. However, maximum sensitivity to tamoxifen was observed when both AKT and MAPK were inhibited. Taken together, these data demonstrate that different phosphorylation sites in the AF-1 domain of ERalpha regulate the agonistic and antagonistic actions of tamoxifen in human breast cancer cells.  相似文献   

14.
15.
Estrogen stimulates cell proliferation in breast cancer. The biological effects of estrogen are mediated through two intracellular receptors, estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta). However, the role of ERs in the proliferative action of estrogen is not well established. Recently, it has been known that ER activates phosphatidylinositol-3-OH kinase (PI3K) through binding with the p85 regulatory subunit of PI3K. Therefore, possible mechanisms may include ER-mediated phosphoinositide metabolism with subsequent formation of phosphatidylinositol-3,4,5-trisphosphate (PIP(3)), which is generated from phosphatidylinositol 4,5-bisphosphate via PI3K activation. The present study demonstrates that 17beta-estradiol (E2) up-regulates PI3K in an ERalpha-dependent manner, but not ERbeta, and stimulates cell growth in breast cancer cells. In order to study this phenomenon, we have treated ERalpha-positive MCF-7 cells and ERalpha-negative MDA-MB-231 cells with 10nM E2. Treatment of MCF-7 cells with E2 resulted in a marked increase in PI3K (p85) expression, which paralleled an increase in phospho-Akt (Ser-473) and PIP(3) level. These observations also correlated with an increased activity to E2-induced cell proliferation. However, these effects of E2 on breast cancer cells were not observed in the MDA-MB-231 cell line, indicating that the E2-mediated up-regulation of PI3K/Akt pathway is ERalpha-dependent. These results suggest that estrogen activates PI3K/Akt signaling through ERalpha-dependent mechanism in MCF-7 cells.  相似文献   

16.
ABSTRACT: MEK Partner 1 (MP1 or MAPKSP1) is a scaffold protein that has been reported to function in multiple signaling pathways, including the ERK, PAK and mTORC pathways. Several of these pathways influence the biology of breast cancer, but MP1's functional significance in breast cancer cells has not been investigated. In this report, we demonstrate a requirement for MP1 expression in estrogen receptor (ER) positive breast cancer cells. MP1 is widely expressed in both ER-positive and negative breast cancer cell lines, and in non-tumorigenic mammary epithelial cell lines. However, inhibition of its expression using siRNA duplexes resulted in detachment and apoptosis of several ER-positive breast cancer cell lines, but not ER-negative breast cancer cells or non-tumorigenic mammary epithelial cells. Inhibition of MP1 expression in ER-positive MCF-7 cells did not affect ERK activity, but resulted in reduced Akt1 activity and reduced ER expression and activity. Inhibition of ER expression did not result in cell death, suggesting that decreased ER expression is not the cause of cell death. In contrast, pharmacological inhibition of PI3K signaling did induce cell death in MCF-7 cells, and expression of a constitutively active form of Akt1 partially rescued the cell death observed when the MP1 gene was silenced in these cells. Together, these results suggest that MP1 is required for pro-survival signaling from the PI3K/Akt pathway in ER-positive breast cancer cells.  相似文献   

17.
18.
Estrogen effects on mammary gland development and differentiation are mediated by two receptors (ERα and ERβ). Estrogen‐bound ERα induces proliferation of mammary epithelial and cancer cells, while ERβ is important for maintenance of the differentiated epithelium and inhibits proliferation in different cell systems. In addition, the normal breast contains higher ERβ levels compared to the early stage breast cancers, suggesting that loss of ERβ could be important in cancer development. Analysis of ERβ?/? mice has consistently revealed reduced expression of cell adhesion proteins. As such, ERβ is a candidate modulator of epithelial homeostasis and metastasis. Consequently, the aim of this study was to analyze estrogenic effects on adhesion of breast cancer cells expressing ERα and ERβ. As ERβ is widely found in breast cancer but not in cell lines, we used ERα positive T47‐D and MCF‐7 human breast cancer cells to generate cells with inducible ERβ expression. Furthermore, the colon cancer cell lines SW480 and HT‐29 were also used. Integrin α1 mRNA and protein levels increased following ERβ expression. Integrin β1—the unique partner for integrin α1—increased only at the protein level. ERβ expression enhanced the formation of vinculin containing focal complexes and actin filaments, indicating a more adhesive potential. This was confirmed by adhesion assays where ERβ increased adhesion to different extracellular matrix proteins, mostly laminin. In addition, ERβ expression was associated to less cell migration. These results indicate that ERβ affects integrin expression and clustering and consequently modulates adhesion and migration of breast cancer cells. J. Cell. Physiol. 222:156–167, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
20.
Isolation and characterization of human mammary stem cells   总被引:12,自引:0,他引:12  
Since stem cells are present throughout the lifetime of an organism, it is thought that they may accumulate mutations, eventually leading to cancer. In the breast, tumours are predominantly oestrogen and progesterone receptor-positive (ERalpha/PR+). We therefore studied the biology of ERalpha/PR-positive cells and their relationship to stem cells in normal human mammary epithelium. We demonstrated that ERalpha/PR-positive cells co-express the putative stem cell markers p21(CIP1/WAF1), cytokeratin (CK) 19 and Musashi-1 when examined using dual label immunofluorescence on tissue sections. Next, we isolated a Hoechst dye-effluxing 'side population' (SP) from the epithelium using flow cytometry and demonstrated them to be undifferentiated cells by lack of expression of myoepithelial and luminal cell-specific antigens such as CALLA and MUC1. Epithelial SP cells were shown to be enriched for the putative stem cell markers p21(CIP1/WAF1), Musashi-1 and ERalpha/PR-positive cells. Lastly, SP cells, compared to non-SP, were highly enriched for the capacity to produce colonies containing multiple lineages in 3D basement membrane (Matrigel) culture. We conclude that breast stem cells include two populations: a primitive ERalpha/PR-negative stem cell necessary for development and a shorter term ERalpha/PR-positive stem cell necessary for adult tissue homeostasis during menstrual cycling. We speculate these two basic stem cell types may therefore be the cells of origin for ERalpha-positive and -negative breast tumours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号