首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As an initial subdeficient status of zinc, considered as an essential antioxidant trace element, is frequent in burned patients, we aim to assess the effects of low zinc dietary intakes on burn-induced oxidative stress, in an animal model. After 8 weeks of conditioning diets containing 80 ppm (control group) or 10 ppm of zinc (depleted group), Wistar rats were 20% TBSA burned and sampled 1-10 days after injury. Kinetic evolutions of zinc status, plasma oxidative stress parameters, and antioxidant enzymes were also studied in blood and organs. The zinc-depleted diet induced, before injury, a significant decrease in zinc bone level and the increase of oxidative stress markers without stimulation of antioxidant enzyme activity. After burn, more markedly in zinc depleted animals than in controls, zinc levels decreased in plasma and bone, while increasing in liver. The decrease of thiol groups and GSH/GSSG ratio and the depression of GPx activity in liver are also moderately emphasized. Nevertheless, depleted zinc status could not be considered as determining for oxidative damages after burn injury. Further investigations must also be done to enlighten the mechanism of beneficial effects of zinc supplementation reported in burned patients.  相似文献   

2.
Hyperglycemia, glucose intolerance and elevated insulin levels frequently occur in burned patients; however, the mechanism(s) for this insulin resistance has not been fully elucidated. One possible mechanism could involve alterations in the phosphorylation of serine 307 of the insulin receptor substrate-1 (IRS-1) via activation of stress kinase enzymes, including SAPK/JNK. In the present study we examined the time course of the effect of burn injury to mice on: levels of IRS-1 protein, phosphorylation of serine 307 of IRS-1, SAPK/JNK kinase levels and activity and Akt kinase activity in hind limb skeletal muscle. Burn injury produced a reduction in hind limb muscle mass 24 h after injury, and, which persisted for 168 h. At 24 h after injury, there was a dramatic ( approximately 9-fold) increase in phosphorylation of IRS-1 serine 307 followed by a more moderate elevation thereafter. Total IRS-1 protein was slightly elevated at 24 h after injury and decreased to levels below sham treated animals at the later times. Burn injury did not appear to change total SAPK/JNK protein content, however, enzyme activity was increased for 7 days after injury. Akt kinase activity was decreased in skeletal muscle following burn injury; providing a biochemical basis for burn-induced insulin resistance. These findings are consistent with the hypothesis that burn-induced insulin resistance may be related, at least in part, to alterations in the phosphorylation of key proteins in the insulin signaling cascade, including IRS-1, and that changes in stress kinases, such as SAPK/JNK produced by burn injury, may be responsible for these changes in phosphorylation.  相似文献   

3.
Critical illness, including burn injury, results in elevated plasma lactate levels. Dysregulation of PI3K/Akt signaling has been shown to play a predominant role in the inactivation of skeletal muscle PDC and, hence, in hyperlactacidemia in rat models of sepsis and endotoxemia. This observation, and our previous finding that DAG can reverse burn-induced skeletal muscle proteolysis through the activation of PI3K/Akt pathway, led us to hypothesize that DAG may also attenuate hyperlactacidemia in burn injury. Our investigations revealed that burn injury significantly elevated both skeletal muscle lactate production and plasma lactate levels. Moreover, this was accompanied in skeletal muscle by a 5–7 fold increase in mRNA expression of pyruvate dehydrogenase kinases (PDK) 2 and 4, and a ∼30% reduction in PDC activity. DAG treatment of burn rats completely normalized not only the mRNA expression of the PDKs and PDC activity, but also hyperlactacidemia within 24 h of burn injury. DAG also normalized epinephrine-induced lactate production by isolated skeletal muscles from normal rats. Moreover, DAG also improved survival in a lethal rat model of burn trauma. These findings with DAG may have clinical implications because chances of survival for critically ill patients are greatly improved if plasma lactate levels are normalized within 24 h of injury.  相似文献   

4.

Objective

Metabolic derangements, including insulin resistance and hyperlactatemia, are a major complication of major trauma (e.g., burn injury) and affect the prognosis of burn patients. Protein farnesylation, a posttranslational lipid modification of cysteine residues, has been emerging as a potential component of inflammatory response in sepsis. However, farnesylation has not yet been studied in major trauma. To study a role of farnesylation in burn-induced metabolic aberration, we examined the effects of farnesyltransferase (FTase) inhibitor, FTI-277, on burn-induced insulin resistance and metabolic alterations in mouse skeletal muscle.

Methods

A full thickness burn (30% total body surface area) was produced under anesthesia in male C57BL/6 mice at 8 weeks of age. After the mice were treated with FTI-277 (5 mg/kg/day, IP) or vehicle for 3 days, muscle insulin signaling, metabolic alterations and inflammatory gene expression were evaluated.

Results

Burn increased FTase expression and farnesylated proteins in mouse muscle compared with sham-burn at 3 days after burn. Simultaneously, insulin-stimulated phosphorylation of insulin receptor (IR), insulin receptor substrate (IRS)-1, Akt and GSK-3β was decreased. Protein expression of PTP-1B (a negative regulator of IR-IRS-1 signaling), PTEN (a negative regulator of Akt-mediated signaling), protein degradation and lactate release by muscle, and plasma lactate levels were increased by burn. Burn-induced impaired insulin signaling and metabolic dysfunction were associated with increased inflammatory gene expression. These burn-induced alterations were reversed or ameliorated by FTI-277.

Conclusions

Our data demonstrate that burn increased FTase expression and protein farnesylation along with insulin resistance, metabolic alterations and inflammatory response in mouse skeletal muscle, all of which were prevented by FTI-277 treatment. These results indicate that increased protein farnesylation plays a pivotal role in burn-induced metabolic dysfunction and inflammatory response. Our study identifies FTase as a novel potential molecular target to reverse or ameliorate metabolic derangements in burn patients.  相似文献   

5.
The role of sexual dimorphic adipose tissue fat accumulation in the development of insulin resistance is well known. However, whether vitamin A status and/or its metabolic pathway display any sex- or depot (visceral/subcutaneous)-specific pattern and have a role in sexual dimorphic adipose tissue development and insulin resistance are not completely understood. Therefore, to assess this, 5 weeks old Wistar male and female rats of eight from each sex were provided either control or diabetogenic (high fat, high sucrose) diet for 26 weeks. At the end, consumption of diabetogenic diet increased the visceral fat depots (p < 0.001) in the males and subcutaneous depot (p < 0.05) in the female rats, compared to their sex-matched controls. On the other hand, it caused adipocyte hypertrophy (p < 0.05) of visceral depot (retroperitoneal) in the females and subcutaneous depot of the male rats. Although vitamin A levels displayed sex- and depot-specific increase due to the consumption of diabetogenic diet, the expression of most of its metabolic pathway genes in adipose depots remained unaltered. However, the mRNA levels of some of lipid droplet proteins (perilipins) and adipose tissue secretory proteins (interleukins, lipocalin-2) did display sexual dimorphism. Nonetheless, the long-term feeding of diabetogenic diet impaired the insulin sensitivity, thus affected glucose clearance rate and muscle glucose-uptake in both the sexes of rats. In conclusion, the chronic consumption of diabetogenic diet caused insulin resistance in the male and female rats, but did not corroborate with sexual dimorphic adipose tissue fat accumulation or its vitamin A status.  相似文献   

6.
The objective of the present study was to measure the relationship between selenium status and oxidative stress in two rat models of thermal injury. A non-lethal third-degree burn injury involving 20% (experiment 1) or 40% (experiment 2) of total body surface area (TBSA) was applied to male Wistar rats. Selenium level, glutathione peroxidase (GPx) activity in plasma, red blood cells (RBC) and tissues (liver, kidney, muscle, and brain), and plasma selenoalbumin (Se-alb) were measured in control rats and in burned rats respectively 6 hours after injury and daily from day 1 to day 5. In parallel, lipid and protein oxidative damages, monitored by plasma and tissue thiobarbituric acid reactive species (TBARs) levels and plasma total thiol groups were assessed.

We observed a decrease of plasma Se and Se-albumin 6 hours after burn injury. In parallel, plasma GPx activity rapidly decreased and remained significantly lower than in control rats. These alterations were enhanced by the burn injury severity. Plasma TBARs followed the same pattern as that of plasma cholesterol, with an initial decrease and an increase at day 3 in 40% TBSA burned rats. Plasma thiol groups decreased in the two experiments indicating plasma protein oxidation.

These results confirm an early oxidative stress in burn injury, and suggest an early selenium mobilization, which might counteract this oxidative stress. These data underline the crucial need of a restored selenium status in burned patients immediately after the burn injury.  相似文献   


7.
Glucose intolerance in fluorosis areas and when fluoride is administered for the treatment of osteoporosis has been reported. Controlled fluoridation of drinking water is regarded as a safe and effective measure to control dental caries. However, the effect on glucose homeostasis was not studied so far. The aim of this study was to evaluate the effect of the intake of fluoridated water supply on glucose metabolism in rats with normal and deficient renal function. Male Sprague–Dawley rats were divided into eight groups of four rats. Renal insufficiency was induced in four groups (NX) which received drinking water containing 0, 1, 5, and 15 ppm F (NaF) for 60 days. Four groups with simulated surgery acted as controls. There were no differences in plasma glucose concentration after a glucose tolerance test between controls and NX rats and among rats with different intakes of fluoride. However, plasma insulin level increased as a function of fluoride concentration in drinking water, both in controls and in NX rats. It is concluded that the consumption of fluoridated water from water supply did not affect plasma glucose levels even in cases of animals with renal disease. However, a resistance to insulin action was demonstrated  相似文献   

8.
Reduced plasma concentrations of the extracellular actin-binding proteins gelsolin and Gc-globulin correlate with pulmonary failure and death in humans after injury. The purpose of this study was to investigate the role of plasma gelsolin in the pathophysiology of inflammation-induced lung injury. We postulated that plasma gelsolin levels decrease at an early time point after burn injury and that the intravenous infusion of gelsolin prevents burn-induced pulmonary microvascular dysfunction. Adult Sprague-Dawley rats were randomized to undergo a 40% body surface area thermal injury (Burn) or manipulation without burn (Sham). Plasma gelsolin and Gc-globulin concentrations were determined at various times during the first 6 days of injury by Western blotting. Other animals were randomized to receive either recombinant human gelsolin (0.078, 0.78, or 7.8 mg) or albumin (7.8 mg) before and 8 h after Burn or Sham. Twenty-four hours later, pulmonary microvascular permeability was assessed by measuring the capillary filtration by use of an isolated, perfused lung model. We found that plasma gelsolin levels of burn-injured rats decreased to 10% of normal levels within 12 h and remained below normal levels for up to 6 days postinjury. Gc-globulin values also fall, but to a lesser extent and only transiently. Treatment of burned animals with intravenous infusions of recombinant human gelsolin prevented the increase in pulmonary microvascular permeability that accompanies this injury. Our findings are consistent with the hypothesis that plasma gelsolin depletion contributes to the pathophysiology of pulmonary microvascular dysfunction during inflammation.  相似文献   

9.
Ghrelin, a 28-residue octanoylated peptide recently isolated from the stomach, exhibits anti-cachectic properties through regulating food intake, energy expenditure, adiposity, growth hormone secretion and immune response. Burn injury induces persistent hypermetabolism and muscle wasting. We therefore hypothesized that ghrelin may also play a role in the pathophysiology of burn-induced cachexia. Overall ghrelin expression in the stomach over 10 days after burn was significantly decreased (p = 0.0003). Total plasma ghrelin was reduced 1 day after burn. Thus, changes in ghrelin synthesis and release may contribute to burn-induced dysfunctions. Ghrelin (30 nmol/rat, i.p.) greatly stimulated 2 h food intake in rats on five separate days after burn and in control rats. On post-burn day 15, plasma growth hormone levels were significantly lower than in controls, and this was restored to normal levels by ghrelin (10 nmol/rat, i.p.). These observations suggest that ghrelin retains its ability to favorably modulate both the peripheral anabolic and the central orexigenic signals, even after thermal injury despite ongoing changes due to prolonged and profound hypermetabolism, suggesting that long-term treatment with ghrelin may attenuate burn-induced dysfunctions.  相似文献   

10.
Hypermetabolism and anorexia are significant problems associated with major burn trauma. Recent studies have implicated hypothalamic peptides and receptors of the corticotropin releasing factor (CRF) family as putative mediators of burn-induced hypermetabolism. Increased neuronal activity at the CRF type 2 receptor (CRF R-2) appeared particularly involved in the expression of elevated resting energy expenditure (REE) following major burn trauma. In the present study we continued these investigations of CRF R-2 mediation of burn-induced hypermetabolism, demonstrating that 3rd ventricle injection of CRF R-2 antisense oligodeoxynucleotide (ODN) normalized REE in burned rats. Similar treatments with CRF or CRF R-1 antisense ODNs had no significant effect in burned rats. In addition, 3rd ventricle injection of the selective CRF R-2 antagonist, antisauvagine-30, also reduced REE significantly in burned rats, while similar treatment with the selective CRF R-1 antagonist, antalarmin, was without effect. To determine which endogenous peptide was altered following burn we measured hypothalamic levels of urocortin (UCN) and CRF 15 days after burn injury, finding UCN was significantly elevated by nearly 3-fold, while CRF level tended to be decreased. We also assessed hypothalamic mRNA peptide and receptor expression by real-time PCR 7, 14, and 21 days post-burn, observing decreased CRF expression 7 and 21 days post-burn, decreased UCN-2 expression 7 days post-burn, and no significant alteration in UCN-1 at any time point. However, CRF R-2 mRNA was elevated at each post-burn time point. These results continue to suggest that increased neuronal activity is integrally involved in the mediation of burn-induced hypermetabolism, and that one of the UCN peptides may be the endogenous ligand affecting this receptor.  相似文献   

11.
The molecular bases underlying burn- or critical illness-induced insulin resistance still remain unclarified. Muscle protein catabolism is a ubiquitous feature of critical illness. Akt/PKB plays a central role in the metabolic actions of insulin and is a pivotal regulator of hypertrophy and atrophy of skeletal muscle. We therefore examined the effects of burn injury on insulin-stimulated Akt/PKB activation in skeletal muscle. Insulin-stimulated phosphorylation of Akt/PKB was significantly attenuated in burned compared with sham-burned rats. Insulin-stimulated Akt/PKB kinase activity, as judged by immune complex kinase assay and phosphorylation status of the endogenous substrate of Akt/PKB, glycogen synthase kinase-3beta (GSK-3beta), was significantly impaired in burned rats. Furthermore, insulin consistently failed to increase the phosphorylation of p70 S6 kinase, another downstream effector of Akt/PKB, in rats with burn injury, whereas phosphorylation of p70 S6 kinase was increased by insulin in controls. The protein expression of Akt/PKB, GSK-3beta, and p70 S6 kinase was unaltered by burn injury. However, insulin-stimulated activation of ERK, a signaling pathway parallel to Akt/PKB, was not affected by burn injury. These results demonstrate that burn injury impairs insulin-stimulated Akt/PKB activation in skeletal muscle and suggest that attenuated Akt/PKB activation may be involved in deranged metabolism and muscle wasting observed after burn injury.  相似文献   

12.
The purpose of the study was to assess the influence of dietary iron content on lipid and carbohydrate metabolism and on zinc and copper status in rats fed with a diet high in fat, fructose, and salt. Wistar rats were fed with diets high in fat, fructose, and salt, containing differing amounts of iron, namely, deficit, normal, and high levels. After 6 weeks, the animals were weighed and killed. The liver, heart, and pancreas were collected, as were blood samples. The total cholesterol, triglycerides, fasting glucose, and insulin levels in the serum were measured. The iron, zinc, and copper concentrations in tissues and serum were determined. It was found that in rats fed with the iron-deficit diet, cholesterol and glucose profiles improved. Both deficit and excess iron in the diet decreased insulin concentration in rats and disturbed iron, zinc, and copper status. High-iron level in the diet decreased the relative mass of the pancreas. In conclusion, the decrease in serum insulin concentration observed in rats fed with the modified diet high in iron was associated with iron and copper status disorders, and also, with a relatively diminished pancreas mass. A deficit of iron in the diet improved lipid and carbohydrate metabolism in rats.  相似文献   

13.
Burn injury has been shown to impair gut transit, but the exact mechanism remains unknown. The present study investigated whether nitric oxide synthase (NOS) and cyclooxygenase (COX) mediated changes in burn-induced colonic transit. After rats underwent 30% total body surface area burn injury, they were injected with S-methylisothiourea (SMT, selective inducible NOS inhibitor), 7-nitronidazole (7-NI, selective neuronal NOS inhibitor), and nimesulide (NIM, selective COX-2 inhibitor), respectively. The protein and mRNA of NOS and COX-2 were measured by Western blot analysis and real-time RT-RCR, and localization of NOS and COX-2 protein was determined by immunohistochemistry. Our results showed that colonic transit assessed by the geometric center was delayed from 3.47+/-0.28 in controls to 2.21+/-0.18 after burn (P<0.009). SMT and NIM significantly improved colonic transit in burned rats but had no effect in sham-operated rats. 7-NI failed to modify delayed transit in burned rats but significantly delayed colonic transit in sham-operated rats. Both protein and mRNA of inducible NOS and COX-2 increased significantly but not neuronal NOS in burned rats. Inducible NOS protein expression was noted not only in epithelial cells but also in neurons of the myenteric ganglia in burned rats. These findings suggest that nitric oxide (NO) produced by neuronal NOS plays an important role in mediating colonic transit under the physiological condition. NO produced by inducible NOS and prostaglandins synthesized by COX-2 are both involved in the pathogenesis of delayed colonic transit after burn injury. Inducible NOS expression in neurons of the myenteric ganglia may contribute to dysmotility with burn injury.  相似文献   

14.
The main aim of this study was to investigate the beneficial effects of hydro-alcoholic extract of Caralluma fimbriata (CFE) on the effects of high-fat diet feeding on insulin resistance and oxidative stress in Wistar rats. High-fat diet (60 % of fat) and CFE (200 mg/kg body weight/day) were given concurrently to the rats for a period of 90 days. Feeding with high-fat diet resulted in the development of hyperglycemia, hyperinsulinemia, hyperleptinemia, and hypertriglyceridemia and impaired insulin sensitivity (P?<?0.05). Administration of CFE to high-fat diet-fed rats for 90 days resulted in a significant improvement in plasma glucose, insulin, leptin, and triglycerides. Regarding liver antioxidant status, high-fat fed rats showed higher levels of lipid peroxidation, protein oxidation and lower GSH levels and lower activities of enzymatic antioxidants, while CFE treatment prevented all these observed abnormalities. In conclusion, intake of CFE may be beneficial for the suppression of high-fat diet-induced insulin resistance and oxidative stress.  相似文献   

15.
BackgroundIslet NADPH oxidase activity is modulated by glucose and other insulin secretagogues and it might be part of the regulatory mechanism of insulin secretion. We studied its modulatory role of islet NADPH oxidase upon β-cell function in rats with fructose-induced oxidative stress.MethodsNormal rats were fed for 3 weeks with a standard diet, a fructose-rich diet or both diets plus apocynin. We measured plasma glucose, insulin, triacylglycerol and lipid peroxidation levels and the homeostasis model assessment-insulin resistance (HOMA-IR) and HOMA-β indexes, and performed an oral glucose tolerance test. β-cell volume density and the number of islets per mm2 were determined by immunomorphometric analysis of the pancreas. Insulin secretion, glucose metabolism, glucokinase and NADPH oxidase activities were studied in islets isolated from each experimental group.ResultsFructose-fed rats had increased plasma triacylglycerol, insulin and lipid peroxidation levels associated with an insulin resistance state; the reactive higher secretion was unable to cope with the increased demand of insulin, leading to an impaired glucose tolerance. They also have a lower number of islets per area unit with a decreased β-cell volume density. All these alterations were prevented by blocking NADPH oxidase activity with apocynin.ConclusionFructose-induced changes are partly mediated by modulation of NADPH oxidase activity.General significanceThe metabolic dysfunctions and enhanced oxidative stress measured in fructose-fed rats resemble those recorded in human prediabetes; thus, successful strategies employed in this model could be later used to prevent the progression of this state towards type 2 diabetes in human beings.  相似文献   

16.
Rats fed a magnesium (MG) deficient diet have a lower endurance capacity than rats fed Mg adequate diets. The current study evaluates the effects of marginal, moderate, and severe Mg deficiencies on physiological and biochemical changes that may contribute to the reduced endurance capacity of Mg deficient rats. Variable levels of dietary Mg (400, 200, 100, 50 μg/g) were fed for 23 d to 5-wk-old male Osborne-Mendel rats. Indirect blood pressure and heart rate were measured during dietary treatment. Forty-eight hours after an endurance test, rats were killed and sampled for plasma glucose, insulin, and triglyceride levels. Organ weights, mineral and trace element concentrations, and carcass composition were determined. Blood pressure was lower in rats fed 50 and 100 ppm Mg during the first half of the study than in controls (400 ppm Mg). There were no significant differences in blood pressure among groups at the end of the study. Heart rate was not affected by dietary Mg intake. Plasma insulin was lowered by decreasing dietary Mg; however, plasma glucose and triglyceride concentrations were not affected by dietary Mg intake. Rats fed 100 and 50 ppm Mg diets had significantly higher calcium concentrations in plasma and gastrocnemius muscle than controls. Dietary Mg variably affected tissue trace element (iron, zinc, copper, and manganese) concentrations but did not affect Mg concentrations in any organ studied. Body composition was significantly altered by dietary Mg intake. In conclusion, variable Mg intake differentially affects the parameters evaluated. Thus, the decreased endurance capacity of the Mg deficient rat is apparently not the result of a single biochemical lesion but is likely to be multifactorial.  相似文献   

17.
《Phytomedicine》2014,21(5):607-614
The aim of this study was to determine whether the Rehmannia glutinosa oligosaccharides (ROS) ameliorate the impaired glucose metabolism and the potential mechanism in chronic stress rats fed with high-fat diet. The rats were fed by a high-fat diet and simultaneously stimulated by chronic stress over 5 weeks. Body weight, fasting plasma glucose, intraperitoneal glucose tolerance test (IPGTT), plasma lipids, gluconeogenesis test (GGT), glycogen content, and corticosterone, insulin and leptin levels were measured. The results showed that ROS administration (100, 200 mg/kg, i.g.) for 5 weeks exerted the effects of increasing the organ weights of thymus and spleen, lowering the fasting plasma glucose level, improving impaired glucose tolerance, increasing the contents of liver and muscle glycogen, decreasing the gluconeogenesis ability, plasma-free fatty acid's level, as well as plasma triglyceride and total cholesterol levels in chronic stress and high-fat fed rats, especially in the group of 200 mg/kg; while the plasma corticosterone level was decreased, and plasma leptin level was increased. These results suggest that ROS exert an ameliorating effect of impaired glucose metabolism in chronic stress rats fed with high-fat diet, and the potential mechanism may be mediated through rebuilding the glucose homeostasis in the neuroendocrine immuno-modulation (NIM) network through multilinks and multitargets.  相似文献   

18.
19.
Rat lung microvascular endothelial cell monolayers were exposed to donor plasma from burned rats (25% total body surface area) at 1:3 dilution for 30 min. Immunofluorescence analysis revealed that concomitant with gap formation alterations were seen in the adherens junction (AJ) proteins beta-catenin and vascular endothelial-cadherin. Both of these components were shown to exist in a smooth, uniform arrangement at the cell periphery in untreated cells. However, upon exposure to burn plasma, this uniformity was lost, and the AJ proteins showed a disrupted, zipper-like pattern at the cells' edge. In addition, these proteins were absent from areas of gap formation between the cells, and an increase in punctate staining throughout the cells suggests they were internalized in response to burn plasma. Measurements of both transendothelial electrical resistance and FITC-albumin flux across the cell monolayer were used to assess barrier integrity. Our study found that exposure to burn plasma rapidly caused the electrical resistance across confluent monolayers to decrease and albumin flux to increase, phenomena associated with barrier dysfunction. Furthermore, all the above responses to burn plasma were attenuated when cells were pretreated with the PKC inhibitor bisindolylmaleimide, suggesting that PKC is required for burn-induced pulmonary endothelial dysfunction.  相似文献   

20.
A high-fat diet is thought to enhance inflammation in various tissues by increasing insulin resistance. In this study, we determined the mRNA levels of inflammatory cytokines in leukocyte-derived cells in the blood of rats with high-fat-diet-induced insulin resistance. Feeding rats a high-fat diet for 77 d induced moderate insulin resistance, which was determined by increased plasma glucose and insulin concentrations, following an oral glucose tolerance test. The interleukin (IL)-1β mRNA level was higher in the insulin-resistant rats than in control rats at the fasting stage, whereas the tumor necrosis factor (TNF)-α mRNA level was greatly elevated at 180 min after glucose administration in the insulin-resistant rats. The results suggest that feeding rats a high-fat diet enhances the expression of fasting IL-1β and postprandial TNF-α genes in leukocyte-derived cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号