首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A soluble and fully functional 10.5 kDa fragment of the 18.2 kDa membrane-bound cytochrome c(552) from Paracoccus denitrificans has been heterologously expressed and (13)C/(15)N-labeled to study the structural features of this protein in both redox states. Well-resolved solution structures of both the reduced and oxidized states have been determined using high-resolution heteronuclear NMR. The overall protein topology consists of two long terminal helices and three shorter helices surrounding the heme moiety. No significant redox-induced structural differences have been observed. (15)N relaxation rates and heteronuclear NOE values were determined at 500 and 600 MHz. Several residues located around the heme moiety display increased backbone mobility in both oxidation states, while helices I, III, and V as well as the two concatenated beta-turns between Leu30 and Arg36 apparently form a less flexible domain within the protein structure. Major redox-state-dependent differences of the internal backbone mobility on the picosecond-nanosecond time scale were not evident. Hydrogen exchange experiments demonstrated that the slow-exchanging amide proton resonances mainly belong to the helices and beta-turns, corresponding to the regions with high order parameters in the dynamics data. Despite this correlation, the backbone amide protons of the oxidized cytochrome c(552) exchange considerably faster with the solvent compared to the reduced protein. Using both differential scanning calorimetry as well as temperature-dependent NMR spectroscopy, a significant difference in the thermostabilities of the two redox states has been observed, with transition temperatures of 349.9 K (76.8 degrees C) for reduced and 307.5 K (34.4 degrees C) for oxidized cytochrome c(552). These results suggest a clearly distinct backbone stability between the two oxidation states.  相似文献   

2.
M F Jeng  S W Englander  G A El?ve  A J Wand  H Roder 《Biochemistry》1990,29(46):10433-10437
Hydrogen exchange and two-dimensional nuclear magnetic resonance (2D NMR) techniques were used to characterize the structure of oxidized horse cytochrome c at acid pH and high ionic strength. Under these conditions, cytochrome c is known to assume a globular conformation (A state) with properties resembling those of the molten globule state described for other proteins. In order to measure the rate of hydrogen-deuterium exchange for individual backbone amide protons in the A state, samples of oxidized cytochrome c were incubated at 20 degrees C in D2O buffer (pD 2.2, 1.5 M NaCl) for time periods ranging from 2 min to 500 h. The exchange reaction was then quenched by transferring the protein to native conditions (pD 5.3). The extent of exchange for 44 amide protons trapped in the refolded protein was measured by 2D NMR spectroscopy. The results show that this approach can provide detailed information on H-bonded secondary and tertiary structure in partially folded equilibrium forms of a protein. All of the slowly exchanging amide protons in the three major helices of native cytochrome c are strongly protected from exchange at acid pH, indicating that the A state contains native-like elements of helical secondary structure. By contrast, a number of amide protons involved in irregular tertiary H-bonds of the native structure (Gly37, Arg38, Gln42, Ile57, Lys79, and Met80) are only marginally protected in the A state, indicating that these H-bonds are unstable or absent. The H-exchange results suggest that the major helices of cytochrome c and their common hydrophobic domain are largely preserved in the globular acidic form while the loop region of the native structure is flexible and partly disordered.  相似文献   

3.
A J Wand  H Roder  S W Englander 《Biochemistry》1986,25(5):1107-1114
The hydrogen exchange behavior of the N-terminal helical segment in horse heart cytochrome c was studied in both the reduced and the oxidized forms by use of two-dimensional nuclear magnetic resonance methods. The amide protons of the first six residues are not H bonded and exchange rapidly with solvent protons. The most N-terminal H-bonded groups--the amide NH of Lys-7 to Phe-10--exhibit a sharp gradient in exchange rate indicative of dynamic fraying behavior, consistent with statistical-mechanical principles. This occurs identically in both reduced and oxidized cytochrome c. In the oxidized form, residues 11-14, which form the last helical turn, all exchange with a similar rate, about one million times slower than the rate characteristic of freely exposed peptide NH, even though some are on the aqueous face of the helix and others are fully buried. These and similar observations in several other proteins appear to document local cooperative unfolding reactions as determinants of protein H exchange reactions. The N-terminal segment of cytochrome c is insensitive to the heme redox state, as in the crystallographic model, except for residues closest to the heme (Cys-14 and Ala-15), which exchange about 15-fold more slowly in the reduced form. The cytochrome c H exchange results can be further considered in terms of the conformation of the native and the transiently unfolded forms and their free energy relationships in both the reduced and the oxidized states.  相似文献   

4.
WEFT-NOESY and transfer WEFT-NOESY NMR spectra were used to determine the heme proton assignments for Rhodobacter capsulatus ferricytochrome c2. The Fermi contact and pseudo-contact contributions to the paramagnetic effect of the unpaired electron in the oxidized state were evaluated for the heme and ligand protons. The chemical shift assignments for the 1H and 15N NMR spectra were obtained by a combination of 1H-1H and 1H-15N two-dimensional NMR spectroscopy. The short-range nuclear Overhauser effect (NOE) data are consistent with the view that the secondary structure for the oxidized state of this protein closely approximates that of the reduced form, but with redox-related conformational changes between the two redox states. To understand the decrease in stability of the oxidized state of this cytochrome c2 compared to the reduced form, the structural difference between the two redox states were analyzed by the differences in the NOE intensities, pseudo-contact shifts and the hydrogen-deuterium exchange rates of the amide protons. We find that the major difference between redox states, although subtle, involve heme protein interactions, orientation of the heme ligands, differences in hydrogen bond networks and, possible alterations in the position of some internal water molecules. Thus, it appears that the general destabilization of cytochrome c2, which occurs on oxidation, is consistent with the alteration of hydrogen bonds that result in changes in the internal dynamics of the protein.  相似文献   

5.
The photosynthetic bacterium Rhodobacter sphaeroides produces a heme protein (SHP), which is an unusual c-type cytochrome capable of transiently binding oxygen during autooxidation. Similar proteins have not only been observed in other photosynthetic bacteria but also in the obligate methylotroph Methylophilus methylotrophus and the metal reducing bacterium Shewanella putrefaciens. A three-dimensional structure of SHP was derived using the multiple isomorphous replacement phasing method. Besides a model for the oxidized state (to 1.82 A resolution), models for the reduced state (2.1 A resolution), the oxidized molecule liganded with cyanide (1. 90 A resolution), and the reduced molecule liganded with nitric oxide (2.20 A resolution) could be derived. The SHP structure represents a new variation of the class I cytochrome c fold. The oxidized state reveals a novel sixth heme ligand, Asn(88), which moves away from the iron upon reduction or when small molecules bind. The distal side of the heme has a striking resemblance to other heme proteins that bind gaseous compounds. In SHP the liberated amide group of Asn(88) stabilizes solvent-shielded ligands through a hydrogen bond.  相似文献   

6.
Proton NMR spectroscopy was used to determine the rate constant, kobs, for exchange of labile protons in both oxidized (Fe(III)) and reduced (Fe(II)) iso-1-cytochrome c. We find that slowly exchanging backbone amide protons tend to lack solvent-accessible surface area, possess backbone hydrogen bonds, and are present in regions of regular secondary structure as well as in omega-loops. Furthermore, there is no correlation between kobs and the distance from a backbone amide nitrogen to the nearest solvent-accessible atom. These observations are consistent with the local unfolding model. Comparisons of the free energy change for denaturation, delta Gd, at 298 K to the free energy change for local unfolding, delta Gop, at 298 K for the oxidized protein suggest that certain conformations possessing higher free energy than the denatured state are detected at equilibrium. Reduction of the protein results in a general increase in delta Gop. Comparisons of delta Gd to delta Gop for the reduced protein show that the most open states of the reduced protein possess more structure than its chemically denatured form. This persistent structure in high-energy conformations of the reduced form appears to involve the axially coordinated heme.  相似文献   

7.
Baxter SM  Fetrow JS 《Biochemistry》1999,38(14):4493-4503
Heteronuclear NMR spectroscopy was used to measure the hydrogen-deuterium exchange rates of backbone amide hydrogens in both oxidized and reduced [U-15N]iso-1-cytochrome c from the yeast Saccharomyces cerevisiae. The exchange data confirm previously reported data [Marmorino et al. (1993) Protein Sci. 2, 1966-1974], resolve several inconsistencies, and provide more thorough coverage of exchange rates throughout the cytochrome c protein in both oxidation states. Combining the data previously collected on unlabeled C102T with the current data collected on [U-15N]C102T, exchange rates for 53 protons in the oxidized state and 52 protons in the reduced state can now be reported. Most significantly, hydrogen exchange measurements on [U-15N]iso-1-cytochrome c allowed the observation of exchange behavior of the secondary structures, such as large loops, that are not extensively hydrogen-bonded. For the helices, the most slowly exchanging protons are found in the middle of the helix, with more rapidly exchanging protons at the helix ends. The observation for the Omega-loops in cytochrome c is just the opposite. In the loops, the ends contain the most slowly exchanging protons and the loop middles allow more rapid exchange. This is found to be true in cytochrome c loops, even though the loop ends are not attached to any regular secondary structures. Some of the exchange data are strikingly inconsistent with data collected on the C102S variant at a different pH, which suggests pH-dependent dynamic differences in the protein structure. This new hydrogen exchange data for loop residues could have implications for the substructure model of eukaryotic cytochrome c folding. Isotopic labeling of variant forms of cytochrome c can now be used to answer many questions about the structure and folding of this model protein.  相似文献   

8.
The exchange of a large number of amide hydrogens in oxidized equine cytochrome c was measured by NMR and compared with structural parameters. Hydrogens known to exchange through local structural fluctuations and through larger unfolding reactions were separately considered. All hydrogens protected from exchange by factors greater than 10(3) are in defined H-bonds, and almost all H-bonded hydrogens including those at the protein surface were measured to exchange slowly. H-exchange rates do not correlate with H-bond strength (length) or crystallographic B factors. It appears that the transient structural fluctuation necessary to bring an exchangeable hydrogen into H-bonding contact with the H-exchange catalyst (OH(-)-ion) involves a fairly large separation of the H-bond donor and acceptor, several angstroms at least, and therefore depends on the relative resistance to distortion of immediately neighboring structure. Accordingly, H-exchange by way of local fluctuational pathways tends to be very slow for hydrogens that are neighbored by tightly anchored structure and for hydrogens that are well buried. The slowing of buried hydrogens may also reflect the need for additional motions that allow solvent access once the protecting H-bond is separated, although it is noteworthy that burial in a protein like cytochrome c does not exceed 4 angstroms. When local fluctuational pathways are very slow, exchange can become dominated by a different category of larger, cooperative, segmental unfolding reactions reaching up to global unfolding.  相似文献   

9.
Multidimensional NMR methods were used to obtain 1H-15N correlations and 15N resonance assignments for amide and side-chain nitrogens of oxidized and reduced putidaredoxin (Pdx), the Fe2S2 ferredoxin, which acts as the physiological reductant of cytochrome P-450cam (CYP101). A model for the solution structure of oxidized Pdx has been determined recently using NMR methods (Pochapsky TC, Ye XM, Ratnaswamy G, Lyons TA, 1994, Biochemistry 33:6424-6432) and redox-dependent 1H NMR spectral features have been described (Pochapsky TC, Ratnaswamy G, Patera A, 1994, Biochemistry 33:6433-6441). 15N assignments were made with NOESY-(1H/15N) HMQC and TOCSY-(1H/15N) HSQC spectra obtained using samples of Pdx uniformly labeled with 15N. Local dynamics in both oxidation states of Pdx were then characterized by comparison of residue-specific amide proton exchange rates, which were measured by a combination of saturation transfer and H2O/D2O exchange methods at pH 6.4 and 7.4 (uncorrected for isotope effects). In general, where exchange rates for a given site exhibit significant oxidation-state dependence, the oxidized protein exchanges more rapidly than the reduced protein. The largest dependence of exchange rate upon oxidation state is found for residues near the metal center and in a region of compact structure that includes the loop-turn Val 74-Ser 82 and the C-terminal residues (Pro 102-Trp 106). The significance of these findings is discussed in light of the considerable dependence of the binding interaction between Pdx and CYP101 upon the oxidation state of Pdx.  相似文献   

10.
The structure of the type I tetraheme cytochrome c(3) from Desulfovibrio desulfuricans G20 was determined to 1.5 Angstrom by X-ray crystallography. In addition to the oxidized form, the structure of the molybdate-bound form of the protein was determined from oxidized crystals soaked in sodium molybdate. Only small structural shifts were obtained with metal binding, consistent with the remarkable structural stability of this protein. In vitro experiments with pure cytochrome showed that molybdate could oxidize the reduced cytochrome, although not as rapidly as U(VI) present as uranyl acetate. Alterations in the overall conformation and thermostability of the metal-oxidized protein were investigated by circular dichroism studies. Again, only small changes in protein structure were documented. The location of the molybdate ion near heme IV in the crystal structure suggested heme IV as the site of electron exit from the reduced cytochrome and implicated Lys14 and Lys56 in binding. Analysis of structurally conserved water molecules in type I cytochrome c(3) crystal structures identified interactions predicted to be important for protein stability and possibly for intramolecular electron transfer among heme molecules.  相似文献   

11.
A model-free analysis based on (15)N R(1), (15)N R(2), and (15)N-(1)H nuclear Overhauser effects was performed on reduced (diamagnetic) and oxidized (paramagnetic) forms of plastocyanin from Synechocystis sp. PCC6803. The protein backbone is rigid, displaying a small degree of mobility in the sub-nanosecond time scale. The loops surrounding the copper ion, involved in physiological electron transfer, feature a higher extent of flexibility in the longer time scale in both redox states, as measured from D(2)O exchange of amide protons and from NH-H(2)O saturation transfer experiments. In contrast to the situation for other electron transfer proteins, no significant difference in the dynamic properties is found between the two redox forms. A solution structure was also determined for the reduced plastocyanin and compared with the solution structure of the oxidized form in order to assess possible structural changes related to the copper ion redox state. Within the attained resolution, the structure of the reduced plastocyanin is indistinguishable from that of the oxidized form, even though small chemical shift differences are observed. The present characterization provides information on both the structural and dynamic behavior of blue copper proteins in solution that is useful to understand further the role(s) of protein dynamics in electron transfer processes.  相似文献   

12.
The reversible unfolding of oxidized Bacillus pasteurii cytochrome c(553) by guanidinium chloride under equilibrium conditions has been monitored by NMR and optical spectroscopy. The results obtained indicate that unfolding takes place through a mechanism involving the detachment from heme iron coordination of the sulfur of the Met71 axial ligand and yielding either a high spin (HS) or a low spin (LS(1)) species, depending on the pH value. In the LS(1) form the Met71 is replaced by another protein ligand, possibly Lys. The ligand exchange reaction does not reach completion until the protein backbone reaches a largely unfolded state, as monitored through 1H-15N NMR experiments, thus demonstrating that there is a significant correlation between formation of the Fe-S bond and native structure stability. 1H/2H exchange data, however, show that helix alpha(3), the C-terminal region of helix alpha(4), and helix alpha(5) maintain low exchangeability of the amide protons in the LS(1) form. This finding most likely implies that these regions maintain some ordered non-covalent structure, in which the amide moieties are involved in H-bonds. Finally, a folding mechanism is proposed and discussed in terms of analogies and differences with the larger mitochondrial cytochrome c proteins. It is concluded that the thermodynamic stability of the region around the metal cofactor is determined by the chemical nature of the residues around the axial methionine residue.  相似文献   

13.
The backbone dynamics of uniformly 15N-labeled reduced and oxidized putidaredoxin (Pdx) have been studied by 2D 15N NMR relaxation measurements. 15N T1 and T2 values and 1H-15N NOEs have been measured for the diamagnetic region of the protein. These data were analyzed by using a model-free dynamics formalism to determine the generalized order parameters (S2), the effective correlation time for internal motions (tau e), and the 15N exchange broadening contributions (Rex) for each residue, as well as the overall correlation time (tau(m)). Order parameters for the reduced Pdx are generally higher than for the oxidized Pdx, and there is increased mobility on the microsecond to millisecond time scale for the oxidized Pdx, in comparison with the reduced Pdx. These results clearly indicate that the oxidized protein exhibits higher mobility than the reduced one, which is in agreement with the recently published redox-dependent dynamics studied by amide proton exchange. In addition, we observed very high T1/T2 ratios for residues 33 and 34, giving rise to a large Rex contribution. Residue 34 is believed to be involved in the binding of Pdx to cytochrome P450cam (CYP101). The differences in the backbone dynamics are discussed in relation to the oxidation states of Pdx, and their impact on electron transfer. The entropy change occurring on oxidation of reduced Pdx has been calculated from the order parameters of the two forms.  相似文献   

14.
A procedure to measure exchange rates of fast exchanging protein amide hydrogens by time-resolved NMR spectroscopy following in situ initiation of the reaction by diluting a native protein solution into an exchanging deuterated buffer is described. The method has been used to measure exchange rates of a small set of amide hydrogens of reduced cytochrome c, maintained in a strictly anaerobic atmosphere, in the presence of an otherwise inaccessible range of guanidinium deuterochloride concentrations. The results for the measured protons indicate that hydrogen exchange in the unfolding transition region of cytochrome c reach the EX2 limit, but emphasize the difficulty in interpretation of the exchange mechanism in protein hydrogen exchange studies. Comparison of free energies of structure opening for the measured hydrogens with the global unfolding free energy monitored by far-UV CD measurements has indicated the presence of at least one partially unfolded equilibrium species of reduced cytochrome c. The results provide the first report of measurement of free energy of opening of structure to exchange in the 0–2-kcal/mol range. Proteins 32:241–247, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
A nontraditional role for water in the cytochrome c oxidase reaction   总被引:6,自引:0,他引:6  
J A Kornblatt  G H Hoa 《Biochemistry》1990,29(40):9370-9376
The passage of electrons through cytochrome c oxidase is directly related to the activity of water. Reducing the activity in a system containing reductant, oxygen, and cytochrome oxidase blocks electron transfer between reduced cytochrome a and oxidized cytochrome a3. The extent of the block is directly related to the osmotic pressure of the system, implying that the protein shell of the oxidase acts as a semipermeable membrane that excludes osmotic perturbants but not water. It appears that approximately 10 water molecules must enter and leave the oxidase in order for internal electron transfer to occur.  相似文献   

16.
Amide proton exchange of thioredoxin is used to monitor the structural effects of reduction of its single disulfide. An effective 3-5-proton difference between the oxidized and reduced protein form is observed early in proton out-exchange of the whole protein, which is independent of temperature in the range of 5-45 degrees C, indicating that redox-sensitive changes are probably not due to low-energy structural fluctuations. Medium resolution hydrogen exchange experiments have localized the redox-sensitive amide protons to two parts of the sequence that are distant from each other in the three-dimensional structure: the active-site turn and the first beta-strand. The sum of the proton differences observed in the peptides from these regions is equal to that of the whole protein, indicating that all redox-sensitive hydrogen exchange effects are observed in the peptide experiments. A model combining structural changes within the protein matrix with changes in the surface hydration properties is proposed as a mechanism for the communication between distant sites within the protein. Sound velocity and density measurements of reduced and oxidized thioredoxin are presented in the accompanying paper (Kaminsky, S.M. & Richards, F.M., 1992, Protein Sci. 1, 22-30).  相似文献   

17.
The optimized g-tensor parameters for the oxidized form of Rhodobacter capsulatus cytochrome c2 in solution were obtained using a set (50) of backbone amide protons. Dipolar shifts for more than 500 individual protons of R. capsulatus cytochrome c2 have been calculated by using the optimized g-tensor and the X-ray crystallographic coordinates of the reduced form of R. capsulatus cytochrome c2. The calculated results for dipolar shifts are compared with the observed paramagnetic shifts. The calculated and the observed data are in good agreement throughout the entire protein, but there are significant differences between calculated and experimental results localized to the regions in the immediate vicinity of the heme ligand and the region of the front crevice of the protein (residues 44-50, 53-57, and 61-68). The results not only indicate that the overall solution structures are very similar in both the reduced and oxidized states, but that these structures in solution are similar to the crystal structure. However, there are small structural changes near the heme and the rearrangement of certain residues that result in changes in their hydrogen bonding concomitant with the change in the oxidation states; this was also evident in the data for the NH exchange rate measurements for R. capsulatus cytochrome c2.  相似文献   

18.
The acyl carrier protein (ACP) of Escherichia coli is a 77-amino acid, highly negatively charged three-helix protein that plays a central role in fatty acid biosynthesis. Previous NMR studies have suggested the presence of multiple conformations and marginally stable secondary structural elements. The stability of these elements is now examined by monitoring amide exchange in apo-ACP using NMR-based methods. Because ACP exhibits many rapid exchange rates, application of traditional isotope exchange methods is difficult. In one approach, heteronuclear correlation experiments with pulsed field-gradient coherence selection have reduced the time needed to collect two-dimensional 1H-15N correlation spectra to the point where measurement of exchange of amide protons for deuterium on the timescale of minutes can be made. In another approach, water proton selective inversion-exchange experiments were performed to estimate the exchange rates of protons exchanging on timescales of less than a second. Backbone amide protons in the region of helix II were found to exchange significantly more rapidly than those in helices I and III, consistent with earlier structural models suggesting a dynamic disruption of the second helix. Highly protected amides occur on faces of the helices that may pack into a hydrophobic core present in a partially disrupted state.  相似文献   

19.
The crystal structure of the soluble domain of the membrane bound cytochrome c(552) (cytochrome c(552)') from Paracoccus denitrificans was determined using the multiwavelength anomalous diffraction technique and refined at 1.5 A resolution for the oxidized and at 1. 4 A for the reduced state. This is the first high-resolution crystal structure of a cytochrome c at low ionic strength in both redox states. The atomic model allowed for a detailed assessment of the structural properties including the secondary structure, the heme geometry and interactions, and the redox-coupled structural changes. In general, the structure has the same features as that of known eukaryotic cytochromes c. However, the surface properties are very different. Cytochrome c(552)' has a large strongly negatively charged surface part and a smaller positively charged area around the solvent-exposed heme atoms. One of the internal water molecules conserved in all structures of eukaryotic cytochromes c is also present in this bacterial cytochrome c. It contributes to the interactions between the side-chain of Arg36 and the heme propionate connected to pyrrole ring A. Reduction of the oxidized crystals does not influence the conformation of cytochrome c(552)' in contrast to eukaryotic cytochromes c. The oxidized cytochrome c(552)', especially the region of amino acid residues 40 to 56, appears to be more flexible than the reduced one.  相似文献   

20.
To further elucidate the role of the disulfide bonds in determining the protein folding of recombinant human epidermal growth factor (r-HuEGF) we studied the structure of reduced and oxidized r-HuEGF using circular dichroism (CD). The far UV CD spectrum of reduced r-HuEGF in 10 mM sodium phosphate pH 3.0 is very different from that of the oxidized molecule. The spectrum of the reduced molecule consists of a plateau from 225 to 200 nm, consistent with the presence of alpha-helix, beta-sheet, and unordered structure. The addition of the alpha-helix inducer trifluoroethanol to the reduced molecule resulted in an enhancement of alpha-helix, at the apparent expense of beta-sheet, while the oxidized molecule was unaffected by the presence of this reagent. Secondary structure predictions based on the amino acid sequence of EGF correlate most closely with the structure of the reduced molecule. From these results, it appears that the r-HuEGF has a more regular secondary structure in the absence of the disulfide bonds than in their presence. This suggests that the folding of EGF occurs by destroying the regular secondary structure that was present in the reduced state, and that the structure of the native molecule is dictated largely by disulfide bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号