首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study focuses on Ultra Violet stress (UVS) gene product which is a UV stress induced protein from cyanobacteria, Synechocystis PCC 6803. Three dimensional structural modeling of target UVS protein was carried out by homology modeling method. 3F2I pdb from Nostoc sp. PCC 7120 was selected as a suitable template protein structure. Ultimately, the detection of active binding regions was carried out for characterization of functional sites in modeled UV-B stress protein. The top five probable ligand binding sites were predicted and the common binding residues between target and template protein was analyzed. It has been validated for the first time that modeled UVS protein structure from Synechocystis PCC 6803 was structurally and functionally similar to well characterized UVS protein of another cyanobacterial species, Nostoc sp PCC 7120 because of having same structural motif and fold with similar protein topology and function. Investigations revealed that UVS protein from Synechocystis sp. might play significant role during ultraviolet resistance. Thus, it could be a potential biological source for remediation for UV induced stress.  相似文献   

2.
Cronobacter sakazakii could form yellow-pigmented colonies. However, the chemical structure and the biosynthetic pathway of the yellow pigments have not been identified. In this study, the yellow pigments of C. sakazakii BAA894 were purified and analyzed. The major components of the yellow pigments were confirmed as zeaxanthin-monoglycoside and zeaxanthin-diglycoside. A gene cluster containing seven genes responsible for the yellow pigmentation in C. sakazakii BAA894 was identified. The seven genes of C. sakazakii BAA894 or parts of them were reconstructed in a heterologous host Escherichia coli DH5α. The pigments formed in these E. coli strains were isolated and analyzed by thin layer chromatography, UV-visible spectroscopy, high performance liquid chromatography, and electron spray ionization-mass spectrometry. These redesigned E. coli strains could produce different carotenoids. E. coli strain expressing all the seven genes could produce zeaxanthin-monoglycoside and zeaxanthin-diglycoside; E. coli strains expressing parts of the seven genes could produce lycopene, β-carotene, cryptoxanthin or zeaxanthin. This study identified the gene cluster responsible for the yellow pigmentation in C. sakazakii BAA894.  相似文献   

3.
Cronobacter sakazakii is now recognized as an opportunistic pathogen and has been implicated in rare but severe cases of necrotizing enterocolitis, meningitis, and sepsis in neonates. The first step in bacterial pathogenesis requires that the organism adheres to host cells surfaces; therefore, agents that inhibit adherence might be useful for preventing infections. Lactoferrin, an iron binding protein found in milk, has been shown to inhibit bacterial adherence by direct interaction and disruption of bacterial surfaces. Therefore, the goal of this research was to assess the ability of two different types of bovine lactoferrin, alone and in combination with a 1:1 blend of galactooligosaccharides and polydextrose, to inhibit adherence of C. sakazakii to a HEp-2 human cell line. Results showed that the adherence of C. sakazakii was significantly reduced at a minimum lactoferrin concentration of 10 mg/ml. However, in combination with the oligosaccharide blend, no synergistic effect was observed in adherence inhibition. These results suggest that lactoferrin might interact with C. sakazakii and directly inhibit adhesion to tissue culture cells.  相似文献   

4.
5.
Mycobacterium tuberculosis is a Gram positive, acid-fast bacteria belonging to genus Mycobacterium, is the leading causative agent of most cases of tuberculosis. The pathogenicity of the bacteria is enhanced by its developed DNA repair mechanism which consists of machineries such as nucleotide excision repair. Nucleotide excision repair consists of excinuclease protein UvrABC endonuclease, multi-enzymatic complex which carries out repair of damaged DNA in sequential manner. UvrC protein is a part of this complex and thus helps to repair the damaged DNA of M. tuberculosis. Hence, structural bioinformatics study of UvrC protein from M. tuberculosis was carried out using homology modeling and molecular docking techniques. Assessment of the reliability of the homology model was carried out by predicting its secondary structure along with its model validation. The predicted structure was docked with the ATP and the interacting amino acid residues of UvrC protein with the ATP were found to be TRP539, PHE89, GLU536, ILE402 and ARG575. The binding of UvrC protein with the DNA showed two different domains. The residues from domain I of the protein VAL526, THR524 and LEU521 interact with the DNA whereas, amino acids interacting from the domain II of the UvrC protein included ARG597, GLU595, GLY594 and GLY592 residues. This predicted model could be useful to design new inhibitors of UvrC enzyme to prevent pathogenesis of Mycobacterium and so the tuberculosis.  相似文献   

6.
7.
8.
9.
In silico analysis followed by experimental validation leads us to propose that the predicted protein All0195 of Anabaena sp. PCC7120 showing enhanced expression under sodium arsenate (Na2HAsO4) stress belongs to the thioredoxin superfamily with structural similarity to bacterial arsenate reductase. The All0195 protein demonstrated C-X-TC-X-K, NTSG-X2-YR, and D-X2-L-X-KRP as functional motifs that show similarity to seven known bacterial arsenate reductase family protein homologs with Cys, Arg, and Pro as conserved residues. In view of physicochemical properties, such as aliphatic index, ratio of Glu?+?Lys to Gln?+?His, and secondary structure, it was evident that All0195 was also a thermostable protein. The predicted three-dimensional structure on molecular docking with arsenate oxyanion ( $ HAsO_4^{- 2 } $ ) revealed its interaction with conserved Cys residue as also known for other bacterial arsenate reductase. In silico derived properties were experimentally attested by cloning and heterologous expression of all0195. Furthermore, this protein functionally complemented the arsenate reductase-deficient sodium arsenate-hypersensitive phenotype of Escherichia coli strainWC3110 (ΔarsC) and depicted arsenate reductase activity on purification. In view of the above properties, All0195 appears to be a new arsenate reductase involved in arsenic detoxification in Anabaena sp. PCC7120.  相似文献   

10.
The three dimensional structure (3D structure) of GH-11 xylanase from Thermomyces lanuginosus was obtained through homology modeling. To study the enzyme interaction with an end product of enzyme catalysis, the xylanase two sugar molecules xylose and xylobiose has been docked into the active site of GH-11 xylanase through molecular docking. Based on the free binding energy and Inhibition constant, concluded xylose makes more stable complex than xylobiose. Further, the molecular dynamic simulation studies were carried out at different temperature, i.e. 323, 333, 343 and 353 K (i.e. 50, 60, 70 and 80 °C). It has been observed that there was minor structural modification in 3D-structure of xylanase at 323, 333, and 343 K. But the helix and sheets moved out of the initial structure when simulation carried out at during 353 K (80 °C).  相似文献   

11.

Background

The genus Cronobacter (formerly called Enterobacter sakazakii) is composed of five species; C. sakazakii, C. malonaticus, C. turicensis, C. muytjensii, and C. dublinensis. The genus includes opportunistic human pathogens, and the first three species have been associated with neonatal infections. The most severe diseases are caused in neonates and include fatal necrotizing enterocolitis and meningitis. The genetic basis of the diversity within the genus is unknown, and few virulence traits have been identified.

Methodology/Principal Findings

We report here the first sequence of a member of this genus, C. sakazakii strain BAA-894. The genome of Cronobacter sakazakii strain BAA-894 comprises a 4.4 Mb chromosome (57% GC content) and two plasmids; 31 kb (51% GC) and 131 kb (56% GC). The genome was used to construct a 387,000 probe oligonucleotide tiling DNA microarray covering the whole genome. Comparative genomic hybridization (CGH) was undertaken on five other C. sakazakii strains, and representatives of the four other Cronobacter species. Among 4,382 annotated genes inspected in this study, about 55% of genes were common to all C. sakazakii strains and 43% were common to all Cronobacter strains, with 10–17% absence of genes.

Conclusions/Significance

CGH highlighted 15 clusters of genes in C. sakazakii BAA-894 that were divergent or absent in more than half of the tested strains; six of these are of probable prophage origin. Putative virulence factors were identified in these prophage and in other variable regions. A number of genes unique to Cronobacter species associated with neonatal infections (C. sakazakii, C. malonaticus and C. turicensis) were identified. These included a copper and silver resistance system known to be linked to invasion of the blood-brain barrier by neonatal meningitic strains of Escherichia coli. In addition, genes encoding for multidrug efflux pumps and adhesins were identified that were unique to C. sakazakii strains from outbreaks in neonatal intensive care units.  相似文献   

12.
Microbial arsenate respiration contributes to the mobilization of arsenic from the solid to the soluble phase in various locales worldwide. To begin to predict the extent to which As(V) respiration impacts arsenic geochemical cycling, we characterized the expression and activity of the Shewanella sp. strain ANA-3 arsenate respiratory reductase (ARR), the key enzyme involved in this metabolism. ARR is expressed at the beginning of the exponential phase and persists throughout the stationary phase, at which point it is released from the cell. In intact cells, the enzyme localizes to the periplasm. To purify ARR, a heterologous expression system was developed in Escherichia coli. ARR requires anaerobic conditions and molybdenum for activity. ARR is a heterodimer of ~131 kDa, composed of one ArrA subunit (~95 kDa) and one ArrB subunit (~27 kDa). For ARR to be functional, the two subunits must be expressed together. Elemental analysis of pure protein indicates that one Mo atom, four S atoms associated with a bis-molybdopterin guanine dinucleotide cofactor, and four to five [4Fe-4S] are present per ARR. ARR has an apparent melting temperature of 41°C, a Km of 5 μM, and a Vmax of 11,111 μmol of As(V) reduced min−1 mg of protein−1 and shows no activity in the presence of alternative electron acceptors such as antimonite, nitrate, selenate, and sulfate. The development of a heterologous overexpression system for ARR will facilitate future structural and/or functional studies of this protein family.  相似文献   

13.
In the present study, six arsenic-resistant strains previously isolated were tested for their plant growth promoting characteristics and heavy metal resistance, in order to choose one model strain as an inoculum for sunflower plants in pot experiments. The aim was to investigate the effect of arsenic-resistant strain on sunflower growth and on arsenic uptake from arsenic contaminated soil. Based on plant growth promoting characteristics and heavy metal resistance, Alcaligenes sp. strain Dhal-L was chosen as an inoculum. Beside the ability to reduce arsenate to arsenite via an Ars operon, the strain exhibited 1-amino-cyclopropane-1-carboxylic acid deaminase activity and it was also able to produce siderophore and indole acetic acid. Pot experiments were conducted with an agricultural soil contaminated with arsenic (214 mg kg?1). A real time PCR method was set up based on the quantification of ACR3(2) type of arsenite efflux pump carried by Alcaligenes sp. strain Dhal-L, in order to monitor presence and colonisation of the strain in the bulk and rhizospheric soil. As a result of strain inoculation, arsenic uptake by plants was increased by 53 %, whereas ACR3(2) gene copy number in rhizospheric soil was 100 times higher in inoculated than in control pots, indicating the colonisation of strain. The results indicated that the presence of arsenate reducing strains in the rhizosphere of sunflower influences arsenic mobilization and promotes arsenic uptake by plant.  相似文献   

14.
15.
Detecting similarities between ligand binding sites in the absence of global homology between target proteins has been recognized as one of the critical components of modern drug discovery. Local binding site alignments can be constructed using sequence order-independent techniques, however, to achieve a high accuracy, many current algorithms for binding site comparison require high-quality experimental protein structures, preferably in the bound conformational state. This, in turn, complicates proteome scale applications, where only various quality structure models are available for the majority of gene products. To improve the state-of-the-art, we developed eMatchSite, a new method for constructing sequence order-independent alignments of ligand binding sites in protein models. Large-scale benchmarking calculations using adenine-binding pockets in crystal structures demonstrate that eMatchSite generates accurate alignments for almost three times more protein pairs than SOIPPA. More importantly, eMatchSite offers a high tolerance to structural distortions in ligand binding regions in protein models. For example, the percentage of correctly aligned pairs of adenine-binding sites in weakly homologous protein models is only 4–9% lower than those aligned using crystal structures. This represents a significant improvement over other algorithms, e.g. the performance of eMatchSite in recognizing similar binding sites is 6% and 13% higher than that of SiteEngine using high- and moderate-quality protein models, respectively. Constructing biologically correct alignments using predicted ligand binding sites in protein models opens up the possibility to investigate drug-protein interaction networks for complete proteomes with prospective systems-level applications in polypharmacology and rational drug repositioning. eMatchSite is freely available to the academic community as a web-server and a stand-alone software distribution at http://www.brylinski.org/ematchsite.
This is a PLOS Computational Biology Software Article
  相似文献   

16.
Enterobacter sakazakii is associated with neonatal infections and is occasionally present at low levels (<1 CFU/g) in powdered infant formula milk (IFM). It has been previously reported that some E. sakazakii strains do not grow in standard media for Enterobacteriaceae and coliform bacteria; therefore, a reliable method is needed for recovery of the organism. Three E. sakazakii enrichment broths—Enterobacteriaceae enrichment broth (EE), E. sakazakii selective broth (ESSB), and modified lauryl sulfate broth (mLST)—were compared with a novel broth designed for maximum recovery of E. sakazakii, E. sakazakii enrichment broth (ESE). One hundred seventy-seven strains (100%) grew in ESE, whereas between 2 and 6% of strains did not grow in EE, mLST, or ESSB. E. sakazakii possesses α-glucosidase activity, and a number of selective, chromogenic agars for E. sakazakii isolation based on this enzyme have been developed. E. sakazakii isolation agar produced fewer false-positive colonies than did Druggan-Forsythe-Iversen agar. However, the latter supported the growth of more E. sakazakii strains. It was also determined that 2% of E. sakazakii strains did not produce yellow pigmentation on tryptone soya agar at 25°C, a characteristic frequently cited in the identification of E. sakazakii. The recovery of desiccated E. sakazakii (0.2 to 2000 CFU/25 g) from powdered IFM in the presence of a competing flora was determined with various enrichment broths and differential selective media. Current media designed for the isolation and presumptive identification of E. sakazakii do not support the growth of all currently known E. sakazakii phenotypes; therefore, improvements in the proposed methods are desirable.  相似文献   

17.
Cyclic-di-GMP [bis-(3′-5′)-cyclic diguanosine monophosphate] controls a wide range of functions in eubacteria, yet little is known about the underlying regulatory mechanisms. In the plant pathogen Xanthomonas campestris, expression of a subset of virulence genes is regulated by c-di-GMP and also by the CAP (catabolite activation protein)-like protein XcCLP, a global regulator in the CRP/FNR superfamily. Here, we report structural and functional insights into the interplay between XcCLP and c-di-GMP in regulation of gene expression. XcCLP bound target promoter DNA with submicromolar affinity in the absence of any ligand. This DNA-binding capability was abrogated by c-di-GMP, which bound to XcCLP with micromolar affinity. The crystal structure of XcCLP showed that the protein adopted an intrinsically active conformation for DNA binding. Alteration of residues of XcCLP implicated in c-di-GMP binding through modeling studies caused a substantial reduction in binding affinity for the nucleotide and rendered DNA binding by these variant proteins insensitive to inhibition by c-di-GMP. Together, these findings reveal the structural mechanism behind a novel class of c-di-GMP effector proteins in the CRP/FNR superfamily and indicate that XcCLP regulates bacterial virulence gene expression in a manner negatively controlled by the c-di-GMP concentrations.  相似文献   

18.
Cronobacter spp. (formerly defined as Enterobacter sakazakii) are opportunistic bacterial pathogens of both infants and adults. In this study, we analyzed 70 Cronobacter isolates from powdered infant formula (PIF) and an infant formula production facility in China to determine possible contamination routes. The strains were profiled by multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), PCR-based O-antigen serotyping, and ompA and rpoB sequence analyses. The isolates were primarily Cronobacter sakazakii (66/70) or Cronobacter malonaticus (4/70). The strains were divided into 38 pulsotypes (PTs) using PFGE and 19 sequence types (STs) by MLST. In contrast, rpoB and ompA sequence analyses divided the strains into 10 overlapping clusters each. PCR serotyping of the 66 C. sakazakii and 4 C. malonaticus strains resulted in the identification of four C. sakazakii serotypes (O1, O2, O4, and O7) and a single C. malonaticus serotype, O2. The dominant C. sakazakii sequence types from PIF and an infant formula production factory in China were C. sakazakii clonal complex 4 (CC4) (n = 19), ST1 (n = 14), and ST64 (n = 11). C. sakazakii CC4 is a clonal lineage strongly associated with neonatal meningitis. In the process of manufacturing PIF, the spray-drying, fluidized-bed-drying, and packing areas were the main areas with Cronobacter contamination. C. sakazakii strains with the same pulsotypes (PT3 and PT2) and sequence types (ST1 and ST64) were isolated both from processing equipment and from the PIF finished product.  相似文献   

19.
Cronobacter sakazakii is an opportunistic pathogen that actively invades host eukaryotic cells. To identify invasion factors responsible for the intestinal translocation of C. sakazakii, we constructed for the first time outer membrane protein X (OmpX) and A (OmpA) deletion mutants using the lambda Red recombination system. The ompX and ompA deletion mutants showed significantly reduced invasion of human enterocyte-like epithelial Caco-2 and human intestinal epithelial INT-407 cells, and significantly fewer mutant cells were recovered from the livers and spleens of rat pups. Furthermore, compared with intact target cells, the invasion and initial association potentials of the mutants increased at a rate similar to that of the wild type in tight-junction-disrupted target cells, suggesting that OmpX and OmpA are involved in basolateral invasion by C. sakazakii. This is the first report of C. sakazakii virulence determinants that are essential for basolateral invasion and that may be critical for the virulence of C. sakazakii.Enterobacter sakazakii is an emerging pathogen associated with several outbreaks of meningitis and local necrotizing enterocolitis in premature infants (2, 28, 37). There was considerable diversity among E. sakazakii isolates (13, 14), and the original taxonomic name of E. sakazakii was reclassified as Cronobacter spp., which included Cronobacter sakazakii (13, 14). Therefore, C. sakazakii will be used throughout this paper. Although the incidence of Cronobacter infection is rare, the mortality rate is as high as 33 to 80% (11, 27, 32, 39). Even when infants survive Cronobacter infection, they often experience serious sequelae, including brain abscesses, developmental delay, and impairment of sight and hearing (8). Premature infants, whose immune systems are not fully developed, may be at high risk for Cronobacter infection (26).Very little is known about the mechanisms of pathogenicity and the virulence determinants of the genus Cronobacter. Adhesion of Cronobacter spp. to eukaryotic cells showed two distinct patterns, i.e., a diffuse pattern and the formation of localized clusters, which was nonfimbrial (21). Pagotto et al. (29) reported that the genus Cronobacter produced enterotoxins and was lethal on intraperitoneal injection into suckling mice at levels as low as 105 CFU per mouse. The genus Cronobacter interacts with and damages intestinal epithelial cells, which results in intestinal injury and villus disruption (12). In addition, the cell-bound zinc-containing metalloprotease encoded by zpx caused rounding of Chinese hamster ovary (CHO) cells (19), which may be important in dissemination of the pathogen into the systemic circulation. Furthermore, Townsend et al. (36) showed that Cronobacter can persist within rat macrophages.As an oral pathogen causing a systemic infection, C. sakazakii must translocate from the intestinal lumen into the blood circulation. The genus Cronobacter is capable of actively invading various epithelial and endothelial cells of human and animal origin (17, 25, 31). Kim and Loessner (17) reported that the active invasion of human intestinal Caco-2 cells by C. sakazakii requires de novo bacterial protein synthesis and the host cell cytoskeleton and that the invasion efficiency of C. sakazakii was enhanced in the absence of cellular tight junctions. With regard to the virulence determinants related to Cronobacter penetration of the host cells, Mohan Nair and Venkitanarayanan (25) and Singamsetty et al. (31) reported that outer membrane protein A (OmpA) of Cronobacter plays an important role in the invasion of human intestinal epithelial INT-407 cells and human brain microvascular endothelial cells (HBMECs); invasion was dependent on both microfilaments and microtubules in INT-407 cells but only on microtubule condensation in HBMECs. Obviously, bacterial translocation in the intestines is multifactorial, and more detailed studies are needed to gain a better understanding of C. sakazakii pathogenesis.Outer membrane protein X (OmpX) of C. sakazakii was identified in this study. Previously, OmpX in other bacteria was shown to be involved in the invasion of host cells (7, 18), neutralizing host defense mechanisms, and bacterial defense against the complement systems of the host (10, 38).In this study, we report for the first time a successful application of the lambda Red recombination system to construct in-frame OmpX and/or OmpA deletion mutants in C. sakazakii. We further report that both outer membrane proteins (OMPs) of C. sakazakii, OmpX and OmpA, play critical roles in its invasion through not only the apical side, but also the basolateral side, of the host cells. We also show that OmpX and OmpA are responsible for C. sakazakii translocation into the deeper organs (i.e., liver and spleen).  相似文献   

20.
Phylogenetic analyses have identified positive selection as an important driver of protein evolution, both structural and functional. However, the lack of appropriate combined functional and structural assays has generally hindered attempts to elucidate patterns of positively selected sites and their effects on enzyme activity and substrate specificity. In this study we investigated the evolutionary divergence of the glutathione S-transferase (GST) family in Pinus tabuliformis, a pine that is widely distributed from northern to central China, including cold temperate and drought-stressed regions. GSTs play important roles in plant stress tolerance and detoxification. We cloned 44 GST genes from P. tabuliformis and found that 26 of the 44 belong to the largest (Tau) class of GSTs and are differentially expressed across tissues and developmental stages. Substitution models identified five positively selected sites in the Tau GSTs. To examine the functional significance of these positively selected sites, we applied protein structural modeling and site-directed mutagenesis. We found that four of the five positively selected sites significantly affect the enzyme activity and specificity; thus their variation broadens the GST family substrate spectrum. In addition, positive selection has mainly acted on secondary substrate binding sites or sites close to (but not directly at) the primary substrate binding site; thus their variation enables the acquisition of new catalytic functions without compromising the protein primary biochemical properties. Our study sheds light on selective aspects of the functional and structural divergence of the GST family in pine and other organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号