首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Doxorubicin (DOX) transport activity of Ral-interacting protein (RLIP76) in non-small cell lung cancer (NSCLC) is approximately twice that of in small cell lung cancer (SCLC). Since protein-kinase-C (PKC)alpha mediated phosphorylation of RLIP76 causes doubling of the specific activity of RLIP76, and NSCLC cells are known to have greater PKCalpha activity, we examined the contribution of PKC mediated phosphorylation of RLIP76 towards intrinsic DOX-resistance in human NSCLC. Expression of a deletion mutant RLIP76(delPKCalpha-sites) followed by depletion of the wild-type RLIP76 using a siRNA targeted at one of the deleted regions resulted in generation of cells expressing only the mutant protein, which could not be phosphorylated by PKCalpha. DOX-transport activity of the mutant RLIP76 purified from NSCLC and SCLC was similar and comparable to that of RLIP76 purified from the wild-type SCLC. However, this activity was significantly lower than that of RLIP76 purified from the wild-type NSCLC. After siRNA mediated depletion of PKCalpha, DOX-transport activities of RLIP76 purified from SCLC and NSCLC were indistinguishable. Depletion of PKCalpha inhibited the growth of NSCLC more than SCLC cells (70+/-3% vs. 43+/-5%, respectively). PKCalpha-depletion lowered the IC(50) of NSCLC cell lines for DOX to the same level as that observed for SCLC. RLIP76(-/-) mouse embryonic fibroblasts (MEFs) were significantly more sensitive to DOX as compared with RLIP76(+/+) MEFs (IC(50) 25 vs. 125nM, respectively). However, PKCalpha-depletion did not affect DOX-cytotoxicity towards RLIP76(-/-) MEFs, as opposed to RLIP76(+/+) MEFs which were sensitized by 2.2-fold. These results demonstrate that RLIP76 is a primary determinant of DOX-resistance, and that PKCalpha mediated accumulation defect and DOX-resistance in NSCLC is primarily due to differential phosphorylation of RLIP76 in SCLC and NSCLC.  相似文献   

2.
We have recently demonstrated that RLIP76, a Ral-binding GTPase activating protein mediates ATP-dependent transport of glutathione (GSH) conjugates of electrophiles (GS-E) as well as doxorubicin (DOX), and that it is identical with DNP-SG ATPase, a GS-E transporter previously characterized by us in erythrocyte membranes (Awasthi et al. Biochemistry 39, 9327-9334). Multidrug resistance-associated protein (MRP1) belonging to the family of the ABC-transporters has also been suggested to be a GS-E transporter in human erythrocytes. Using immunological approaches, the present studies were designed to elucidate the relative contributions of RLIP76, MRP1, and P-glycoprotein (Pgp), in the ATP-dependent transport of GS-E and DOX in human erythrocytes. In Western blot analyses using antibodies against RLIP76, a strong expression of RLIP76 was observed in erythrocytes. Immunohistochemical studies using a fluorescent probe showed association of RLIP76 with erythrocyte membrane, which was consistent with its transport function. Neither MRP1 nor Pgp were detected in erythrocytes when the antibodies against MRP1 or Pgp were used. In erythrocyte inside-out vesicles (IOVs) coated with antibodies against RLIP76, a dose-dependent inhibition of the ATP-dependent transport of DOX and GS-E, including S-(dinitrophenyl)glutathione (DNP-SG), leukotriene C(4), and the GSH conjugate of 4-hydroxynonenal, was observed with a maximal inhibition of about 70%. On the contrary, in the IOVs coated with the antibodies against MRP1 or Pgp no significant inhibition of the ATP-dependent transport of these compounds was observed. These findings suggest that RLIP76 is the major ATP-dependent transporter of GS-E and DOX in human erythrocytes.  相似文献   

3.
Active transport of conjugated and unconjugated electrophiles out of cells is essential for cellular homeostasis. We have previously identified in human tissues a transporter, DNP-SG [S-(2, 4-dinitrophenyl)glutathione] ATPase, capable of carrying out this function [Awasthi et al. (1998) Biochemistry 37, 5231-5238, 5239-5248]. We now report the cloning of DNP-SG ATPase. The sequence of the cDNA clone was identical to that of human RLIP76, a known Ral-binding protein. RLIP76 expressed in E. coli was purified by DNP-SG affinity chromatography. Purified recombinant RLIP76: (1) had ATPase activity stimulated by DNP-SG or doxorubicin (DOX), and the K(m) values of RLIP76 for ATP, DOX, and DNP-SG were similar to those reported for DNP-SG ATPase; (2) upon reconstitution with asolectin as well as with defined lipids, catalyzed ATP-dependent transport of DNP-SG and DOX with kinetic parameters similar to those of DNP-SG ATPase; (3) when transfected into K562 cells, resulted in increased resistance to DOX, and increased ATP-dependent transport of DNP-SG and DOX by inside-out membrane vesicles from transfected cells; (4) direct uptake of purified RLIP76 protein into mammalian cells from donor proteoliposomes confers DOX resistance. These results indicate that RLIP76, in addition to its role in signal transduction, can catalyze transport of glutathione conjugates and xenobiotics, and may contribute to the multidrug resistance phenomenon.  相似文献   

4.
We have recently demonstrated that a previously known Ral-binding GTPase activating protein, RLIP76, can also catalyze ATP-dependent transport of various structurally unrelated xeno- and endobiotics irrespective of their net charge (Awasthi et al., 2000, Biochemistry, 39: 9327). RLIP76 is a non-ATP binding cassette (ABC) protein but it has two ATP-binding sites and shows basal ATPase activity which is stimulated in the presence of its transport substrates (allocrites) such as doxorubicin (DOX) and S-(2,4-dinitrophenyl) glutathione (DNP-SG). Proteoliposomes reconstituted with purified RLIP76 catalyze ATP-dependent, saturable transport of DOX, as well as of glutathione-conjugates including leukotrienes (LTC4) and the GSH-conjugate of 4-hydroxynonenal (GS-HNE). In erythrocytes the majority of transport activity for DOX, GS-HNE, and LTC4 is accounted for by RLIP76. Cells exposed to mild oxidative stress show a rapid and transient induction of RLIP76 resulting in an increased efflux of GS-HNE and acquire resistance to oxidative stress mediated toxicity and apoptosis. Cells transfected with RLIP76 acquire resistance to DOX through increased efflux of the drug suggesting its possible role in the mechanisms of drug-resistance. In this article, we discuss the significance of transport functions of RLIP76 highlighting its role in the defense mechanisms against oxidative injury, and modulation of signaling mechanisms.  相似文献   

5.
We have recently shown that RLIP76, a Ral-binding, GTPase-activating protein, is an ATP-dependent transporter of doxorubicin (DOX) as well as glutathione conjugates [Awasthi, S., et al. (2000) Biochemistry 39, 9327-9334]. RLIP76 overexpressed in human cells or transformed E. coli undergoes proteolysis to yield several fragments, including two prominent peptides, N-RLIP76(1-367) and C-RLIP76(410-655), from the N- and C-terminal domains, respectively. To investigate whether the fragmentation of RLIP76 has any relevance to its transport function, we have studied the characteristics of these two peptide fragments. Recombinant N-RLIP76(1-367) and C-RLIP76(410-655) were purified from overexpressing transformed E. coli. While N-RLIP76(1-367) readily underwent proteolysis, showing SDS-gel patterns similar to those of RLIP76, C-RLIP76(410-655) was resistant to such degradation. Both N-RLIP76(1-367) and C-RLIP76(410-655) had ATPase activity (K(m) for ATP, 2.5 and 2.0 mM, respectively) which was stimulated by DNP-SG, DOX, and colchicine (COL). ATP binding to both peptides was confirmed by photoaffinity labeling with 8-azido-ATP that was increased in the presence of compounds that stimulated their ATPase activity. Photoaffinity labeling was also increased in the presence of vanadate, indicating trapping of a reaction intermediate in the ATP binding site. The ATP binding sites in N-RLIP76(1-367) and C-RLIP76(410-655) were identified to be (69)GKKKGK(74) and (418)GGIKDLSK(425), respectively. Mutation of K(74) and K(425) to M residues, in N-RLIP76(1-367) and C-RLIP76(410-655), respectively, abrogated their ATPase activity as well as azido-ATP labeling. Proteoliposomes reconstituted with either N-RLIP76(1-367) or C-RLIP76(410-655) alone did not catalyze ATP-dependent transport of DOX or COL. However, proteoliposomes reconstituted with a mixture of N-RLIP76(1-367) and C-RLIP76(410-655) mediated such transport. Proteoliposomes reconstituted with the mixture of mutant peptides lacking ATPase activity did not exhibit transport activity. Present studies have identified the ATP binding sites in RLIP76, and show that DOX and COL transport can be reconstituted by two fragments of RLIP76.  相似文献   

6.
RLIP76 (RALBP1) is a Ral-binding nucleotidase which functions as an energy-dependent transporter for glutathione (GSH)-conjugates as well as structurally unrelated xenobiotics. Partner of RALBP1 (POB1), also referred to as REPS2, was identified as the human RLIP76-binding protein, which contains a coiled-coil C-terminal region that binds with the RLIP76. Recent studies show that over-expression of POB1 in prostate cancer cells induces apoptosis. In present studies, we have purified POB1 and one of its deletion mutants POB1(1-512) (lacking the RLIP76-binding domain), and examined their effect on the transport activity of RLIP76. Both doxorubicin and a model GSH-conjugate, dinitrophenyl-S-glutathione (DNP-SG), transport were inhibited by POB1 in a concentration-dependent manner but not by POB1(1-512), lacking RLIP76-binding site. Liposomal delivery of recombinant POB1 to H358 (NSCLC) cancer cells caused apoptosis in a concentration-dependent manner, whereas the POB1 mutant deficient in RLIP76-binding site did not exert this effect. Augmentation of cellular POB1 resulted in increased intracellular DOX-accumulation as well as decreased rate of efflux from cells. These results show for the first time that POB1 can regulate the transport function of RLIP76 and are consistent with our previous studies showing that inhibition of RLIP76 induces apoptosis in cancer cells through the accumulation of endogenously formed GSH-conjugates.  相似文献   

7.
We have recently shown that RLIP76, a ral-binding GTPase activating protein, mediates ATP-dependent transport of glutathione-conjugates (GS-E) and doxorubicin (DOX) (S. Awasthi et al., Biochemistry 39,9327,2000). Transport function of RLIP76 was found to be intact despite considerable proteolytic fragmentation in preparations used for those studies, suggesting either that the residual intact RLIP76 was responsible for transport activity, or that the transport activity could be reconstituted by fragments of RLIP76. If the former were true, intact RLIP76 would have a much higher specific activity for ATP-hydrolysis than the fragmented protein. We have addressed this question by comparing transport properties of recombinant RLIP76 and human erythrocyte membrane RLIP76 purified in buffers treated with either 100 or 500 microM serine protease inhibitor, PMSF. The purity and identity of recombinant and human erythrocyte RLIP76 was established by SDS/PAGE and Western-blot analysis. These studies confirmed the origin of the 38 kDa protein, previously referred to as DNP-SG ATPase, from RLIP76. Higher PMSF concentration resulted in lower yield of the 38 kDa band and higher yield of intact RLIP76 from both human and recombinant source. In contrast, the substrate-stimulated ATPase activity in presence of DNP-SG, doxorubicin, daunorubicin, or colchicine were unaffected by increased PMSF; similarly, ATP-dependent transport of doxorubicin in proteoliposomes reconstituted with RLIP76 was unaffected by higher PMSF. These results indicated that limited proteolysis by serine proteases does not abrogate the transport function of RLIP76. Comparison of transport kinetics for daunorubicin between recombinant vs human erythrocyte RLIP76 revealed higher specific activity of transport for tissue purified RLIP76, indicating that additional factors present in tissue purified RLIP76 can modulate its transport activity.  相似文献   

8.
PKCalpha-activation is a key signaling event governing cell growth, stress-resistance, and drug-resistance. Our recent studies demonstrated that DOX-resistance mediating effects of PKCalpha require the presence of RLIP76, and their concerted action is sufficient to explain intrinsic DOX-resistance of NSCLC [S.S. Singhal, D. Wickramarachchi, J. Singhal, S. Yadav, Y.C. Awasthi, et al., Determinants of differential doxorubicin sensitivity between SCLC and NSCLC. FEBS Lett. 580 (2006) 2258-2264]. Present studies were carried out to further explore the suggestion from the previous studies that the mitogenic effects of PKCalpha also require RLIP76. RLIP76-/- MEFs were resistant to PKCalpha-depletion mediated growth inhibition, as well as to the PKCalpha-dependent mitogen, phorbol 12-myristate 13-acetate (PMA). Augmenting cellular levels of RLIP76 using purified recombinant RLIP76 increased growth rate in all cells, and restored the sensitivity of RLIP76-/- MEFs to both inhibition through PKCalpha-depletion and stimulation through PMA. These results show that RLIP76 is a necessary down-stream effector for PKCalpha-mediated mitogenesis.  相似文献   

9.
In deletion mutant analyses of potential phosphorylation sites in RLIP76, we identified T297 and S509 as targets for phosphorylation by PKCalpha. Phosphorylation at T297 increased doxorubicin (DOX)-transport activity approximately 2-fold for RLIP76 purified from recombinant source, or from three small (H69, H1417, H1618) and three non-small cell, one each derived from H226 (squamous), H358 (bronchio alveolar), and H1395 (adenocarcinoma) lung cancer cell lines. T297 phosphorylation conferred sensitivity to tryptic digestion at R293. The specific activity for DOX-transport by RLIP76 purified from non-small cell, which was primarily in the phosphorylated form, was approximately twice that in small cell lung cancer cell lines. These finding offer a novel explanation for the observed intrinsic differences in sensitivity to DOX between non-small cell and small cell lung cancer cell lines.  相似文献   

10.
RLIP76 (RALBP1) is a multifunctional transporter involved in signaling and transmembrane movement of solute allocrites, which include glutathione conjugates and several natural product antineoplastic agents [Awasthi, S., et al. (2000) Biochemistry 39, 9327-9334; (2001) Biochemistry 40, 4159-4168]. Our previous studies suggested that the membrane-anchoring domain resides in the N-terminus of RLIP76, despite the lack of identifiable membrane-spanning domains. Amino acid sequence analysis indicated that this region of RLIP76 contains sequences that are similar to those of vector peptides. We, therefore, have studied the effect of a series of deletion mutant proteins on hydrophobicity and transport activity. RLIP76 or one of its derived deletion mutants was expressed in Escherichia coli, and bacteria were lysed and extracted in buffer without or with the nonionic detergent polidocanol. The ratio of RLIP76 in the detergent/aqueous extracts was found to be 2.5 for the wild-type protein, but decreased to 0.7 in the mutant in which amino acids 154-219 were deleted. Deletion of only one segment of this region (amino acids 171-185) alone resulted in a significant decrease in this ratio to 1.0. For the mutants with deletions within the region from amino acid 154 to 219, loss of hydrophobicity correlated with less incorporation of mutants into artificial liposomes, and decreased transport activity toward doxorubicin and dinitrophenyl-S-glutathione. In contrast, deletion of one of the two ATP-binding sites (at amino acids 65-80 or 415-448) or both sites did not affect hydrophobicity but reduced or abrogated transport activity. NSCLC (H358) stably transfected with del171-185 and del154-219 showed that loss of these regions results in a decrease in the extent of membrane association of RLIP76. Confocal laser immunohistochemistry colocalized amino acids 171-185 with her2/neu on the cell surface. Depletion of wild-type RLIP76 using si-RNA directed to this region in cells transfected with del171-185 resulted in the loss of cell surface expression. These finding demonstrate that amino acids 171-185 constitute a cell surface epitope which is necessary for optimal transport of anthracycline and glutathione conjugates by RLIP76, and that this peptide could be a novel target for antineoplastic therapy.  相似文献   

11.

Purpose

Pancreatic cancer is an aggressive malignancy with characteristic metastatic course of disease and resistance to conventional chemo-radiotherapy. RLIP76 is a multi-functional cell membrane protein that functions as a major mercapturic acid pathway transporter as well as key regulator of receptor-ligand complexes. In this regard, we investigated the significance of targeting RLIP76 on PI3K/Akt pathway and mechanisms regulating response to chemo-radiotherapy.

Research Design and Methods

Cell survival was assessed by MTT and colony forming assays. Cellular levels of proteins and phosphorylation was determined by Western blot analyses. The impact on apoptosis was determined by TUNEL assay. The anti-cancer effects of RLIP76 targeted interventions in vivo were determined using mice xenograft model of the pancreatic cancer. The regulation of doxorubicin transport and radiation sensitivity were determined by transport studies and colony forming assays, respectively.

Results

Our current studies reveal an encompassing model for the role of RLIP76 in regulating the levels of fundamental proteins like PI3K, Akt, E-cadherin, CDK4, Bcl2 and PCNA which are of specific importance in the signal transduction from critical upstream signaling cascades that determine the proliferation, apoptosis and differentiation of pancreatic cancer cells. RLIP76 depletion also caused marked and sustained regression of established human BxPC-3 pancreatic cancer tumors in nude mouse xenograft model. RLIP76 turned out to be a major regulator of drug transport along with contributing to the radiation resistance in pancreatic cancer.

Conclusions/Significance

RLIP76 represents a mechanistically significant target for developing effective interventions in aggressive and refractory pancreatic cancers.  相似文献   

12.
Earlier studies from our laboratories have shown that RLIP76, a previously described Ral-binding GTPase activating protein (Jullien-Flores et al., 1995, J. Biol. Chem. 270: 22473), is identical with the xenobiotic transporter DNP-SG ATPase, and can catalyze ATP-dependent transport of glutathione-conjugates as well as doxorubin (Awasthi et al., 2000, Biochemistry, 39: 9327). We have now reconstituted purified bacterially expressed RLIP76 in proteoliposomes, and have studied ATP-dependent uptake of the glutathione conjugate of 4-hydroxynonenal (GS-HNE) by these vesicles. Results of these studies show that RLIP76 reconstituted in proteoliposomes catalyzes ATP-dependent transport of GS-HNE against a concentration gradient. The transport of GS-HNE is saturable with respect to ATP as well as GS-HNE with K(m) values of 1.4mM and 2.5 microM, respectively. These studies demonstrate that RLIP76 mediates active transport of GS-HNE, and are consistent with our previous work showing that RLIP76-mediated efflux of GS-HNE regulates the intracellular concentration of 4-HNE and thereby affects 4-HNE mediated signaling.  相似文献   

13.

Purpose

Characteristic hypoglycemia, hypotriglyceridemia, hypocholesterolemia, lower body mass, and fat as well as pronounced insulin-sensitivity of RLIP76−/− mice suggested to us the possibility that elevation of RLIP76 in response to stress could itself elicit metabolic syndrome (MSy). Indeed, if it were required for MSy, drugs used to treat MSy should have no effect on RLIP76−/− mice.

Research Design and Methods

Blood glucose (BG) and lipid measurements were performed in RLIP76+/+ and RLIP76−/− mice, using Ascensia Elite Glucometer® for glucose and ID Labs kits for cholesterol and triglycerides assays. The ultimate effectors of gluconeogenesis are the three enzymes: PEPCK, F-1,6-BPase, and G6Pase, and their expression is regulated by PPARγ and AMPK. The activity of these enzymes was tested by protocols standardized by us. Expressions of RLIP76, PPARα, PPARγ, HMGCR, pJNK, pAkt, and AMPK were performed by Western-blot and tissue staining.

Results

The concomitant activation of AMPK and PPARγ by inhibiting transport activity of RLIP76, despite inhibited activity of key glucocorticoid-regulated hepatic gluconeogenic enzymes like PEPCK, G6Pase and F-1,6-BP in RLIP76−/− mice, is a salient finding of our studies. The decrease in RLIP76 protein expression by rosiglitazone and metformin is associated with an up-regulation of PPARγ and AMPK.

Conclusions/Significance

All four drugs, rosiglitazone, metformin, gemfibrozil and atorvastatin failed to affect glucose and lipid metabolism in RLIP76−/− mice. Studies confirmed a model in which RLIP76 plays a central role in the pathogenesis of MSy and RLIP76 loss causes profound and global alterations of MSy signaling functions. RLIP76 is a novel target for single-molecule therapeutics for metabolic syndrome.  相似文献   

14.
The plasma membrane Ca2+ ATPase in erythrocytes is vital for the maintenance of intracellular Ca2+ levels. Since the cytoplasmic Ca2+ concentration is elevated in older erythrocytes, the properties of the Ca2+ transport ATPase were examined during cell aging using inside-out vesicles (IOVs) prepared from density-separated, young (less dense, Ey) and old (more dense, Eo) rat and human erythrocytes. The transport of Ca2+ and the coupled hydrolysis of ATP were measured using radiolabeled substrates. The calmodulin-independent Ca2+ transport activity (Ey, 38.8 vs. Eo, 23.3 nmols/min/mg IOV protein) and the Ca2+ dependent ATP phosphohydrolase activity (Ey, 53.5 vs. Eo, 48.8 nmols/min/mg protein) were greater in IOVs prepared from younger (less dense) rat erythrocytes. The calmodulin-independent Ca2+ transport activity in IOVs from human erythrocytes was 12.9 nmols/min/mg IOV protein for Ey and 10.7 nmols/min/mg IOV protein for Eo. Inside-out vesicles from older (more dense) cells exhibited a lower pumping efficiency as determined by the calculated stoichiometry, molecule of Ca2+ transported per molecule of ATP hydrolyzed (rat: Ey, 0.74 vs. Eo, 0.49; human: Ey, 1.22 vs. Eo, 0.77). The enzymatic activity of rat and human Ey IOVs was labile. The Ca2+ transport activity in Ey but not Eo IOVs rapidly declined during cold storage (4°C). The decrease in Ca2+ transport activity during aging may accentuate the age-related decline in several erythrocytic properties.Abbreviations IOV Inside-Out Vesicles - Ey Erythrocytes enriched with young (less dense) cells - Eo Erythrocytes enriched with old (more dense) cells - ACEase Acetylcholinesterase  相似文献   

15.
Aberrations in RLIP, p53, and PKCα represent essentially the entire spectrum of all human neoplasms. Elevated PKCα expression, failure of the cell cycle checkpoint (p53 dysfunction), and abnormal glutathione (GSH) metabolism are fundamental hallmarks of carcinogenesis and drug/radiation resistance. However, a lack of investigations into the interactions between these important regulatory nodes has fundamentally limited our understanding of carcinogenesis and the development of effective interventions for cancer prevention and therapy. Loss of p53, perhaps the most powerful tumor suppressor gene, predisposes rodents to spontaneous cancer and humans to familial, as well as acquired, cancers. Until recently, no genetic manipulation of any oncogene had been reported to abrogate spontaneous carcinogenesis in p53?/? rodent models. However, the overexpression of RLIP, a GSH-electrophile conjugate (GS-E) transporter, has been found to enhance cancer cell proliferation and confer drug/radiation resistance, whereas its depletion causes tumor regression, suggesting its importance in cancer and drug/radiation resistance. Indeed, RLIP is an essential effector of p53 that is necessary for broad cancer-promoting epigenetic remodeling. Interestingly, through a haploinsufficiency mechanism, the partial depletion of RLIP in p53?/? mice provides complete protection from neoplasia. Furthermore, RLIP?/? mice exhibit altered p53 and PKCα function, marked deficiency in clathrin-dependent endocytosis (CDE), and almost total resistance to chemical carcinogenesis. Based on these findings, in this review, we present a novel and radical hypothesis that expands our understanding of the highly significant cross-talk between p53, PKCα, and GSH signaling by RLIP in multiple tumor models.  相似文献   

16.
To explore the role of lipid peroxidation (LPO) products in the initial phase of stress mediated signaling, we studied the effect of mild, transient oxidative or heat stress on parameters that regulate the cellular concentration of 4-hydroxynonenal (4-HNE). When K562 cells were exposed to mild heat shock (42 degrees C, 30 min) or oxidative stress (50 microM H2O2, 20 min) and allowed to recover for 2 h, there was a severalfold induction of hGST5.8, which catalyzes the formation of glutathione-4-HNE conjugate (GS-HNE), and RLIP76, which mediates the transport of GS-HNE from cells (Awasthi, S., Cheng, J., Singhal, S. S., Saini, M. K., Pandya, U., Pikula, S., Bandorowicz-Pikula, J., Singh, S. V., Zimniak, P., and Awasthi, Y. C. (2000) Biochemistry 39, 9327-9334). Enhanced LPO was observed in stressed cells, but the major antioxidant enzymes and HSP70 remained unaffected. The stressed cells showed higher GS-HNE-conjugating activity and increased efflux of GS-HNE. Stress-pre-conditioned cells with induced hGST5.8 and RLIP76 acquired resistance to 4-HNE and H2O2-mediated apoptosis by suppressing a sustained activation of c-Jun N-terminal kinase and caspase 3. The protective effect of stress pre-conditioning against apoptosis was abrogated by coating the cells with anti-RLIP76 IgG, which inhibited the efflux of GS-HNE from cells, indicating that the cells acquired resistance to apoptosis by metabolizing and excluding 4-HNE at a higher rate. Induction of hGST5.8 and RLIP76 by mild, transient stress and the resulting resistance of stress-pre-conditioned cells to apoptosis appears to be a general phenomenon since it was not limited to K562 cells but was also evident in lung cancer cells, H-69, H-226, human leukemia cells, HL-60, and human retinal pigmented epithelial cells. These results strongly suggest a role of LPO products, particularly 4-HNE, in the initial phase of stress mediated signaling.  相似文献   

17.
Breast cancer (BC) is the most common cancer among women worldwide. Due to its complexity in nature, effective BC treatment can encounter many challenges. The human RALBP1 gene encodes a 76-kDa splice variant protein, RLIP (ral-binding protein1, RalBP1), a stress-protective mercapturic acid pathway (MAP) transporter protein, that also plays a key role in regulating clathrin-dependent endocytosis (CDE) as a Ral effector. Growing evidence shows that targeting RLIP may be an effective strategy in cancer therapy, as RLIP is over-expressed in multiple cancers and is known to induce resistance to apoptosis and chemotherapeutic drugs. Recent studies demonstrated that RLIP is expressed in human BC tissues, as well as BC cell lines. Knockdown of RLIP resulted in apoptotic death of BC cells in vitro, and targeted inhibition and depletion of RLIP resulted in regression of BC in xenograft studies of nude mice. Signaling studies showed that RLIP depletion inhibited endocytosis and differentially regulated signaling to Akt, Myc, and ERK1/2. However, the proliferation and multi-specific transport mechanisms that promote RLIP-mediated cell death in BC are not well understood. In this review, we will discuss a missing but an essentially determining and connecting piece of the puzzle on the understanding of proliferation and transport mechanisms by focused analyses of the apoptotic, drug- and radiation-sensitivity regulated by RLIP, a stress-responsive non-ATP-binding cassette (ABC), high capacity MAP transporter, in breast cancer.  相似文献   

18.
Our previous study showed that RalA-binding protein 1 (RLIP76) is overexpressed in gliomas and is associated with higher tumour grade and decreased patient survival. Furthermore, RLIP76 downregulation increases chemosensitivity of glioma cells to temozolomide by inducing apoptosis. However, other mechanisms underlying RLIP76-associated chemoresistance are unknown. In this study, we investigated the effect of RLIP76 depletion on autophagy. RLIP76 was knocked down in U251 glioma cells using shRNA and autophagy-related proteins, and PI3K/Akt signalling components were evaluated. RLIP76 depletion significantly increased cell autophagy as demonstrated by a significant increase in LC3 II, autophagy protein 5 (ATG-5), and Beclin1, and a decrease in p62 expression levels. Furthermore, RLIP76 knockdown increased autophagic flux in U251 cells as autolysosome numbers increased relative to autophagosome numbers. Autophagy induced by RLIP76 knockdown resulted in increased apoptosis that was independent of temozolomide treatment. Moreover, RLIP76 knockdown decreased PI3K and Akt activation. RLIP76 depletion also resulted in decreased levels of the anti-apoptotic protein Bcl2. LY294002, a PI3K/Akt pathway inhibitor, led to increased autophagy and apoptosis in U251 RLIP76-depleted cells. Therefore, RLIP76 knockdown increased autophagic flux and apoptosis in U251 glioma cells, possibly through inhibition of the PI3K/Akt pathway. Thus, this study provides a novel mechanism for the role of RLIP76 in glioma pathogenesis and chemoresistance.  相似文献   

19.
The Ras family of small GTPases regulates cell proliferation, spreading, migration and apoptosis, and malignant transformation by binding to several protein effectors. One such GTPase, R-Ras, plays distinct roles in each of these processes, but to date, identified R-Ras effectors were shared with other Ras family members (e.g., H-Ras). We utilized a new database of Ras-interacting proteins to identify RLIP76 (RalBP1) as a novel R-Ras effector. RLIP76 binds directly to R-Ras in a GTP-dependent manner, but does not physically associate with the closely related paralogues H-Ras and Rap1A. RLIP76 is required for adhesion-induced Rac activation and the resulting cell spreading and migration, as well as for the ability of R-Ras to enhance these functions. RLIP76 regulates Rac activity through the adhesion-induced activation of Arf6 GTPase and activation of Arf6 bypasses the requirement for RLIP76 in Rac activation and cell spreading. Thus, we identify a novel R-Ras effector, RLIP76, which links R-Ras to adhesion-induced Rac activation through a GTPase cascade that mediates cell spreading and migration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号