首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vaccinia topoisomerase forms a covalent protein-DNA intermediate at sites containing the sequence 5'-CCCTT. The T nucleotide is linked via a 3'-phosphodiester bond to Tyr-274 of the enzyme. Here, we report that the enzyme catalyzes hydrolysis of the covalent intermediate, resulting in formation of a 3'-phosphate-terminated DNA cleavage product. The hydrolysis reaction is pH-dependent (optimum pH = 9.5) and is slower, by a factor of 10(-5), than the rate of topoisomerase-catalyzed strand transfer to a 5'-OH terminated DNA acceptor strand. Mutants of vaccinia topoisomerase containing serine or threonine in lieu of the active site Tyr-274 form no detectable covalent intermediate and catalyze no detectable DNA hydrolysis. This suggests that hydrolysis occurs subsequent to formation of the covalent protein-DNA adduct and not via direct attack by water on DNA. Vaccinia topoisomerase also catalyzes glycerololysis of the covalent intermediate. The rate of glycerololysis is proportional to glycerol concentration and is optimal at pH 9.5.  相似文献   

2.
There have been several studies indicating that hydrolysis reactions of fatty acid esters catalyzed by lipases proceed through an acyl-enzyme intermediate typical of serine proteases. In particular, one careful kinetic study with the physiologically important enzyme lipoprotein lipase (LPL) is consistent with rate-limiting deacylation of such an intermediate. To observe the spectrum of acyl-enzyme and study the mechanism of LPL-catalyzed hydrolysis of substrate, we have used a variety of furylacryloyl substrates including 1,2-dipalmitoyl-3-[(beta-2-furylacryloyl)triacyl]glyceride (DPFATG) to study the intermediates formed during the hydrolysis reaction catalyzed by the enzyme. After isolation and characterization of the molecular weight of adipose LPL, we determined its extinction coefficient at 280 nm to quantitate the formation of any acyl-enzyme intermediate formed during substrate hydrolysis. We observed an intermediate at low pH during the enzyme-catalyzed hydrolysis of (furylacryloyl)imidazole. This intermediate builds early in the reaction when a substantial amount of substrate has hydrolyzed but no product, furylacrylate, has been formed. The acyl-enzyme has a lambda max = 305 nm and a molar extinction coefficient of 22,600 M-1 cm-1; these parameters are similar to those for furylacryloyl esters including the serine ester. These data provide the first spectral evidence for a serine acyl-enzyme in lipase-catalyzed reactions. The LPL hydrolysis reaction is base catalyzed, exhibiting two pKa values; the more acidic of these is 6.5, consistent with base catalysis by histidine. The biphasic rates for substrate disappearance or product appearance and the absence of leaving group effect indicate that deacylation of intermediate is rate limiting.  相似文献   

3.
Enzymatic hydrolysis of stampidine and other aryl phosphate derivatives of stavudine were investigated using the Candida Antarctica Type B lipase. Modeling studies and comparison of the hydrolysis rate constants revealed a chiral preference of the lipase active site for the putative S-stereoisomer. The in vitro anti-HIV activity of these compounds correlated with their susceptibility to lipase- (but not esterase-) mediated hydrolysis. We propose that stampidine undergoes rapid enzymatic hydrolysis in the presence of lipase according to the following biochemical pathway: During the first step, hydrolysis of the ester group results in the formation of carboxylic acid. Subsequent step involves an intramolecular cyclization at the phosphorous center with simultaneous elimination of the phenoxy group to form a cyclic intermediate. In the presence of water, this intermediate is converted into the active metabolite Ala-d4T-MP. We postulate that the lipase hydrolyzes the methyl ester group of the l-alanine side chain to form the cyclic intermediate in a stereoselective fashion. This hypothesis was supported by experimental data showing that chloroethyl substituted derivatives of stampidine, which possess a chloroethyl linker unit instead of a methyl ester side chain, were resistant to lipase-mediated hydrolysis, which excludes the possibility of a direct hydrolysis of stampidine at the phosphorous center. Thus, our model implies that the lipase-mediated formation of the cyclic intermediate is a key step in metabolism of stampidine and relies on the initial configuration of the stereoisomers.  相似文献   

4.
Temperature-sensitive reaction intermediate of F1-ATPase   总被引:1,自引:0,他引:1  
F(1)-ATPase is a rotary molecular motor that makes 120 degrees stepping rotations, with each step being driven by a single-ATP hydrolysis. In this study, a new reaction intermediate of F(1)-ATPase was discovered at a temperature below 4 degrees C, which makes a pause at the same angle in its rotation as when ATP binds. The rate constant of the intermediate reaction was strongly dependent on temperature with a Q(10) factor of 19, implying that the intermediate reaction accompanies a large conformational change. Kinetic analyses showed that the intermediate state does not correspond to ATP binding or hydrolysis. The addition of ADP to the reaction mixture did not alter the angular position of the intermediate state, but specifically lengthened the time constant of this state. Conversely, the addition of inorganic phosphate caused a pause at an angle of +80 degrees from that of the intermediate state. These observations strongly suggest that the newly found reaction intermediate is an ADP-releasing step.  相似文献   

5.
Z J Huang 《Biochemistry》1991,30(35):8535-8540
Kinetic fluorescence measurements were employed to quantitative to stepwise hydrolysis of fluorescein di-beta-D-galactoside (FDG) by beta-galactosidase and the intermediate fluorescein mono-beta-D-galactoside (FMG) channeling. The kinetic parameters, Michaelis-Menten constant Km and enzymatic catalysis rate k2, for FDG hydrolysis to FMG by beta-galactosidase were obtained as 18.0 microM and 1.9 mumol.(min-mg)-1, respectively. The FMG intermediate is hydrolyzed via two modes: (1) FMG that is in free solution binding to the enzyme substrate binding site in competition with FDG and then being hydrolyzed (binding mode); (2) FMG being directly hydrolyzed into the final products of fluorescein and galactose before the FMG can diffuse away from the enzyme active site (channeling mode). The extent of the FMG channeling mode was found to depend on the FDG hydrolysis rate but to be independent of the free enzyme concentration. A channeling factor, defined as the ratio of the real FMG hydrolysis rate with both binding and channeling modes over that which would be observed with an exclusive binding mode, was used to quantitate the effect of the intermediate channeling. The FMG channeling factor was determined to be close to 1 at low FDG concentration (about 5.1 microM), where the slow FDG hydrolysis rate gives an ineffective channeling and where the FMG is then hydrolyzed mainly via the binding mode. However, the channeling factor dramatically increases at higher FDG concentrations (greater than Km), strongly indicating that the effective FMG channeling mode, resulting from the considerable FDG hydrolysis rate at high FDG concentrations, becomes a primary pathway to channel a steady system hydrolysis with a high rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The microtubule-based motor molecule cytoplasmic dynein has been proposed to be regulated by a variety of mechanisms, including phosphorylation and specific interaction with the organelle-associated complex, dynactin. In this study, we examined whether the intermediate chain subunits of cytoplasmic dynein are involved in modulation of ATP hydrolysis, and thereby affect motility. Treatment of testis cytoplasmic dynein under hypertonic salt conditions resulted in separation of the intermediate chains from the remainder of the dynein molecule, and led to a 4-fold enhancement of ATP hydrolysis. This result suggests that the accessory subunits act as negative regulators of dynein heavy chain activity. Comparison of ATPase activities of dyneins with differing intermediate chain isoforms showed significant differences in basal ATP hydrolysis rates, with testis dynein 7-fold more active than dynein from brain. Removal of the intermediate chain subunits led to an equalization of ATPase activity between brain and testis dyneins, suggesting that the accessory subunits are responsible for the observed differences in tissue activity. Finally, our preparative procedures have allowed for the identification and purification of a 1:1 complex of dynein with dynactin. As this interaction is presumed to be mediated by the dynein intermediate chain subunits, we now have defined experimental conditions for further exploration of dynein enzymatic and motility regulation.  相似文献   

7.
Quantum chemical calculations were performed on the formation of intermediates with trigonal bipyramidal (TBP) configurations in the hydrolysis of adenosine 3',5'-monophosphate (cAMP) with phosphodiesterases and the activation of protein kinases by cAMP. The results show that in the reaction sequence concerning the hydrolysis of cAMP with phosphodiesterase the TBP intermediate must possess an equatorial-apical cyclic phosphate ring with the 3'-oxygen atom in the apical position. This could be an additional reason for the sensitivity of the 3' position in cAMP towards modifications in comparison with the 5' position. According to the calculations, a mechanistic model is presented for the enzymatic hydrolysis of cAMP with the involvement of a covalently bonded enzyme-nucleotide intermediate. Also a model is offered for the activation of protein kinase by cAMP. The activation of protein kinase is assumed to proceed via diequatorial-ring-positioned TBP intermediates resulting in the formation of a covalent bond between cAMP and the protein kinase with retention of the cyclic phosphate ring. It seems likely that the enzyme-nucleotide intermediate enforces a conformational change in the enzyme, which causes the dissociation of the regulatory and catalytic subunit of the protein kinase, necessary for a physiological response.  相似文献   

8.
D G Brenner  J R Knowles 《Biochemistry》1981,20(13):3680-3687
Penicillanic acid sulfone (1) is both a substrate and an inactivator of the RTEM beta-lactamase. About 7000 hydrolytic events occur before enzyme inactivation. The 6,6-dideuterio sulfone shows a 3-fold acceleration of both the hydrolysis reaction and the enzyme inactivation. The kinetic and spectroscopic results are nicely accommodated by a scheme in which a transiently stable intermediate is formed in an isotopically sensitive step. The deuterated material partitions less readily toward this transiently stable intermediate by virtue of a primary isotope effect, and more enzyme is then available for the hydrolysis and inactivation pathways. Use of the stereospecifically monodeuterated sulfones shows that the 6 beta hydrogen is preferentially abstracted in the formation of the transiently stable intermediate and allows a detailed picture of the interaction of the sulfone and the beta-lactamase to be drawn. The crystal structures of both the labeled and unlabeled compounds are reported.  相似文献   

9.
Epoxide hydrolases (EH) catalyze the hydrolysis of epoxides and arene oxides to their corresponding diols. The crystal structure of murine soluble EH suggests that Tyr(465) and Tyr(381) act as acid catalysts, activating the epoxide ring and facilitating the formation of a covalent intermediate between the epoxide and the enzyme. To explore the role of these two residues, mutant enzymes were produced and the mechanism of action was analyzed. Enzyme assays on a series of substrates confirm that both Tyr(465) and Tyr(381) are required for full catalytic activity. The kinetics of chalcone oxide hydrolysis show that mutation of Tyr(465) and Tyr(381) decreases the rate of binding and the formation of an intermediate, suggesting that both tyrosines polarize the epoxide moiety to facilitate ring opening. These two tyrosines are, however, not implicated in the hydrolysis of the covalent intermediate. Sequence comparisons showed that Tyr(465) is conserved in microsomal EHs. The substitution of analogous Tyr(374) with phenylalanine in the human microsomal EH dramatically decreases the rate of hydrolysis of cis-stilbene oxide. These results suggest that these tyrosines perform a significant mechanistic role in the substrate activation by EHs.  相似文献   

10.
Formation of a sulfonium-like intermediate was assumed in the hydrolysis of the 2-bromoethylthiobenzenes. A linear free energy relationship was found between the hydrolysis rate of a certain substituted 2-bromoethylthiobenzene and the molar fraction of water in the solvent. The effect of the substituent on the rate constant was attributed not only to the activation energy but also to the entropy change of activation. The negative ρ-value in the formation of the sulfonium-like intermediate in aqueous solution was comparable with that obtained in the ρ-σ-π analysis for ovicidal activity of the compounds.

For the reaction of the substituted 2-bromoethylthiobenzenes with highly excess amount of 4-(p-nitrobenzyl)-pyridine, the ρ-value was found to be negative, which means that the formation of the sulfonium-like intermediate is a rate determining step. Whichever might be more important, the hydrolysis or alkylation, as to the ovicidal action of the compounds, the formation of the sulfonium-like intermediate, could be considered to be an essential step.  相似文献   

11.
Huang K  Arabshahi A  Wei Y  Frey PA 《Biochemistry》2004,43(23):7637-7642
The human fragile histidine triad protein Fhit catalyzes the Mg(2+)-dependent hydrolysis of P(1)-5'-O-adenosine-P(3)-5'-O-adenosine triphosphate, Ap(3)A, to AMP and ADP. The reaction is thought to follow a two-step mechanism, in which the complex of Ap(3)A and Mg(2+) reacts in the first step with His96 of the enzyme to form a covalent Fhit-AMP intermediate and release MgADP. In the second step, the intermediate Fhit-AMP undergoes hydrolysis to AMP and Fhit. The mechanism is inspired by the chain-fold similarities of Fhit to galactose-1-phosphate uridylyltransferase, which functions by an analogous mechanism, and the observation of overall retention in configuration at phosphorus in the action of Fhit (Abend, A., Garrison, P. N., Barnes, L. D., and Frey, P. A. (1999) Biochemistry 38, 3668-3676). Direct evidence in support of this mechanism is reported herein. Reaction of Fhit with [8,8'-(3)H]-Ap(3)A and denaturation of the enzyme in the steady state leads to protein-bound tritium corresponding to 11% of the active sites. Similar experiments with the poor substrate MgATP leads to 0.9% labeling. The mutated protein H96G-Fhit is completely inactive against MgAp(3)A. However, it is chemically rescued by free histidine. H96G-Fhit also catalyzes the hydrolysis of adenosine-5'-phosphoimidazolide, AMP-Im, and of adenosine-5'-phospho-N-methylimidazolide, AMP-N-MeIm. The hydrolyses of AMP-Im and of AMP-N-MeIm by H96G-Fhit are thought to represent chemical rescue of the covalent Fhit-AMP intermediate. Wild-type Fhit is also found to catalyze the hydrolyses of AMP-Im and of AMP-N-MeIm nearly as efficiently as the hydrolysis of MgAp(3)A. The results indicate that Mg(2+) in the reaction of Ap(3)A is required for the first step, the formation of the covalent intermediate Fhit-AMP, and not for the hydrolysis of the intermediate in the second step.  相似文献   

12.
Sun L  Martin DC  Kantrowitz ER 《Biochemistry》1999,38(9):2842-2848
Escherichia coli alkaline phosphatase catalyzes both the nonspecific hydrolysis of phosphomonoesters and a transphosphorylation reaction in which phosphate is transferred to an alcohol via a phosphoseryl intermediate. The rate-determining step for the wild-type enzyme is pH dependent. At alkaline pH, release of the product phosphate from the noncovalent enzyme-phosphate complex determines the reaction rate, whereas at acidic pH hydrolysis of the covalent enzyme-phosphate complex controls the reaction rate. When the lysine at position 328 was substituted with a cysteine (K328C), the rate-determining step at pH 8.0 of the mutant enzyme was altered so that hydrolysis of the covalent intermediate became limiting rather than phosphate release. The transphosphorylation activity of the K328C enzyme was selectively enhanced, while the hydrolysis activity was reduced compared to that of the wild-type enzyme. The ratio of the transphosphorylation to the hydrolysis activities increased 28-fold for the K328C enzyme in comparison with the wild-type enzyme. Several other mutant enzymes for which a positive charge at the active center is removed by site-specific mutagenesis share this characteristic of the K328C enzyme. These results suggest that the positive charge at position 328 is at least partially responsible for maintaining the balance between the hydrolysis and transphosphorylation activities and plays an important role in determining the rate-limiting step of E. coli alkaline phosphatase.  相似文献   

13.
D W Bolen  T Kimura  Y Nitta 《Biochemistry》1987,26(1):146-153
Hydrolysis of omicron-hydroxy-alpha-toluenesulfonic acid sultone (sultone II) is mediated by alpha-chymotrypsin. Sultone II is a highly strained cyclic ester substrate that forms a covalent intermediate with the enzyme and is therefore expected to release ring-strain energy upon formation of the sulfonyl enzyme species. It is found that the equilibrium constant for forming the covalent intermediate from the Michaelis complex is quite modest (K2 = 16.4), suggesting that perhaps the strain energy is not released in the ring-cleavage event. The implied retention of chemical (strain) energy by the sulfonyl enzyme species raises the question of the means by which the enzyme avoids expression of strain energy and the implications of this effect in the catalytic sequence. High-pressure liquid chromatography (HPLC) rate data demonstrate facile reversion of sulfonyl enzyme to the Michaelis complex, and that reversion is preferred over hydrolysis of the covalent intermediate. pH-independent rate and equilibrium constants are derived for the alpha-chymotrypsin-mediated hydrolysis of sultone II, and pKa values for groups on the enzyme are reported that are consistent with literature values obtained from analysis of nonspecific substrate hydrolysis by the enzyme.  相似文献   

14.
BphD of Burkholderia xenovorans LB400 catalyzes an unusual C-C bond hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) to afford benzoic acid and 2-hydroxy-2,4-pentadienoic acid (HPD). An enol-keto tautomerization has been proposed to precede hydrolysis via a gem-diol intermediate. The role of the canonical catalytic triad (Ser-112, His-265, Asp-237) in mediating these two half-reactions remains unclear. We previously reported that the BphD-catalyzed hydrolysis of HOPDA (lambda(max) is 434 nm for the free enolate) proceeds via an unidentified intermediate with a red-shifted absorption spectrum (lambda(max) is 492 nm) (Horsman, G. P., Ke, J., Dai, S., Seah, S. Y. K., Bolin, J. T., and Eltis, L. D. (2006) Biochemistry 45, 11071-11086). Here we demonstrate that the S112A variant generates and traps a similar intermediate (lambda(max) is 506 nm) with a similar rate, 1/tau approximately 500 s(-1). The crystal structure of the S112A:HOPDA complex at 1.8-A resolution identified this intermediate as the keto tautomer, (E)-2,6-dioxo-6-phenyl-hex-3-enoate. This keto tautomer did not accumulate in either the H265A or the S112A/H265A double variants, indicating that His-265 catalyzes tautomerization. Consistent with this role, the wild type and S112A enzymes catalyzed tautomerization of the product HPD, whereas H265A variants did not. This study thus identifies a keto intermediate, and demonstrates that the catalytic triad histidine catalyzes the tautomerization half-reaction, expanding the role of this residue from its purely hydrolytic function in other serine hydrolases. Finally, the S112A:HOPDA crystal structure is more consistent with hydrolysis occurring via an acyl-enzyme intermediate than a gem-diol intermediate as solvent molecules have poor access to C6, and the closest ordered water is 7 A away.  相似文献   

15.
Phalloidin, an actin-filament stabilizing peptide from Amanita phalloides, did not inhibit ATP hydrolysis during actin polymerization but strongly retarded the release of the hydrolysis product Pi. Thus, the lifetime of the intermediate F-actin-ADP-Pi is significantly increased by phalloidin. The results suggest a close correlation between filament stability and F-actin-ADP-Pi intermediates.  相似文献   

16.
Imidoesters have been used in biological studies to measure interresidue distances of proteins and macromolecular complexes, and in hematology as antisickling agents. Treatment of human red blood cells with14C-labeled dimethyl adipimidate (DMA), a bifunctional imidoester with antisickling properties, was followed by gradual loss of radioactivity from the treated cells. The radioactive compound released was isolated by thin-layer chromatography and identified by high-resolution mass spectrometry and by carbon-13 nuclear magnetic resonance, ultraviolet, and infrared spectroscopy as 5-carbomethyoxyvaleramidine, which was also shown to be the major product of DMA hydrolysis in vitro at physiologic pH in phosphate buffer. High-resolution mass spectrometry studies indicated that this product is formed via cyclization to a reactive intermediate (7-methoxy-2-imino-3,4,5,6-tetrahydro-2H-azepine) followed by hydrolysis. The intermediate exhibited strong UV absorbance, maximal at 232 nm. Such an intermediate would be capable of participating in cross-linking reactions which would have smaller dimensions than those observed with the imidoester in its extended form. The hydrolysis product, an unreactive species, should have no toxic effects on individuals receiving infusions of DMA-treated red cells.  相似文献   

17.
J A Sleep  P D Boyer 《Biochemistry》1978,17(25):5417-5422
The effect of actin concentration on the myosin catalyzed exchange of phosphate oxygens with water accompanying ATP hydrolysis has been investigated. The extent of exchange was found to extrapolate to zero at infinite actin concentration at 23 and 0 degrees C for myosin subfragments S1(A1) and S1(A2). This result is consistent with actin associating directly with the product of the hydrolysis step and is not readily consistent with refractory state schemes in which the entire flow goes via a dissociating pathway. The possibility of a refractory state in the form of a phosphorylated intermediate or a bound metaphosphate state with hydrolysis occurring in the transition to the refractory state merits consideration. A full analysis of the dependence of intermediate exchange on the rate constants of the acto-S1 scheme is given and the errors arising from other methods of analysis are discussed. The rate of oxygen exchange was measured as 10 s-1 (23 degrees C) a value comparable with but slightly lower than the rate of reversal of the ATP cleavage step.  相似文献   

18.
Methanol or ethanol can replace water in the action of certain chromosomal beta-lactamases on benzylpenicillin: the products are alpha-methyl or alpha-ethyl benzylpenicilloate. The beta-lactamases were from a mutant of Pseudomonas aeruginosa 18S that produces the enzyme constitutively [Flett, Curtis & Richmond (1976) J. Bacteriol. 127, 1585-1586; Berks, Redhead & Abraham (1982) J. Gen. Microbiol. 128, 155-159] and from Escherichia coli K12 (the ampC beta-lactamase) [Lindstr?m, Boman & Steele (1970) J. Bacteriol. 101, 218-231]. The variation of the rates of alcoholysis and hydrolysis with concentration of alcohol show that the rate-determining step is breakdown of an intermediate. This intermediate is likely to be the acyl-enzyme. The esters, alpha-methyl or alpha-ethyl benzylpenicilloate, are themselves substrates for the Pseudomonas beta-lactamase, benzylpenicilloic acid being formed. Thus this beta-lactamase can be an esterase. The kinetics for the hydrolysis of cloxacillin by the Pseudomonas beta-lactamase are consistent with the acyl-enzyme, formed by acylation of serine-80, being an intermediate in the overall hydrolysis.  相似文献   

19.
Mechanistic study of beta-xylosidase from Trichoderma koningii G-39   总被引:1,自引:0,他引:1  
The catalytic mechanism of the beta-xylosidase purified from the culture filtrate of Trichoderma koningii G-39 was investigated. By NMR spectroscopy, the stereochemistry of the enzyme catalyzing the hydrolysis of 2,4-dinitrophenyl and p-nitrophenyl-beta-D-xylosides was found unequivocally to involve retention of the anomeric configuration. Based on the k(cat) values of a series of arylxylosides with leaving group pK(a)s in the range of 4-10, an extended Bronsted plot was constructed with a slope (beta(lg)) near zero. Enzymatic hydrolysis of aryl-beta-D-xylosides in acetate buffer (pH 4.0) containing 3 or 5% methanol showed a constant product ratio (methylxyloside/xylose), indicating the presence of a common intermediate, probably the xylosyl-enzyme intermediate. In the presence of DTT, the k(cat) values of p-cyanophenyl-beta-D-xylopyranoside and p-nitrophenyl-beta-D-xylopyranoside increased greatly. A two-step mechanism involving the formation and breakdown of the xylosyl-enzyme intermediate was therefore proposed. The rate-limiting step is the breakdown of the intermediate. The secondary deuterium kinetic isotope effect (k(H)/k(D)) measured for 2,4-dinitrophenyl-beta-D-xyloside was 1.02+/-0.01, suggesting that the transition state for breakdown of the xylosyl-enzyme intermediate is S(N)2-like.  相似文献   

20.
The fatty acyl (lipid) p-nitrophenyl esters p-nitrophenyl caprylate, p-nitrophenyl laurate and p-nitrophenyl palmitate that are incorporated at a few mol % into mixed micelles with Triton X-100 are substrates for bovine milk lipoprotein lipase. When the concentration of components of the mixed micelles is approximately equal to or greater than the critical micelle concentration, time courses for lipoprotein lipase-catalyzed hydrolysis of the esters are described by the integrated form of the Michaelis-Menten equation. Least square fitting to the integrated equation therefore allows calculation of the interfacial kinetic parameters Km and Vmax from single runs. The computational methodology used to determine the interfacial kinetic parameters is described in this paper and is used to determine the intrinsic substrate fatty acyl specificity of lipoprotein lipase catalysis, which is reflected in the magnitude of kcat/Km and kcat. The results for interfacial lipoprotein lipase catalysis, along with previously determined kinetic parameters for the water-soluble esters p-nitrophenyl acetate and p-nitrophenyl butyrate, indicate that lipoprotein lipase has highest specificity for the substrates that have fatty acyl chains of intermediate length (i.e. p-nitrophenyl butyrate and p-nitrophenyl caprylate). The fatty acid products do not cause product inhibition during lipoprotein lipase-catalyzed hydrolysis of lipid p-nitrophenyl esters that are contained in Triton X-100 micelles. The effects of the nucleophiles hydroxylamine, hydrazine, and ethylenediamine on Km and Vmax for lipoprotein lipase catalyzed hydrolysis of p-nitrophenyl laurate are consistent with trapping of a lauryl-lipoprotein lipase intermediate. This mechanism is confirmed by analysis of the product lauryl hydroxamate when hydroxylamine is the nucleophile. Hence, lipoprotein lipase-catalyzed hydrolysis of lipid p-nitrophenyl esters that are contained in Triton X-100 micelles occurs via an interfacial acyl-lipoprotein lipase mechanism that is rate-limited by hydrolysis of the acyl-enzyme intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号