首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABC50 is an ABC (ATP-binding cassette) protein which, unlike most ABC proteins, lacks membrane-spanning domains. ABC50 interacts with eIF2 (eukaryotic initiation factor 2), a protein that plays a key role in translation initiation and in its control, and in regulation of ribosomes. Here, we establish that the interaction of ABC50 with eIF2 involves features in the N-terminal domain of ABC50, the region of ABC50 that differs most markedly from other ABC proteins. This region also shows no apparent similarity to the eIF2-binding domains of other partners of eIF2. In contrast, the N-terminus of ABC50 cannot bind to ribosomes by itself, but it can in conjunction with one of the nucleotide-binding domains. We demonstrate that ABC50 is a phosphoprotein and is phosphorylated at two sites by CK2. These sites, Ser-109 and Ser-140, lie in the N-terminal part of ABC50 but are not required for the binding of ABC50 to eIF2. Expression of a mutant of ABC50 in which both sites are mutated to alanine markedly decreased the association of eIF2 with 80S ribosomal and polysomal fractions.  相似文献   

2.
Eukaryotic translation initiation factor 6 (eIF6) binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. The Saccharomyces cerevisiae gene that encodes the 245-amino-acid eIF6 (calculated Mr 25,550), designated TIF6, has been cloned and expressed in Escherichia coli. The purified recombinant protein prevents association between 40S and 60S ribosomal subunits to form 80S ribosomes. TIF6 is a single-copy gene that maps on chromosome XVI and is essential for cell growth. eIF6 expressed in yeast cells associates with free 60S ribosomal subunits but not with 80S monosomes or polysomal ribosomes, indicating that it is not a ribosomal protein. Depletion of eIF6 from yeast cells resulted in a decrease in the rate of protein synthesis, accumulation of half-mer polyribosomes, reduced levels of 60S ribosomal subunits resulting in the stoichiometric imbalance in the 40S/60S subunit ratio, and ultimately cessation of cell growth. Furthermore, lysates of yeast cells depleted of eIF6 remained active in translation of mRNAs in vitro. These results indicate that eIF6 does not act as a true translation initiation factor. Rather, the protein may be involved in the biogenesis and/or stability of 60S ribosomal subunits.  相似文献   

3.
In eukaryotic cells subjected to environmental stress, untranslated mRNA accumulates in discrete cytoplasmic foci that have been termed stress granules. Recent studies have shown that in addition to mRNA, stress granules also contain 40S ribosomal subunits and various translation initiation factors, including the mRNA binding proteins eIF4E and eIF4G. However, eIF2, the protein that transfers initiator methionyl-tRNA(i) (Met-tRNA(i)) to the 40S ribosomal subunit, has not been detected in stress granules. This result is surprising because the eIF2. GTP. Met-tRNA(i) complex is thought to bind to the 40S ribosomal subunit before the eIF4G. eIF4E. mRNA complex. In the present study, we show in both NIH-3T3 cells and mouse embryo fibroblasts that stress granules contain not only eIF2 but also the guanine nucleotide exchange factor for eIF2, eIF2B. Moreover, we show that phosphorylation of the alpha-subunit of eIF2 is necessary and sufficient for stress granule formation during the unfolded protein response. Finally, we also show that stress granules contain many, if not all, of the components of the 48S preinitiation complex, but not 60S ribosomal subunits, suggesting that they represent stalled translation initiation complexes.  相似文献   

4.
ABC50 is an ATP-binding cassette (ABC) protein, which, unlike most ABC proteins, does not possess membrane-spanning domains. ABC50 interacts with eukaryotic initiation factor 2 (eIF2), which plays a key role in translation initiation and its control. ABC50 binds to ribosomes, and this interaction requires both the N-terminal domain and at least one ABC domain. Knockdown of ABC50 by RNA interference impaired translation of both cap-dependent and -independent reporters, consistent with a positive role for ABC50 in the function of eIF2, which is required for both types of translation initiation. Mutation of the Walker box A or B motifs in both ABC regions of ABC50 yielded a mutant protein that exerted a dominant-interfering phenotype with respect to protein synthesis and translation initiation. Importantly, although dominant-interfering mutants of ABC50 impaired cap-dependent translation, translation driven by certain internal ribosome entry segments was not inhibited. ABC50 is located in the cytoplasm and nucleoplasm but not in the nucleolus. Thus, ABC50 is not likely to be directly involved in early ribosomal biogenesis, unlike some other ABC proteins. Taken together, the present data show that ABC50 plays a key role in translation initiation and has functions that are distinct from those of other non-membrane ABC proteins.ABC50 was first reported as a protein whose expression is increased following treatment of synoviocytes with tumor necrosis factor α (1). ABC50 was subsequently identified independently as a protein that co-purified extensively with eukaryotic initiation factor 2 (eIF2)2 (2). In common with other members of the ATP-binding cassette (ABC) family of proteins, ABC50 contains two ATP-binding cassettes (also termed nucleotide-binding domains (NBDs)) (1). Unlike most other members of the group, however, it lacks recognizable trans-membrane domains.Sequence analysis revealed that ABC50 is a close relative of the yeast protein Gcn20p, which is required for the control by amino acids of the yeast eIF2 kinase, Gcn2p, which is activated by binding to uncharged tRNA molecules (3). Gcn20p is thought to cooperate with Gcn1p to bring uncharged tRNAs to Gcn2p during the elongation process; this couples the availability of amino acids for tRNA charging to the control of Gcn2p (4). However, Gcn20p and ABC50 differ in important respects. For example, whereas Gcn20p associates with ribosomes that are engaged in elongation, ABC50 apparently binds ribosomes involved in initiation as well as elongation (2). Its association with ribosomes is stimulated by ATP. In addition, although Gcn20p and ABC50 are similar in their ABC domains, they differ markedly in their N termini. Since it is only the N terminus of Gcn20p that is required to support the function of Gcn2p in yeast (4), it seems likely that ABC50 and Gcn20p play distinct roles.Tyzack et al. (2) have provided initial data indicating that ABC50 stimulates the formation of complexes between eIF2, GTP, and the initiator methionyl-tRNA in vitro. It did so without affecting the binding of guanine nucleotides to eIF2, indicating that the effect is likely to be on the association of initiator methionyl-tRNA with eIF2. The available data thus suggested that ABC50 might play a positive role in the initiation of protein synthesis. However, no data for this have previously been presented. Similarly, the manner in which ABC50 binds to ribosomes, the significance of its ABC domains, and other features remained unclear.The two NBDs of ABC proteins are involved in nucleotide binding/hydrolysis and contain a number of conserved features, including the Walker box A and B motifs and the “ABC signature motif” (usually LSGGQ) (5, 6). The NBDs of eukaryotic ABC proteins “dimerize” such that the two ATP-binding/hydrolytic sites involve Walker box A of one NBD and the ABC signature motif of the other.Certain other non-membrane ABC proteins are known to be involved in translation or its control (7). Indeed, three of the eukaryotic ABCF classes contain proteins involved in the control of protein translation. Class I proteins are exemplified by ABC50 (also termed ABCF1). Class III proteins (exemplified by yeast Gcn20p) can interact with the ribosome in an ATP-dependent manner (4). The proteins of Class IVA (elongation factor 3) mediate translation elongation in certain fungi. eEF3 stimulates binding of the eEF1·GTP·aminoacyl-tRNA ternary complex to the ribosomal A site by facilitating the release of the deacylated tRNA from the E site, thus stimulating protein synthesis (8, 9). On the other hand, Class IVB contains proteins thought to be important for the export of mRNAs from the nucleus in yeast (10).The ABCE1 gene product was originally identified for its inhibition of ribonuclease L (11) and is hence also termed RLI1. Yeast Rli1p associates with 40 S ribosomal subunits in vivo and can interact with eIF3 and eIF5 independently of ribosomes (12). The available data indicate that ABCE1 is involved in both ribosome biogenesis and mRNA translation and shuttles between cytoplasm and nucleus, possibly as a nucleocytoplasmic transporter (1317).Here, we report the first detailed investigation into the function and interactions of ABC50. The data described here identify features of ABC50 that are required for its interaction with ribosomes. Most importantly, we provide the first evidence that ABC50 is required for efficient translation initiation in living cells and show that the requirement for ABC50 differs between cap-dependent and internal ribosome entry segment (IRES)-dependent translation. These and other data indicate that the function of ABC50 is distinct from those of other ABC proteins.  相似文献   

5.
6.
Translation initiation factor (eIF) 4G represents a critical link between mRNAs and 40S ribosomal subunits during translation initiation. It interacts directly with the cap-binding protein eIF4E through its N-terminal part, and binds eIF3 and eIF4A through the central and C-terminal region. We expressed and purified recombinant variants of human eIF4G lacking the N-terminal domain as GST-fusion proteins, and studied their function in cell-free translation reactions. Both eIF4G lacking its N-terminal part (aa 486-1404) and the central part alone (aa 486-935) exert a dominant negative effect on the translation of capped mRNAs. Furthermore, these polypeptides potently stimulate the translation of uncapped mRNAs. Although this stimulation is cap-independent, it is shown to be dependent on the accessibility of the mRNA 5' end. These results reveal two unexpected features of eIF4G-mediated translation. First, the C-terminal eIF4A binding site is dispensable for activation of uncapped mRNA translation. Second, translation of uncapped mRNA still requires 5' end-dependent ribosome binding. These new findings are incorporated into existing models of mammalian translation initiation.  相似文献   

7.
Reconstitution reveals the functional core of mammalian eIF3   总被引:6,自引:0,他引:6  
Eukaryotic translation initiation factor (eIF)3 is the largest eIF ( approximately 650 kDa), consisting of 10-13 different polypeptide subunits in mammalian cells. To understand the role of each subunit, we successfully reconstituted a human eIF3 complex consisting of 11 subunits that promoted the recruitment of the 40S ribosomal subunit to mRNA. Strikingly, the eIF3g and eIF3i subunits, which are evolutionarily conserved between human and the yeast Saccharomyces cerevisiae are dispensable for active mammalian eIF3 complex formation. Extensive deletion analyses suggest that three evolutionarily conserved subunits (eIF3a, eIF3b, and eIF3c) and three non-conserved subunits (eIF3e, eIF3f, and eIF3h) comprise the functional core of mammalian eIF3.  相似文献   

8.
We have used an in vitro translation initiation assay to investigate the requirements for the efficient transfer of Met-tRNAf (as Met-tRNAf.eIF2.GTP ternary complex) to 40 S ribosomal subunits in the absence of mRNA (or an AUG codon) to form the 40 S preinitiation complex. We observed that the 17-kDa initiation factor eIF1A is necessary and sufficient to mediate nearly quantitative transfer of Met-tRNAf to isolated 40 S ribosomal subunits. However, the addition of 60 S ribosomal subunits to the 40 S preinitiation complex formed under these conditions disrupted the 40 S complex resulting in dissociation of Met-tRNAf from the 40 S subunit. When the eIF1A-dependent preinitiation reaction was carried out with 40 S ribosomal subunits that had been preincubated with eIF3, the 40 S preinitiation complex formed included bound eIF3 (40 S.eIF3. Met-tRNAf.eIF2.GTP). In contrast to the complex lacking eIF3, this complex was not disrupted by the addition of 60 S ribosomal subunits. These results suggest that in vivo, both eIF1A and eIF3 are required to form a stable 40 S preinitiation complex, eIF1A catalyzing the transfer of Met-tRNAf.eIF2.GTP to 40 S subunits, and eIF3 stabilizing the resulting complex and preventing its disruption by 60 S ribosomal subunits.  相似文献   

9.
The rate of protein synthesis in quiescent peripheral blood T lymphocytes increases dramatically following mitogenic activation. The stimulation of translation is due to an increase in the rate of initiation caused by the regulation of initiation factor activities. Here, we focus on eIF3, a large multiprotein complex that plays a central role in the formation of the 40 S initiation complex. Using sucrose density gradient centrifugation to analyze ribosome complexes, we find that most eIF3 is not bound to 40 S ribosomal subunits in unactivated T lymphocytes but becomes ribosome-bound following activation. Immunoblot analyses of sucrose gradient fractions for individual eIF3 subunits show that the small eIF3j subunit is unassociated with the eIF3 complex in quiescent T lymphocytes, but upon activation joins the other eIF3 subunits and binds 40 S ribosomal subunits. Because eIF3j has been shown to be required for eIF3 binding to 40 S ribosomes in vitro, the results suggest that mitogenic stimulation of T lymphocytes leads to an activation of eIF3j, thereby enabling eIF3 to bind to the larger ribosome-free eIF3 subunit complex, and then to the 40 S ribosomes. The association of eIF3j with the other eIF3 subunits appears to be inhibited by rapamycin, suggesting a mechanism that lies downstream from the mammalian target of rapamycin kinase. This association requires ionomycin together with a phorbol ester, which also suggests that calcium signaling is involved. We conclude that the complex formation of eIF3 and its association with the ribosomes might contribute to increased translation rates during T lymphocyte activation.  相似文献   

10.
The protein encoded by the fission yeast gene, moe1(+) is the homologue of the p66/eIF3d subunit of mammalian translation initiation factor eIF3. In this study, we show that in fission yeast, Moe1 physically associates with eIF3 core subunits as well as with 40 S ribosomal particles as a constituent of the eIF3 protein complex that is similar in size to multisubunit mammalian eIF3. However, strains lacking moe1(+) (Deltamoe1) are viable and show no gross defects in translation initiation, although the rate of translation in the Deltamoe1 cells is about 30-40% slower than wild-type cells. Mutant Deltamoe1 cells are hypersensitive to caffeine and defective in spore formation. These phenotypes of Deltamoe1 cells are similar to those reported previously for deletion of the fission yeast int6(+) gene that encodes the fission yeast homologue of the p48/Int6/eIF3e subunit of mammalian eIF3. Further analysis of eIF3 subunits in Deltamoe1 or Deltaint6 cells shows that in these deletion strains, while all the eIF3 subunits are bound to 40 S particles, dissociation of ribosome-bound eIF3 results in the loss of stable association between the eIF3 subunits. In contrast, eIF3 isolated from ribosomes of wild-type cells are associated with one another in a protein complex. These observations suggest that Moe1 and spInt6 are each required for stable association of eIF3 subunits in fission yeast.  相似文献   

11.
RLI1 is an essential yeast protein closely related in sequence to two soluble members of the ATP-binding cassette family of proteins that interact with ribosomes and function in translation elongation (YEF3) or translational control (GCN20). We show that affinity-tagged RLI1 co-purifies with eukaryotic translation initiation factor 3 (eIF3), eIF5, and eIF2, but not with other translation initiation factors or with translation elongation or termination factors. RLI1 is associated with 40 S ribosomal subunits in vivo, but it can interact with eIF3 and -5 independently of ribosomes. Depletion of RLI1 in vivo leads to cessation of growth, a lower polysome content, and decreased average polysome size. There was also a marked reduction in 40 S-bound eIF2 and eIF1, consistent with an important role for RLI1 in assembly of 43 S preinitiation complexes in vivo. Mutations of conserved residues in RLI1 expected to function in ATP hydrolysis were lethal. A mutation in the second ATP-binding cassette domain of RLI1 had a dominant negative phenotype, decreasing the rate of translation initiation in vivo, and the mutant protein inhibited translation of a luciferase mRNA reporter in wild-type cell extracts. These findings are consistent with a direct role for the ATP-binding cassettes of RLI1 in translation initiation. RLI1-depleted cells exhibit a deficit in free 60 S ribosomal subunits, and RLI1-green fluorescent protein was found in both the nucleus and cytoplasm of living cells. Thus, RLI1 may have dual functions in translation initiation and ribosome biogenesis.  相似文献   

12.
The binding of mRNA to the ribosome is mediated by eukaryotic initiation factors eukaryotic initiation factor 4F (eIF4F), eIF4B, eIF4A, and eIF3, eIF4F binds to the mRNA cap structure and, in combination with eIF4B, is believed to unwind the secondary structure in the 5' untranslated region to facilitate ribosome binding. eIF3 associates with the 40S ribosomal subunit prior to mRNA binding. eIF4B copurifies with eIF3 and eIF4F through several purification steps, suggesting the involvement of a multisubunit complex during translation initiation. To understand the mechanism by which eIF4B promotes 40S ribosome binding to the mRNA, we studied its interactions with partner proteins by using a filter overlay (protein-protein [far Western]) assay and the two-hybrid system. In this report, we show that eIF4B self-associates and also interacts directly with the p170 subunit of eIF3. A region rich in aspartic acid, arginine, tyrosine, and glycine, termed the DRYG domain, is sufficient for self-association of eIF4B, both in vitro and in vivo, and for interaction with the p170 subunit of eIF3. These experiments suggest that eIF4B participates in mRNA-ribosome binding by acting as an intermediary between the mRNA and eIF3, via a direct interaction with the p170 subunit of eIF3.  相似文献   

13.
The translation initiation step in eukaryotes is highly regulated and rate-limiting. During this process, the 40S ribosomal subunit is usually recruited to the 5' terminus of the mRNA. It then migrates towards the initiation codon, where it is joined by the 60S ribosomal subunit to form the 80S initiation complex. Secondary structures in the 5' untranslated region (UTR) can impede binding and movement of the 40S ribosome. The canonical eukaryotic translation initiation factor eIF4A (also known as DDX2), together with its accessory proteins eIF4B and eIF4H, is thought to act as a helicase that unwinds secondary structures in the mRNA 5' UTR. Growing evidence suggests that other helicases are also important for translation initiation and may promote the scanning processivity of the 40S subunit, synergize with eIF4A to 'melt' secondary structures or facilitate translation of a subset of mRNAs.  相似文献   

14.
Eukaryotic ribosome biogenesis and translation are linked processes that limit the rate of cell growth. Although ribosome biogenesis and translation are mainly controlled by distinct factors, eukaryotic initiation factor 6 (eIF6) has been found to regulate both processes. eIF6 is a necessary protein with a unique anti‐association activity, which prevents the interaction of 40S ribosomal subunits with 60S subunits through its binding to 60S ribosomes. In the nucleolus, eIF6 is a component of the pre‐ribosomal particles and is required for the biogenesis of 60S subunits, whereas in the cytoplasm it mediates translation downstream from growth factors. The translational activity of eIF6 could be due to its anti‐association properties, which are regulated by post‐translational modifications; whether this anti‐association activity is required for the biogenesis and nuclear export of ribosomes is unknown. eIF6 is necessary for tissue‐specific growth and oncogene‐driven transformation, and could be a new rate‐limiting step for the initiation of translation.  相似文献   

15.
Most eukaryotic initiation factors (eIFs) are required for internal translation initiation at the internal ribosome entry site (IRES) of picornaviruses. eIF4B is incorporated into ribosomal 48S initiation complexes with the IRES RNA of foot-and-mouth disease virus (FMDV). In contrast to the weak interaction of eIF4B with capped cellular mRNAs and its release upon entry of the ribosomal 60S subunit, eIF4B remains tightly associated with the FMDV IRES during formation of complete 80S ribosomes. Binding of eIF4B to the IRES is energy dependent, and binding of the small ribosomal subunit to the IRES requires the previous energy-dependent association of initiation factors with the IRES. The interaction of eIF4B with the IRES in 48S and 80S complexes is independent of the location of the initiator AUG and thus independent of the mechanism by which the small ribosomal subunit is placed at the actual start codon, either by direct internal ribosomal entry or by scanning. eIF4B does not greatly rearrange its binding to the IRES upon entry of the ribosomal subunits, and the interaction of eIF4B with the IRES is independent of the polypyrimidine tract-binding protein, which enhances FMDV translation.  相似文献   

16.
Members of the p56 family of mammalian proteins are strongly induced in virus-infected cells and in cells treated with interferons or double-stranded RNA. Previously, we have reported that human p56 inhibits initiation of translation by binding to the "e" subunit of eukaryotic initiation factor 3 (eIF3) and subsequently interfering with the eIF3/eIF2.GTP.Met-tRNAi (ternary complex) interaction. Here we report that mouse p56 also interferes with eIF3 functions and inhibits translation. However, the murine protein binds to the "c" subunit, not the "e" subunit, of eIF3. Consequently, it has only a marginal effect on eIF3.ternary complex interaction. Instead, the major inhibitory effect of mouse p56 is manifested at a different step of translation initiation, namely the binding of eIF4F to the 40 S ribosomal subunit.eIF3.ternary complex. Thus, mouse and human p56 proteins block different functions of eIF3 by binding to its different subunits.  相似文献   

17.
18.
Despite recent progress in our understanding of the numerous functions of individual subunits of eukaryotic translation initiation factor (eIF) 3, little is known on the molecular level. Using NMR spectroscopy, we determined the first solution structure of an interaction between eIF3 subunits. We revealed that a conserved tryptophan residue in the human eIF3j N-terminal acidic motif (NTA) is held in the helix α1 and loop 5 hydrophobic pocket of the human eIF3b RNA recognition motif (RRM). Mutating the corresponding “pocket” residues in its yeast orthologue reduces cellular growth rate, eliminates eIF3j/HCR1 association with eIF3b/PRT1 in vitro and in vivo, affects 40S occupancy of eIF3, and produces a leaky scanning defect indicative of a deregulation of the AUG selection process. Unexpectedly, we found that the N-terminal half of eIF3j/HCR1 containing the NTA is indispensable and sufficient for wild-type growth of yeast cells. Furthermore, we demonstrate that deletion of either j/HCR1 or its N-terminal half only, or mutation of the key tryptophan residues results in the severe leaky scanning phenotype partially suppressible by overexpressed eIF1A, which is thought to stabilize properly formed preinitiation complexes at the correct start codon. These findings indicate that eIF3j/HCR1 remains associated with the scanning preinitiation complexes and does not dissociate from the small ribosomal subunit upon mRNA recruitment, as previously believed. Finally, we provide further support for earlier mapping of the ribosomal binding site for human eIF3j by identifying specific interactions of eIF3j/HCR1 with small ribosomal proteins RPS2 and RPS23 located in the vicinity of the mRNA entry channel. Taken together, we propose that eIF3j/HCR1 closely cooperates with the eIF3b/PRT1 RRM and eIF1A on the ribosome to ensure proper formation of the scanning-arrested conformation required for stringent AUG recognition.  相似文献   

19.
Eukaryotic translation initiation factor 4G (eIF4G), which has two homologs known as eIF4GI and eIF4GII, functions in a complex (eIF4F) which binds to the 5' cap structure of cellular mRNAs and facilitates binding of capped mRNA to 40S ribosomal subunits. Disruption of this complex in enterovirus-infected cells through eIF4G cleavage is known to block this step of translation initiation, thus leading to a drastic inhibition of cap-dependent translation. Here, we show that like eIF4GI, the newly identified homolog eIF4GII is cleaved during apoptosis in HeLa cells and can serve as a substrate for caspase 3. Proteolysis of both eIF4GI and eIF4GII occurs with similar kinetics and coincides with the profound translation inhibition observed in cisplatin-treated HeLa cells. Both eIF4GI and eIF4GII can be cleaved by caspase 3 with similar efficiency in vitro, however, eIF4GII is processed into additional fragments which destroy its core central domain and likely contributes to the shutoff of translation observed in apoptosis. Cell Death and Differentiation (2000) 7, 1234 - 1243.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号