共查询到20条相似文献,搜索用时 15 毫秒
1.
Neri S Signorelli S Pulvirenti D Mauceri B Cilio D Bordonaro F Abate G Interlandi D Misseri M Ignaccolo L Savastano M Azzolina R Grillo C Messina A Serra A Tsami A 《Free radical research》2006,40(6):615-618
To assess whether pathogenic endothelial dysfunction is involved in acute idiopathic tinnitus we enrolled 44 patients and 25 healthy volunteers. In blood from the internal jugular vein and brachial vein we determined malonaldehyde, 4-hydroxynonenal, myeloperoxidase, glutathione peroxidase, nitric oxide, L-arginine and L-ornitine, thrombomodulin (TM) and von Willebrand factor (vWF) activity during tinnitus and asymptomatic period. Higher plasma concentrations of oxidative markers and L-arginine, and lower nitric oxide and L-ornitine levels were observed in jugular blood of patients with tinnitus, there being a significant difference between brachial and jugular veins. TM and vWF activity were significantly higher in patients' jugular blood than in brachial blood. Our results suggest oxidant, TM, vWF activity production are increased and nitric oxide production reduced in brain circulation reflux blood of patients with acute tinnitus. These conditions are able to cause a general cerebro-vascular endothelial dysfunction, which in turn induce a dysfunction of microcirculation in the inner ear. 相似文献
2.
Endothelial nitric oxide synthase (eNOS) is a key enzyme in nitric oxide-mediated signal transduction in mammalian cells. Its catalytic activity is regulated both by regulatory proteins, such as calmodulin and caveolin, and by a variety of post-translational modifications including phosphorylation and acylation. We have previously shown that the calmodulin-binding domain peptide is a good substrate for protein kinase C [Matsubara, M., Titani, K., and Taniguchi, H. (1996) Biochemistry 35, 14651-14658]. Here we report that bovine eNOS protein is phosphorylated at Thr497 in the calmodulin-binding domain by PKC both in vitro and in vivo, and that the phosphorylation negatively regulates eNOS activity. A specific antibody that recognizes only the phosphorylated form of the enzyme was raised against a synthetic phosphopeptide corresponding to the phosphorylated domain. The antibody recognized eNOS immunoprecipitated with anti-eNOS antibody from the soluble fraction of bovine aortic endothelial cells, and the immunoreactivity increased markedly when the cells were treated with phorbol 12-myristate 13-acetate. PKC phosphorylated eNOS specifically at Thr497 with a concomitant decrease in the NOS activity. Furthermore, the phosphorylated eNOS showed reduced affinity to calmodulin. Therefore, PKC regulates eNOS activity by changing the binding of calmodulin, an eNOS activator, to the enzyme. 相似文献
3.
4.
alpha-Tocopherol and protein kinase C inhibition enhance platelet-derived nitric oxide release. 总被引:7,自引:0,他引:7
Platelet activation is tightly regulated by products of the endothelium and platelets including nitric oxide (NO). Excess vascular oxidative stress has been associated with impaired NO release, and antioxidant status has been shown to alter endothelium-derived NO bioactivity. Although physiological levels of a-tocopherol are known to inhibit platelet function, the effect of a-tocopherol on platelet NO release is unknown. Loading platelets with physiologic levels of a-tocopherol increased platelet NO production approximately 1.5-fold (Pa-tocopherol, platelet NO release increased 50% (Pa-Tocopherol-loaded platelets also produced 74% less superoxide as compared with control (Pa-tocopherol inhibited PKC-dependent eNOS phosphorylation as determined by immunoprecipitation. Lastly, platelets isolated from NOS3-deficient mice released 80% less superoxide as compared with control animals (P=0.011), and incubation of NOS III-deficient platelets with 500 mM a-tocopherol only caused a modest additional decrease in platelet superoxide release (NS). Thus, a-tocopherol appears to enhance platelet NO release both in vitro and in vivo through antioxidant- and PKC-dependent mechanisms. 相似文献
5.
Effects of oxidized low density lipoprotein on nitric oxide synthetase and protein kinase C activities in bovine endothelial cells. 总被引:9,自引:0,他引:9
S Mukherjee S D Coaxum M Maleque S K Das 《Cellular and molecular biology, including cyto-enzymology》2001,47(6):1051-1058
Oxidized low-density lipoprotein (Ox-LDL) is an atherogenic lipoprotein. It has been suggested that Ox-LDL causes endothelial dysfunction by decreasing the release of endothelium-derived factors (EDRF-NO) or increasing the inactivation of EDRF-NO. The mechanism by which Ox-LDL causes dysfunctional NO during early stages of atherosclerosis is not clear. The purpose of this study was to examine the role of Ox-LDL on nitric oxide synthetase (eNOS), protein kinase C (PKC) activities and cAMP production in bovine aortic endothelial cells (BAEC). Ox-LDL stimulated PKC activity of BAEC but it inhibited both eNOS activity and cAMP production. Ox-LDL partially inhibited the forskolin stimulated cAMP production. Furthermore, we observed that 8Br-cAMP treatment decreased the activity of eNOS in a concentration dependent manner. Serotonin which has a profound inhibitory effect on cAMP production also stimulated eNOS activity. Pertusis toxin treatment blocked the stimulatory action of serotonin on the stimulation of eNOS activity. Our results thus suggest that Ox-LDL inhibit the endothelium-dependent relaxation. One possible mechanism is that Ox-LDL stimulates PKC activity, which in turn increases the phosphorylation of the Gi-protein. Inhibition of Gi-protein then leads to reduced release of NO from endothelial cells and thus causes endothelial dysfunction. 相似文献
6.
Handa O Stephen J Cepinskas G 《American journal of physiology. Heart and circulatory physiology》2008,295(4):H1712-H1719
Sepsis-associated encephalopathy is an early manifestation of sepsis, resulting in a diffuse dysfunction of the brain. Recently, nitric oxide (NO) has been proposed to be one of the key molecules involved in the modulation of inflammatory responses in the brain. The aim of this study was to assess the role of NO in cerebrovascular endothelial cell activation/dysfunction during the early onsets of sepsis. To this end, we employed an in vitro model of sepsis in which cultured mouse cerebrovascular endothelial cells (MCVEC) were challenged with blood plasma (20% vol/vol) obtained from sham or septic (feces-induced peritonitis, FIP; 6 h) mice. Exposing MCVEC to FIP plasma for 1 h resulted in increased production of reactive oxygen species and NO as assessed by intracellular oxidation of oxidant-sensitive fluorochrome, dihydrorhodamine 123 (DHR 123), and nitrosation of NO-specific probe, DAF-FM, respectively. The latter events were accompanied by dissociation of tight junction protein, occludin, from MCVEC cytoskeletal framework and a subsequent increase in FITC-dextran (3-kDa mol mass) flux across MCVEC grown on the permeable cell culture supports, whereas Evans blue-BSA (65-kDa mol mass) or FITC-dextran (10-kDa mol mass) flux were not affected. FIP plasma-induced oxidant stress, occludin rearrangement, and MCVEC permeability were effectively attenuated by antioxidant, 1-pyrrolidinecarbodithioic acid (PDTC; 0.5 mM), or interfering with nitric oxide synthase (NOS) activity [0.1 mM nitro-L-arginine methyl ester (L-NAME) or endothelial NOS (eNOS)-deficient MCVEC]. However, treatment of MCVEC with PDTC failed to interfere with NO production, suggesting that septic plasma-induced oxidant stress in MCVEC is primarily a NO-dependent event. Taken together, these data indicate that during early sepsis, eNOS-derived NO exhibits proinflammatory characteristics and contributes to the activation and dysfunction of cerebrovascular endothelial cells. 相似文献
7.
Park Y Capobianco S Gao X Falck JR Dellsperger KC Zhang C 《American journal of physiology. Heart and circulatory physiology》2008,295(5):H1982-H1988
Endothelium-derived hyperpolarizing factor (EDHF) plays a crucial role in modulating vasomotor tone, especially in microvessels when nitric oxide-dependent control is compromised such as in diabetes. Epoxyeicosatrienoic acids (EETs), potassium ions (K+), and hydrogen peroxide (H2O2) are proposed as EDHFs. However, the identity (or identities) of EDHF-dependent endothelial dilators has not been clearly elucidated in diabetes. We assessed the mechanisms of EDHF-induced vasodilation in wild-type (WT, normal), db/db (advanced type 2 diabetic) mice, and db/db mice null for TNF (dbTNF-/dbTNF-). In db/db mice, EDHF-induced vasodilation [ACh-induced vasodilation in the presence of N(G)-nitro-L-arginine methyl ester (L-NAME, 10 micromol/l) and prostaglandin synthase inhibitor indomethacin (Indo, 10 mumol/l)] was diminished after the administration of catalase (an enzyme that selectively dismutates H2O2 to water and oxygen, 1,000 U/ml); administration of the combination of charybdotoxin (a nonselective blocker of intermediate-conductance Ca2+-activated K+ channels, 10 micromol/l) and apamin (a selective blocker of small-conductance Ca2+-activated K+ channels, 50 micromol/l) also attenuated EDHF-induced vasodilation, but the inhibition of EETs synthesis [14,15-epoxyeicosa-5(Z)-enoic acid; 10 mumol/l] did not alter EDHF-induced vasodilation. In WT controls, EDHF-dependent vasodilation was significantly diminished after an inhibition of K+ channel, EETs synthesis, or H2O2 production. Our molecular results indicate that mRNA and protein expression of interleukin-6 (IL-6) were greater in db/db versus WT and dbTNF-/dbTNF- mice, but neutralizing antibody to IL-6 (anti-IL-6; 0.28 mg.ml(-1).kg(-1) ip for 3 days) attenuated IL-6 expression in db/db mice. The incubation of the microvessels with IL-6 (5 ng/ml) induced endothelial dysfunction in the presence of l-NAME and Indo in WT mice, but anti-IL-6 restored ACh-induced vasodilation in the presence of L-NAME and Indo in db/db mice. In db(TNF-)/db(TNF-) mice, EDHF-induced vasodilation was greater and comparable with controls, but IL-6 decreased EDHF-mediated vasodilation. Our results indicate that EDHF compensates for diminished NO-dependent dilation in IL-6-induced endothelial dysfunction by the activation of H2O2 or a K+ channel in type 2 diabetes. 相似文献
8.
Rosiglitazone stimulates nitric oxide synthesis in human aortic endothelial cells via AMP-activated protein kinase 总被引:1,自引:0,他引:1
Boyle JG Logan PJ Ewart MA Reihill JA Ritchie SA Connell JM Cleland SJ Salt IP 《The Journal of biological chemistry》2008,283(17):11210-11217
The thiazolidinedione anti-diabetic drugs increase activation of endothelial nitric-oxide (NO) synthase by phosphorylation at Ser-1177 and increase NO bioavailability, yet the molecular mechanisms that underlie this remain poorly characterized. Several protein kinases, including AMP-activated protein kinase, have been demonstrated to phosphorylate endothelial NO synthase at Ser-1177. In the current study we determined the role of AMP-activated protein kinase in rosiglitazone-stimulated NO synthesis. Stimulation of human aortic endothelial cells with rosiglitazone resulted in the time- and dose-dependent stimulation of AMP-activated protein kinase activity and NO production with concomitant phosphorylation of endothelial NO synthase at Ser-1177. Rosiglitazone stimulated an increase in the ADP/ATP ratio in endothelial cells, and LKB1 was essential for rosiglitazone-stimulated AMPK activity in HeLa cells. Infection of endothelial cells with a virus encoding a dominant negative AMP-activated protein kinase mutant abrogated rosiglitazone-stimulated Ser-1177 phosphorylation and NO production. Furthermore, the stimulation of AMP-activated protein kinase and NO synthesis by rosiglitazone was unaffected by the peroxisome proliferator-activated receptor-gamma inhibitor GW9662. These studies demonstrate that rosiglitazone is able to acutely stimulate NO synthesis in cultured endothelial cells by an AMP-activated protein kinase-dependent mechanism, likely to be mediated by LKB1. 相似文献
9.
10.
Protein kinase D (PKD) is a protein serine kinase that is directly stimulated in vitro by phorbol esters and diacylglycerol in the presence of phospholipids, and activated by phorbol esters, neuropeptides, and platelet-derived growth factor via protein kinase C (PKC) in intact cells. Recently, oxidative stress was shown to activate transfected PKC isoforms via tyrosine phosphorylation, but PKD activation was not demonstrated. Here, we report that oxidative stress initiated by addition of H(2)O(2) (0.15-10 mm) to quiescent Swiss 3T3 fibroblasts activates PKD in a dose- and time- dependent manner, as measured by autophosphorylation and phosphorylation of an exogenous substrate, syntide-2. Oxidative stress also activated transfected PKD in COS-7 cells but not a kinase-deficient mutant PKD form or a PKD mutant with critical activating serine residues 744 and 748 mutated to alanines. Genistein, or the specific Src inhibitors PP-1 and PP-2 (1-10 micrometer) inhibited H(2)O(2)-mediated PKD activation by 45%, indicating that Src contributes to this signaling pathway. PKD activation by H(2)O(2) was also selectively potentiated by cotransfection of PKD together with an active form of Src (v-Src) in COS-7 cells, as compared with PDB-mediated activation. The specific phospholipase C inhibitor, partly blocked H(2)O(2)-mediated but not PDB-mediated PKD activation. In contrast, PKC inhibitors blocked H(2)O(2) or PDB-mediated PKD activation essentially completely, suggesting that whereas Src mediates part of its effects via phospholipase C activation, PKC acts more proximally as an upstream activator of PKD. Together, these studies reveal that oxidative stress activates PKD by initiating distinct Src-dependent and -independent pathways involving PKC. 相似文献
11.
Ganz MB Seftel A 《American journal of physiology. Endocrinology and metabolism》2000,278(1):E146-E152
Changes in activity or expression of protein kinase C (PKC), reactive oxygen products, and nitric oxide (NO) may account for the alteration in cell behavior seen in diabetes. These changes have been proposed to be part of the pathophysiology of erectile dysfunction. We sought to ascertain if corpus cavernosal vascular smooth muscle cells (CCSMC) grown in a high glucose milieu exhibit changes in the activity and expression of PKC isoforms, NO, and reactive oxygen products and to find out if these changes are prevented by alpha-tocopherol. Rat CCSMC were grown in 5, 15, and 30 mM glucose concentrations for 3, 7, and 14 days. PKC isoform expression was assayed with isoform-specific antibodies. In CCSMCs grown in 30 mM glucose for 2-wk, PKC-beta(2)-isoform was upregulated (n = 4; P < 0.01), whereas the expression of alpha-, delta-, epsilon-, and beta(1)-isoforms was unchanged. NO as measured by nitrate-to-nitrite ratio was greatly diminished at 14 days in 30 mM (n = 4; P < 0.002) compared with 5 mM glucose. Reactive oxygen products were upregulated at 14 days when they were assayed by the fluorescent probe dichlorofluorescein diacetate bis(acetoxy-methyl) (DCFH-DA) (n = 5; P < 0.01). When these same cells were exposed to alpha-tocopherol for 14 days, there was a reduction of PKC-beta(2) (57.8%; P < 0.01; n = 4) and a reduction in reactive oxygen product formation (71.1%; P < 0.001; n = 4), along with an increase in nitrate-to-nitrite ratio (43.9%; P < 0.01, n = 4). These results suggest that there may be an interrelationship between PKC, NO, and reactive oxygen product formation in CCSMC exposed to a high glucose environment. 相似文献
12.
M Nakane J Mitchell U F?rstermann F Murad 《Biochemical and biophysical research communications》1991,180(3):1396-1402
Nitric oxide synthase purified from rat brain, which is Ca2+ and calmodulin dependent, was phosphorylated by calcium calmodulin-dependent protein kinase II as well as protein kinase C. Phosphorylation by calcium calmodulin-dependent protein kinase II resulted in a marked decrease in enzyme activity (33% of control) without changing the co-factor requirements, whereas a moderate increase in enzyme activity (140% of control) was observed after phosphorylation by protein kinase C. These findings indicate that brain nitric oxide synthase activity may be regulated not only by Ca2+/calmodulin and several co-factors, but also by phosphorylation. 相似文献
13.
Park JH Park M Byun CJ Jo I 《Biochemical and biophysical research communications》2012,417(1):340-345
The c-Jun N-terminal kinases (JNKs) belonging to the mitogen-activated protein kinase (MAPK) superfamily play important roles in foam-cell formation, hypercholesterolemia-mediated endothelial dysfunction, and the development of obesity. Although decreased nitric oxide (NO) production via decreased phosphorylation of endothelial NO synthase at serine 1179 (eNOS-Ser(1179)) was reported to be partly involved in JNK2-derived endothelial dysfunction, JNK2 seems likely to be indirectly involved in this signaling pathway. Here, using bovine aortic endothelial cells, we examined whether JNK2 directly phosphorylated eNOS-Ser(116), a putative substrate site for the MAPK superfamily, and this phosphorylation resulted in decreased NO release. JNK inhibitor SP60012 increased NO release in a time- and dose-dependent manner, which was accompanied by increased eNOS-Ser(116) phosphorylation. Purified JNK2 directly phosphorylated eNOS-Ser(116)in vitro. Ectopic expression of dominant negative JNK2 repressed eNOS-Ser(116) phosphorylation and increased NO production. Coimmunoprecipitation and confocal microscopy studies revealed a colocalization of eNOS and JNK2. However, all these observed effects were not manifested when JNK1 probes were used. Overall, this study indicates that JNK2 is a physiological kinase responsible for eNOS-Ser(116) phosphorylation and regulates NO production. 相似文献
14.
Giraldez RR Panda A Zweier JL 《American journal of physiology. Heart and circulatory physiology》2000,278(6):H2020-H2027
Whereas altered nitric oxide (NO.) formation from endothelial nitric oxide synthase (NOS) causes impaired vascular reactivity in a number of cardiovascular diseases, questions remain regarding how endothelial injury results in impaired NO. formation. It is unknown if loss of NOS expression or activity is required or if other factors are involved. Detergent treatment has been used to induce endothelial dysfunction. Therefore, NOS and NO. synthesis were characterized in a rat heart model of endothelial injury and dysfunction induced by the detergent Triton X-100. Cardiac NO. formation was directly measured by electron paramagnetic resonance spectroscopy. NOS activity was determined by the L-[(14)C]arginine conversion assay. Western blots and immunohistology were applied to define the amounts of NOS present in heart tissue before and after Triton treatment. Immunoelectron microscopy was performed to assess intracellular NOS distribution. A short bolus of Triton X-100, 0.25%, abolished responses to histamine and calcium ionophore while preserving response to nitroprusside. Complete blockade of NO. generation occurred after Triton treatment, but NOS activity assayed with addition of exogenous substrate and cofactors was unchanged, and identical 135-kDa NOS bands were seen on Western blots, indicating that NOS was not removed from the heart or structurally damaged by Triton. Immunohistochemistry showed no change in NOS localization after Triton treatment, and immunoelectron microscopy revealed similar NOS distribution in the plasma membrane and intracellular membranes. These results demonstrate that the endothelial dysfunction was due to decreased NO. synthesis but was not caused by loss or denaturation of NOS. Thus endothelial dysfunction due to mild endothelial membrane injury may occur in the presence of active NOS and is triggered by loss of NOS substrates or cofactors. 相似文献
15.
Normal pregnancy is associated with high angiotensin II (ANG II) concentrations in the maternal and fetal circulation. These high levels of ANG II may promote production vasodilators such as nitric oxide (NO). ANG II receptors are expressed in ovine fetoplacental artery endothelial (OFPAE) cells and mediate ANG II-stimulated OFPAE cell proliferation. Herein, we tested whether ANG II stimulated NO synthase 3 (NOS3, also known as eNOS) expression and total NO (NO(x)) production via activation of mitogen-activated protein kinase 3/1 (MAPK3/1, also known as ERK1/2) in OFPAE cells. ANG II elevated (P < 0.05) eNOS protein, but not mRNA levels with a maximum effect at 10 nM. ANG II also dose dependently increased (P < 0.05) NO(x) production with a maximal effect at doses of 1-100 nM. Activation of ERK1/2 by ANG II was determined by immunocytochemistry and Western blot analysis. ANG II rapidly induced positive staining for phosphorylated ERK1/2, appearing in cytosol after 1-5 min of ANG II treatment, accumulating in nuclei after 10 min, and disappearing at 15 min. ANG II increased (P < 0.05) phosphorylated ERK1/2 protein levels. Activation of ERK1/2 was confirmed by an immunocomplex kinase assay using ELK1 as a substrate. PD98059 significantly inhibited ANG II-induced ERK1/2 activation, and the ANG II-elevated eNOS protein levels but only partially reduced ANG II-increased NO(x) production. Thus, in OFPAE cells, the ANG II increased NO(x) production is associated with elevated eNOS protein expression, which is mediated at least in part via activation of the mitogen-activated protein kinase kinase1 and kinase2 (MAP2K1 and MAP2K2, known also as MEK1/2)/ERK1/2 cascade. Together with our previous observation that ANG II stimulates OFPAE cell proliferation, these data suggest that ANG II is a key regulator for both vasodilation and angiogenesis in the ovine fetoplacenta. 相似文献
16.
Noguchi K Hamadate N Matsuzaki T Sakanashi M Nakasone J Uchida T Arakaki K Kubota H Ishiuchi S Masuzaki H Sugahara K Ohya Y Sakanashi M Tsutsui M 《American journal of physiology. Heart and circulatory physiology》2011,301(3):H721-H729
An elevation of oxidized forms of tetrahydrobiopterin (BH(4)), especially dihydrobiopterin (BH(2)), has been reported in the setting of oxidative stress, such as arteriosclerotic/atherosclerotic disorders, where endothelial nitric oxide synthase (eNOS) is dysfunctional, but the role of BH(2) in the regulation of eNOS activity in vivo remains to be evaluated. This study was designed to clarify whether increasing BH(2) concentration causes endothelial dysfunction in rats. To increase vascular BH(2) levels, the BH(2) precursor sepiapterin (SEP) was intravenously given after the administration of the specific dihydrofolate reductase inhibitor methotrexate (MTX) to block intracellular conversion of BH(2) to BH(4). MTX/SEP treatment did not significantly affect aortic BH(4) levels compared with control treatment. However, MTX/SEP treatment markedly augmented aortic BH(2) levels (291.1 ± 29.2 vs. 33.4 ± 6.4 pmol/g, P < 0.01) in association with moderate hypertension. Treatment with MTX alone did not significantly alter blood pressure or BH(4) levels but decreased the BH(4)-to-BH(2) ratio. Treatment with MTX/SEP, but not with MTX alone, impaired ACh-induced vasodilator and depressor responses compared with the control treatment (both P < 0.05) and also aggravated ACh-induced endothelium-dependent relaxations (P < 0.05) of isolated aortas without affecting sodium nitroprusside-induced endothelium-independent relaxations. Importantly, MTX/SEP treatment significantly enhanced aortic superoxide production, which was diminished by NOS inhibitor treatment, and the impaired ACh-induced relaxations were reversed with SOD (P < 0.05), suggesting the involvement of eNOS uncoupling. These results indicate, for the first time, that increasing BH(2) causes eNOS dysfunction in vivo even in the absence of BH(4) deficiency, demonstrating a novel insight into the regulation of endothelial function. 相似文献
17.
Zhang J Xie Z Dong Y Wang S Liu C Zou MH 《The Journal of biological chemistry》2008,283(41):27452-27461
In endothelial cells, the AMP-activated protein kinase (AMPK) is stimulated by sheer stress or growth factors that stimulate release of nitric oxide (NO). We hypothesized that NO might act as an endogenous activator of AMPK in endothelial cells. Exposure of human umbilical vein endothelial cells (HUVECs) to NO donors caused an increase in phosphorylation of both Thr-172 of AMPK and Ser-1177 of endothelial nitric oxide synthase, a downstream enzyme of AMPK. NO-induced activation of AMPK was not affected by inhibition of LKB1, an AMPK kinase. In contrast, inhibition of calcium calmodulin-dependent protein kinase kinase abolished the effect of NO in HUVECs. NO-induced AMPK activation in HeLa S3 cells was abolished by either 1H-(1,2,4)-oxadiazole[4,3-a]quinoxalon-1-one, a potent inhibitor for guanylyl cyclase, or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM), an intracellular Ca(2+) chelator, indicating that NO-induced AMPK activation is guanylyl cyclase-mediated and calcium-dependent. Exposure of HUVECs or isolated mice aortas to either calcium ionophore A23187 or bradykinin significantly increased AMPK Thr-172 phosphorylation, which was abolished by N-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthase. Finally, A23187- or bradykinin-enhanced AMPK activation was significantly greater in aortas from wild type mice than those in the aortas of endothelial nitric oxide synthase knock-out mice. Taken together, we conclude that NO might act as an endogenous AMPK activator. 相似文献
18.
Placental blood flow, endothelial nitric oxide (NO) production, and endothelial cell nitric oxide synthase (eNOS) expression increase during pregnancy. Shear stress, the frictional force exerted on endothelial cells by blood flow, stimulates vessel dilation, endothelial NO production, and eNOS expression. In order to study the effects of pulsatile flow/shear stress, we adapted Cellco CELLMAX artificial capillary modules to study ovine fetoplacental artery endothelial (OFPAE) cells for NO production and eNOS expression. OFPAE cells were grown in the artificial capillary modules at 3 dynes/cm2. Confluent cells were then exposed to 10, 15, or 25 dynes/cm2 for up to 24 h. NO production by OFPAE cells exposed to pulsatile shear stress was inhibited to nondetectable levels by the NOS inhibitor l-NMMA and reversed by excess NOS substrate l-arginine. NO production and expression of eNOS mRNA and protein by OFPAE cells were elevated by shear stress in a graded fashion (P < 0.05). The rise in NO production with 25 dynes/cm2 shear stress (8-fold) was greater (P < 0.05) than that observed for eNOS protein (3.6-fold) or eNOS mRNA (1.5-fold). The acute shear stress-induced rise in NO production by OFPAE cells was via eNOS activation, whereas the prolonged NO rise occurred by elevations in both eNOS expression and enzyme activation. Thus, elevations of placental blood flow and physiologic shear stress may be partly responsible for the increases in placental arterial endothelial eNOS expression and NO production during pregnancy. 相似文献
19.
The contribution of endothelium-derived mediators and protein kinase C in the tachyphylaxis to arginine vasopressin (AVP) was assessed in the rat aorta. Endothelium-intact (E+) and denuded rings (E-) obtained from the rat thoracic aorta were exposed to three administrations of a supramaximal concentration of AVP (100 nM), lasting 20 min and 45 min apart. N-Omega-nitro-L-arginine (NNLA), a non-selective inhibitor of all isoforms of NO synthase, and AMT, a selective inhibitor for the inducible (iNOS) and neuronal (nNOS) isoforms, diminished the tachyphylaxis to AVP significantly in both E+ and in E- rings. No iNOS could be detected by Western blots in freshly isolated rings or in rings exposed to AVP, despite a strong signal in rings isolated from LPS-treated rats, while nNOS could be constitutively detected. Inhibition of prostaglandins or epoxyeicosatrienoic acids (EETs) synthesis by diclofenac or clotrimazole, respectively, had no effect on tachyphylaxis while combination of these agents diminished tachyphylaxis in E+ only. Combination of NNLA, diclofenac and clotrimazole blocked completely the tachyphylaxis. Inhibition of PKC by either chelerythrine or bisindolylmaleimide I-HCl (BisI) led to a significant diminution of AVP tachyphylaxis only in E-. Activation of PKC with phorbol-12-myristate-13-acetate (PMA) simulated tachyphylaxis to AVP in E- only, effect blocked by the NO donor, SNP. In conclusion, NO produced from constitutive nNOS present in vascular smooth muscle cells participates in tachyphylaxis to AVP. PKC is involved in this tachyphylaxis only in E- rings, the presence of NO probably diminishing the effects of this kinase. 相似文献
20.
M Ito F Tanabe A Sato E Ishida Y Takami S Shigeta 《Biochemical and biophysical research communications》1989,160(3):1344-1349
We investigated the role of microfilaments in stimulus-induced translocation of protein kinase C (PKC) in polymorphonuclear leukocytes (PMNs) from C57BL/6 mice. Cytochalasin B and dihydrocytochalasin B almost completely inhibited PKC translocation induced by either TPA or Ca2+ ionophore after pretreatment of cells for 30 min. In addition, ML-9, a potent inhibitor of Ca2+/calmodulin-dependent myosin light chain kinase which regulate microfilament contraction, and a calmodulin antagonist W-7, also inhibited PKC translocation. These findings suggest the possibility that microfilaments are involved in the translocation of PKC. 相似文献