首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant–pollinator interactions provide highly important ecological functions, and are influenced by floral nectar characteristics. The night blooming Datura ferox is an excellent model to test general hypotheses on the relationship between nectar traits (e.g., nectar secretion patterns, nectar chemical composition), pollinators and reproductive success for invasive, weedy species in highly modified ecosystems as crop fields. We hypothesized an adjustment between nectar composition and secretion dynamics through flower anthesis and the activity and requirements of nocturnal pollinators. Nectar chemical analyses showed low quantities of amino acids and lipids, phenolics, and alkaloids were not detected. D. ferox showed sucrose-dominant nectar with comparable amount of hexoses. Sugar proportions did not vary between populations or during flowering season. Most nectar is secreted before flower opening. Nectar resorption was detected at the end of anthesis. Experimentally drained flowers of both populations increased nectar production up to 50 % in the total amount of sugar per flower compared to control flowers. Nectar standing crop was relatively constant during the flowering season, but differences were detected between populations. Nectar traits of D. ferox would be favoring cross-pollination and maintaining seed production of this weed, since recently open flowers display a higher amount of nectar and they can renew nectar after a pollinator visit or reabsorb it at the end of anthesis. This nectar source may be important for native pollinators considering that human-induced forest fragmentation is related with the impoverishment of native flora from agro-ecosystems.  相似文献   

2.
In April and May 2010, a natural population of Cerinthe major (Boraginaceae-Lithospermeae) was investigated with regard to: floral morphology, phenology, sexual receptivity during anthesis, the production of nectar and its sugar and amino acid content. The pollinator array of this species was also investigated. Cerinthe major has showy, pentamerous, hermaphroditic flowers with a deep yellow corolla tube arranged on numerous scorpioid inflorescences. Nectar and pollen are the main floral rewards for pollinators. The arrangement of stamens limits access to nectar and promotes pollen loading onto pollinator bodies as they force their way towards the source of nectar. By limiting the direct exposure of nectar to the environment, the corolla tube and the arrangement of anther filaments seemingly protect nectar from evaporation resulting from high temperatures and low relative humidity during flower anthesis. The green, annular nectary located at the base of the ovary lobes is composed of a very thin epidermis enclosing a dense mass of parenchyma. The epidermis lacks stomata, and the thin cuticle has an irregular surface. The parenchyma cells do not store starch during the pre-secretory stage, suggesting that immediate photosynthesis is the most likely source of nectar carbohydrates. Generally, anthesis lasts 4–5 days; the gynoecium becomes fully receptive on the second day and this is synchronous with anther dehiscence. Since nectar production begins during the bud stage, a substantial volume is available for flower visitors at anthesis. Nectar production decreases drastically in senescent flowers and, if not consumed, the nectar can be re-absorbed. Analysis of sugars revealed a sucrose-dominant nectar (sucrose = 93.18 ± 1.35%). Proline, GABA, taurine, leucine, citrulline and alanine were the main amino acids present and are probably implicated in pollinator flight performance.  相似文献   

3.
Nectar is considered a primary alimentary reward for a large variety of pollinators. Recent studies demonstrated that nectar may have other functions in addition to attracting pollinators. Mainly other two functions have been recognized: defense against microbial invasion and post-secretion modification of sugar profile. The floral nectar of Cucurbita pepo L. has been analyzed to confirm the presence of defense proteins, namely xylosidases that were identified by means of a proteomic approach in a previous study. An enzyme assay was also performed that revealed low invertase activity for which the optimal pH was determined. This invertase activity is not able to modify the sugar profile significantly during the short period of anthesis (6 h). The amino acids complement of the nectar of both sexes was also determined. Sixteen of the 20 protein amino acids have been detected. Proline comprises more than 30% of total amino acid content in male and female flowers. Three non-protein amino acids (taurine, β-alanine, and GABA) represent almost one third of the total amino acid content, and of these, GABA is the most abundant (16%). Several biological activities were attributed to these amino acids and further studies are needed to assess their presumed involvement in managing the foraging behavior of insects. More recent studies, including our own, demonstrate that the various functions of nectar are much more complex than previously thought.  相似文献   

4.
Nectar is the most common floral pollinator reward. In dichogamous species, floral nectar production rates can differ between sexual phases. We studied the structure of nectaries located on the stylopodium and nectar production in protandrous umbellifer Angelica sylvestris. Our study species produced nectar in both floral sexual phases. Nectar sugar concentration was low (on average 22 ± 11 %, mean ± SD) and the nectar hexose rich and composed of sucrose, glucose, fructose and a small amount of amino acids, including β-alanine, a non-protein amino acid. Although nectar composition and sugar concentration varied little between floral sexual phases, nectar production showed a threefold reduction during the stigma receptive period. This is in contrast to other studies of Apiaceae that have reported female-biased nectar production, but in the direction predicted by plant sexual selection theory, suggesting that in pollen-unlimited species, floral rewards mainly enhance male reproductive success. The structure of the nectary was similar at the two sexual stages investigated, and composed of a secretory epidermis and several layers of nectariferous and subsecretory parenchyma. The nectary cells were small, had large nuclei, numerous small vacuoles and dense, intensely staining cytoplasm with abundant endoplasmic reticulum, mitochondria and secretory vesicles. They contained abundant resin-like material that may potentially act as defence against microbes. Starch was rarely observed in the nectary cells, occurring predominantly at the female stage and mainly in guard and parenchyma cells in close proximity to stomata, and in subsecretory parenchyma. The main route of nectar release in A. sylvestris seems to be via modified stomata.  相似文献   

5.

Background

Floral nectar contains sugars and amino acids to attract pollinators. In addition, nectar also contains different secondary compounds, but little is understood about their origin or function. Does nectar composition reflect phloem composition, or is nectar synthesized and/or modified in nectaries? Studies where both, the nectar as well as the phloem sap taken from the same plant species were analyzed in parallel are rare. Therefore, phloem sap and nectar from different plant species (Maurandya barclayana, Lophospermum erubescens, and Brassica napus) were compared.

Methodology and Principal Findings

Nectar was collected with microcapillary tubes and phloem sap with the laser-aphid-stylet technique. The nectar of all three plant species contained high amounts of sugars with different percentages of glucose, fructose, and sucrose, whereas phloem sap sugars consisted almost exclusively of sucrose. One possible reason for this could be the activity of invertases in the nectaries. The total concentration of amino acids was much lower in nectars than in phloem sap, indicating selective retention of nitrogenous solutes during nectar formation. Nectar amino acid concentrations were negatively correlated with the nectar volumes per flower of the different plant species. Both members of the tribe Antirrhineae (Plantaginaceae) M. barclayana and L. erubescens synthesized the iridoid glycoside antirrhinoside. High amounts of antirrhinoside were found in the phloem sap and lower amounts in the nectar of both plant species.

Conclusions/Significance

The parallel analyses of nectar and phloem sap have shown that all metabolites which were found in nectar were also detectable in phloem sap with the exception of hexoses. Otherwise, the composition of both aqueous solutions was not the same. The concentration of several metabolites was lower in nectar than in phloem sap indicating selective retention of some metabolites. Furthermore, the existence of antirrhinoside in nectar could be based on passive secretion from the phloem.  相似文献   

6.
The self-incompatible flowers of Linaria vulgaris have developed a range of mechanisms for attraction of insect visitors/pollinators and deterrence of ineffective pollinators and herbivores. These adaptive traits include the flower size and symmetry, the presence of a spur as a “secondary nectar presenter,” olfactory (secondary metabolites) and sensual (scent, flower color, nectar guide—contrasting palate) signals, and floral rewards, i.e. pollen and nectar. Histochemical tests revealed that the floral glandular trichomes produced essential oils and flavonoids, and pollen grains contained flavonoids, terpenoids, and steroids, which play a role of olfactory attractants/repellents. The nectary gland is disc-shaped and located at the base of the ovary. Nectar is secreted through numerous modified stomata. Nectar secretion began in the bud stage and lasted to the end of anthesis. The amount of produced nectar depended on the flower age and ranged from 0.21 to 3.95 mg/flower (mean?=?1.51 mg). The concentration of sugars in the nectar reached up to 57.0%. Both the nectar amount and sugar concentration demonstrated a significant year and population effect. Pollen production was variable between the years of the study. On average, a single flower of L. vulgaris produced 0.31 mg of pollen. The spectrum of insect visitors in the flowers of L. vulgaris differed significantly between populations. In the urban site, Bombus terrestris and Apis mellifera were the most common visitors, while a considerable number of visits of wasps and syrphid flies were noted in the rural site.  相似文献   

7.
Sarracenia purpurea L. (northern pitcher plant) is an insectivorous plant with extrafloral nectar that attracts insects to a water-filled pitfall trap. We identified and quantified the amino acids in extrafloral nectar produced by pitchers of S. purpurea. Nectar samples were collected from 32 pitchers using a wick-sampling technique. Samples were analyzed for amino acids with reverse-phase high-performance liquid chromatography with phenylisothiocyanate derivatization. Detectable amounts of amino acids were found in each of the 32 nectar samples tested. Mean number of amino acids in a nectar sample was 9 (SD = 2.2). No amino acid was detected in all 32 samples. Mean amount of amino acids in a nectar sample (i.e., amount per wick) was 351.4 ng (SD = 113.2). Nine amino acids occurred in 20 of the 32 samples (aspartic acid, cysteine, glutamic acid, glycine, histidine, hydroxyproline, methionine, serine, valine) averaging 263.4 ng (SD = 94.9), and accounting for ~75% of the total amino acid content. Nectar production may constitute a significant cost of carnivory since the nectar contains amino acids. However, some insects prefer nectar with amino acids and presence of amino acids may increase visitation and capture of insect prey.  相似文献   

8.
《Flora》2006,201(5):353-364
Nectar production and flower visitors of the night-flowering Saponaria officinalis L. (Caryophyllaceae) were studied in relation to the reproductive success. Nectar production was worthwhile for nocturnal flower visitors. Nectar standing crop was about 267 μg sugar per flower, and comparison of nectar offering of covered and freely exposed flowers revealed that main nectar secretion time is mainly during the night up to the morning hours. In both covered and freely exposed flowers nectar volumes decreased over the day. In covered flowers, nectar volume, sugar concentration, and sugar amount per flower increased up to the third day; in older flowers sugar secretion ceased. In 1996 Autographa gamma (Noctuidae) was the exclusive nocturnal flower visitor, but pollen transfer experiments proved that A. gamma (Noctuidae) is a very ineffective pollinator of S. officinalis. In 1999 up to 50% of the observed visitors were Sphingidae, which resulted in a significantly higher seed set. Fruit set was constantly high independent of pollinator availability. In the nectar manipulation experiments seed set was highest in non-emasculated flowers filled with unnaturally high concentrated sucrose solutions. Differences to seed set on stalks treated with a sucrose solution mimicking naturally concentrated nectar were significant. Lowest fruit and seed set were found on inflorescences with emasculated flowers filled with a sucrose solution mimicking naturally concentrated nectar.  相似文献   

9.
Nectar robbing may have an indirect negative effect on plant reproduction by discouraging legitimate pollinator species from visiting robbed flowers. In this study, we set up a 2 × 2 factorial design with nectar-robbing ants and hummingbird pollination to test for non-additive effects on fruit set, seed mass, and seed germination of the leafless mistletoe Tristerix aphyllus (Loranthaceae). Even though ants caused conspicuous damage at the base of the floral tubes, nectar availability was reduced by only 8 % in the presence of ants. The green-backed firecrown Sephanoides sephaniodes was insensitive to the presence of ants. Rather, the bird responded to flower number and the presence or the absence of damage, but not to the extent of damage within inflorescences. As hummingbirds were largely insensitive to variation in nectar robbing, the interaction ant × hummingbird had no effect on plant-reproductive success. Thus, the factorial experiment did not provide evidence for indirect negative effects of nectar robbing on plant reproduction. These results suggest that indirect effects of nectar robbers on pollinator behaviour may occur under a more restricted set of conditions than those previously considered. We suggest that the low amount of nectar removed by nectar-robbing ants was insufficient for hummingbirds to avoid robbed flowers, which restricted the potential for non-additive effects.  相似文献   

10.
After over 30 years of research, it was recently shown that nectar amino acids increase female butterfly fecundity. However, little attention has been paid to the effect of nectar amino acids on male butterfly reproduction. Here, we show that larval food conditions (nitrogen-rich vs. nitrogen-poor host plants) and adult diet quality (nectar with or without amino acids) affected the amount of consumed nectar in Coenonympha pamphilus males. Furthermore, amino acids in the nectar diet of males increased progeny’s larval hatching mass, irrespective of paternal larval reserves. Our study takes the whole reproductive cycle of male butterflies into account, and also considers the role of females in passing male nutrients to offspring, as males’ realized reproduction was examined indirectly via nuptial gifts, by female performance. With this comprehensive approach, we demonstrate for the first time that nectar amino acids can improve male butterfly reproduction, supporting the old postulate that nectar amino acids generally enhance butterfly fitness.  相似文献   

11.
The thermotolerance of the sun-exposed peel and the shaded peel of ‘Fuji’ apple (Malus domestica Borkh.) fruit was evaluated by measuring pigments, chlorophyll a fluorescence transients and O2 evolution or uptake after exposure to 25, 35, 40, 42, 44, 46 or 48 °C for 30 min in the dark. A major effect of heat stress at 46–48 °C on the chlorophyll a fluorescence transients was the appearance of a very clear K step at 200–300 μs for both peel types. The K step was slightly more pronounced in the sun-exposed peel than in the shaded peel, suggesting that the resistance of oxygen-evolving complex to heat stress is slightly lower in the sun-exposed peel than in the shaded peel. Minimal fluorescence (FO), relative to the value at 25 °C, increased to a greater extent in the shaded peel than in the sun-exposed peel after exposure to 46–48 °C, but the temperature dependencies of FO changes were similar for both peel types. Maximum quantum yield of PSII (FV/FM) decreased to a similar extent in the sun-exposed peel and the shaded peel as temperature rose from 25 to 44 °C, but the sun-exposed peel reached slightly lower values at 46–48 °C. Correspondingly, gross O2 evolution rate, relative to that at 25 °C, was also slightly lower in the sun-exposed peel than in the shaded peel at 46–48 °C. In response to heat stress, the ratio of QA-reducing reaction centers (RCs) to total RCs and the ratio of QB-reducing RCs to QA-reducing RCs decreased, but both of them decreased to lower values in the sun-exposed peel than in the shaded peel at 46–48 °C, indicating that the capacity of electron transfer between P680+ and QB via QA was damaged to a greater extent in the sun-exposed peel than in the shaded peel. At each given temperature, dark respiration was similar between the two peel types. Overall, it appears that the exposure to higher surface temperature under high light does not make the sun-exposed peel more tolerant of heat stress than the shaded peel of apple fruit.  相似文献   

12.
The structure of perigonal nectaries, nectar production and carbohydrate composition were compared at various stages in the lifespan of the flower of Fritillaria meleagris L. The six nectaries each occupied a groove that is located 2–4 mm above the tepal base. The average nectary measured 11.0 mm long and 1.0–1.2 mm wide. The structure of nectaries situated on both inner and outer tepal whorls was identical, and at anthesis they were equally accessible to potential pollinators. However, secretion from nectaries associated with inner tepals tended to exceed that produced by nectaries located on the outer tepals. On average, regardless of flower stage, one flower secreted 10.87 ± 12.98 mg of nectar (mean and SD; N = 182). The nectar concentration ranged between 3 and 75%, with average concentration of sugars exceeding 50%. Both nectar production and concentration were dependent on the stage of anthesis, with the highest scores being recorded during full anthesis (21.75 ± 16.08 mg; 70.5%, mass and concentration, respectively) and the lowest at the end of anthesis (1.32 ± 2.69 mg; 16.9%, mass and concentration, respectively). A decline in both mass of nectar secreted and nectar concentration during the final stage of anthesis indicates nectar resorption. Nectar was composed of sucrose, glucose and fructose in approx. equal quantities, and its composition did not change significantly during subsequent stages of flowering. The nectaries comprised a single-layered secretory epidermis and several layers of subepidermal parenchyma. The nectariferous cells did not accumulate starch during any of the investigated stages. The nectary was supplied with one large and several smaller vascular bundles comprising xylem and phloem. Transport of assimilates and nectar secretion by protoplasts of secretory cells (and probably also nectar resorption) were facilitated by cell wall ingrowths present on the tangential walls of epidermal cells and subepidermal parenchyma. Epidermal cells lacked stomata. Nectar passed across the cell wall and through the cuticle which was clearly perforated with pores.  相似文献   

13.
Plant desiccation-related proteins (DRPs) were first identified as pcC13-62 from the resurrection plant Craterostigma plantagineum and it has been suggested they are involved in plant desiccation tolerance. We identified and characterized a plant DRP, which we called MS-desi, in the floral nectar of a subtropical bean species, Mucuna sempervirens (MS). MS-desi is a major nectar protein (nectarin) of the bean plant and expresses exclusively in the stylopodium, where the nectary is located. The full-length MS-desi gene encodes for a protein of 306 amino acids with a molecular mass of 33,248 Da, and possesses a ferritin-like domain and a signal peptide of 30 amino acids. Structural and phylogenetic analysis demonstrated MS-desi has high similarity to members of the plant DRPs, including pcC 13-62 protein. MS-desi has a similar hydropathy profile to that of pcC13-62 with a grand average of hydropathy index of 0.130 for MS-desi and 0.106 for pcC13-62 protein, which is very different from those of dehydrins and late embryogenesis abundant proteins. The protein’s secondary structures, both predicted from the amino acid sequence and directly analysed by far UV circular dichroism, showed that MS-desi is mainly composed of alpha helices and is relatively temperature dependent. The structure change is reversible within a wide range of temperatures. Purified MS-desi and raw MS floral nectar showed dose-dependent citrate synthase inhibition activity, but insensitivity to lactate dehydrogenase, suggesting that, unlike dehydrins, it does not act as a chaperone. The overall results constitute, to our knowledge, the first study on a desiccation-related protein in plant floral nectar.  相似文献   

14.
Ants are attracted to extrafloral nectaries subtending reproductive organs of Ferocactus acanthodes var. lecontei (Cactaceae) in central Arizona. Extrafloral nectar produced by these glands contained amino acids, sugars, and water. Nectar quality and composition varied temporally in relation to plant reproductive phenology. The number of nectar glands on a barrel cactus did not change significantly, however; the mass of nectar produced per gland increased significantly with immature fruit production. Of the three sugars present in extrafloral nectar (fructose, glucose, and sucrose), only glucose occurred at a higher concentration in June, when immature fruits first appeared on barrel cactus. Amino acid concentration and composition in extrafloral nectar of barrel cactus did not change significantly over time. Ant density on barrel cactus increased significantly from mid-May to mid-June at two field sites. Water availability per nectar gland increased 158% from May to June. Water plays an important role in attracting ants to barrel cacti.  相似文献   

15.
The pollen morphology in 15 species representing five genera in the tribe Lithospermeae of Boraginoideae (Boraginaceae) has been investigated and illustrated using light microscopy and scanning electron microscopy. The tribe Lithospermeae is very diverse in pollen morphology. The pollen grains are 10.4–41.8 × 7–33.1 μm in size with subspheroidal, prolate, cocoon, dumbbell, and ovoid shapes. The pollen apertures are of five types: 3-colporate, 3-syncolporate, 4-8-colporate, 4-6-syncolpate, and 6-7-colpate types. The exine ornamentations are generally smooth or rugulose, sparsely echinulate, and rarely rugulate. Based on pollen morphology, we developed a key to identify the genera of the tribe Lithospermeae, compared the pollen apertures among tribes of Boraginoideae, explained the evolutionary trends of the pollen grains, and discussed the taxonomic position of the tribe Lithospermeae. The palynological data suggest pollen of the eurypalynous type and support the proposal that the tribe Lithospermeae is in the primitive position of the subfamily Boraginoideae, and Echium Linn. is in the tribe Lithospermeae rather than in a novel tribe. Our observations have application potential for identification of pollen fossils of the tribe Lithospermeae.  相似文献   

16.
S. Fitzpatrick 《Bird Study》2013,60(2):136-145
The incidence of nectar feeding by 2 pairs of Blue Tits Parus caeruleus was investigated in relation to the availability of nectar and alternative food. Nectar was not the most preferred food and the occurrence of nectar feeding did not correlate significantly with most measures of nectar availability, but the Blue Tits selected the most productive flowers. Nectar feeding frequently occurred when the preferred peanuts were unavailable due to interspecific competition. The nectar resource was under-utilized by the Blue Tits except at the beginning of the flowering period. Despite this, nectar was a highly profitable food source, yielding 0.33-0.38 kJ min?1 foraging. During the flowering period nectar was estimated to contribute up to 32.7% of the average daily metabolic rate (ADMR) of the male and up to 49.3% of the ADMR of the female, with means over the 2 years of 7.4% and 13.2% per day for the male and female, respectively. The importance of nectar in the ecology of Blue Tits is discussed.  相似文献   

17.
We studied the nectar characteristics in relation to flower age of the summer flowering Mediterranean shrubCapparis spinosa in three localities in Southern Greece. Anthesis was nocturnal. Nectar volume, concentration, and sucrose/hexose ratio varied with site, year, and between individual plants; amino acid concentration varied only with site. The sucrose/hexose ratio decreased considerably with flower age, while the glucose/fructose ratio remained constant (ca. 1), implying that nectar sucrose broke down in the course of anthesis. Sugar breakdown increased with water content of nectar. Amino acid concentration was strongly age-dependent: It was low in fresh flowers, relatively high in middle-aged ones (except aspartic acid that was extremely increased), and very high in senescent ones. We attribute the amino acid changes to phenomena related to flower senescence in the dark.  相似文献   

18.
Abstract: The morphological and cytological characteristics of nectaries of Helleborus foetidus and H. bocconei during the secretory period are reported. The nectaries are derived from modified petals and secrete nectar continuously for about 20 days; they consist of a single layered epidermis, nectar-producing parenchyma and photosynthesizing parenchyma. Nectar secretion is holocrine and the nectar is released by rupture of the wall and cuticle of each epidermal cell. The nectaries of the two species differ in number and external morphology. In H. foetidus, secretion begins before anthesis and secretion rate decreases with nectary age. In H. bocconei it begins on the day of anthesis and proceeds at a constant rate. The nectar has a high sugar content, mainly sucrose, and also contains lipids and proteins.  相似文献   

19.
Nepi M  Bini L  Bianchi L  Puglia M  Abate M  Cai G 《Annals of botany》2011,108(3):521-527

Background and Aims

Nectar is a very complex mixture of substances. Some components (sugars and amino acids) are considered primary alimentary rewards for animals and have been investigated and characterized in numerous species for many years. In contrast, nectar proteins have been the subject of few studies and little is known of their function. Only very recently have detailed studies and characterization of nectar proteins been undertaken, and then for only a very few species. This current work represents a first step in the identification of a protein profile for the floral nectar of Cucurbita pepo. In this regard, the species studied is of particular interest in that it is monoecious with unisexual flowers and, consequently, it is possible that nectar proteins derived from male and female flowers may differ.

Methods

Manually excised spots from two-dimensional (2-D) electrophoresis were subjected to in-gel protein digestion. The resulting peptides were sequenced using nanoscale LC–ESI/MS-MS (liquid chromatography–electrospray ionization/tandem mass spectrometry). An MS/MS ions search was carried out in Swiss-Prot and NCBInr databases using MASCOT software.

Key Results

Two-dimensional electrophoresis revealed a total of 24 spots and a different protein profile for male and female flower nectar. Four main proteins recognized by 2-D electrophoresis most closely resemble β-d-xylosidases from Arabidopsis thaliana and have some homology to a β-d-xylosidase from Medicago varia. They were present in similar quantities in male and female flowers and had the same molecular weight, but with slightly different isoelectric points.

Conclusions

A putative function for xylosidases in floral nectar of C. pepo is proposed, namely that they may be involved in degrading the oligosaccharides released by the nectary cell walls in response to hydrolytic enzymes produced by invading micro-organisms. Several types of oligosaccharides have been reported to increase the pathogenic potential of micro-organisms. Thus, it is possible that such a mechanism may reduce the virulence of pathogens present in nectar.  相似文献   

20.
The causes and reproductive consequences of individual variation in nectar production rates within a population of Asclepias quadrifolia were investigated. Two parameters were correlated with nectar production rate per flower: the root weight of the plant and the number of flowers in the inflorescence (umbel). Nectar production increased with increasing root weight but levelled off after a root size of about 3 g was reached. Nectar production decreased with increasing umbel size, but only for umbels that were greater than average size. A total of 57% of the variance in individual nectar production could be explained by these two variables with root weight accounting for 67% of the explained variance. Root weight is a good indicator of a plant's energetic status, indicating the importance of available energy in determining quantity of nectar produced. About 30% of the energy devoted to flowering is utilized in nectar production. Nectar production was significantly correlated with the male component of reproductive fitness, pollinaria removal, but not with the female component, pollinia insertion. Since pod production is limited by resource availability rather than the number of pollinia insertions, nectar production in A. quadrifolia is most closely associated with the maximization of the male function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号