首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reducing the accumulation of acetate in Escherichia coli cultures can decrease carbon efflux as by-products and reduce acetate toxicity, and therefore enable high cell density cultivation. The concentration of intracellular amino acids can be decreased by genetic modifications of the corresponding amino acid transport systems. This can increase the levels of amino acids in the fermentation broth by decreasing the feedback inhibition on the corresponding biosynthetic pathways. Here, the effects of genetic manipulation of phosphate acetyltransferase (pta), high affinity tryptophan transporter (mtr) and aromatic amino acid exporter (yddG) on l-tryptophan production were investigated. The pta mutants accumulated less acetate and showed higher capacity for producing l-tryptophan as compared with the parental strain. The strains lacking mtr, or overexpressed yddG, or with the both mtr knockout and yddG overexpression, accumulated lower concentrations of intracellular tryptophan but higher production of extracellular l-tryptophan. In the l-tryptohan fed-batch fermentation of an E. coli derived from TRTH0709/pMEL03 having deletion of pta-mtr and overexpression of yddG in a 30-L fermentor, the maximum concentration of l-tryptophan (48.68 g/L) was obtained, which represented a 15.96 % increase as compared with the parental strain. Acetate accumulated to a concentration of 0.95 g/L. The intracellular concentration of l-tryptophan was low, and the glucose conversion rate reached a high level of 21.87 %, which was increased by 15.53 % as compared with the parent strain.  相似文献   

2.
Poly(lactate-co-3-hydroxybutyrate) (P(LA-co-3HB)) was previously produced from xylose in engineered Escherichia coli. The aim of this study was to increase the polymer productivity and LA fraction in P(LA-co-3HB) using two metabolic engineering approaches: (1) deletions of competing pathways to lactate production and (2) overexpression of a galactitol transporter (GatC), which contributes to the ATP-independent xylose uptake. Engineered E. coli mutants (ΔpflA, Δpta, ΔackA, ΔpoxB, Δdld, and a dual mutant; ΔpflA?+?Δdld) and their parent strain, BW25113, were grown on 20 g l?1 xylose for P(LA-co-3HB) production. The single deletions of ΔpflA, Δpta, and Δdld increased the LA fraction (58–66 mol%) compared to BW25113 (56 mol%). In particular, the ΔpflA?+?Δdld strain produced P(LA-co-3HB) containing 73 mol% LA. Furthermore, GatC overexpression increased both polymer yields and LA fractions in ΔpflA, Δpta, and Δdld mutants, and BW25113. The ΔpflA?+?gatC strain achieved a productivity of 8.3 g l?1, which was 72 % of the theoretical maximum yield. Thus, to eliminate limitation of the carbon source, higher concentration of xylose was fed. As a result, BW25113 harboring gatC grown on 40 g l?1 xylose reached the highest P(LA-co-3HB) productivity of 14.4 g l?1. On the other hand, the ΔpflA?+?Δdld strain grown on 30 g l?1 xylose synthesized 6.4 g l?1 P(LA-co-3HB) while maintaining the highest LA fraction (73 mol%). The results indicated the usefulness of GatC for enhanced production of P(LA-co-3HB) from xylose, and the gene deletions to upregulate the LA fraction in P(LA-co-3HB). The polymers obtained had weight-averaged molecular weights in the range of 34,000–114,000.  相似文献   

3.
Medium-chain esters such as isobutyl acetate (IBAc) and isoamyl acetate (IAAc) are high-volume solvents, flavors and fragrances. In this work, we engineered synthetic metabolic pathways in Escherichia coli for the total biosynthesis of IBAc and IAAc directly from glucose. Our pathways harnessed the power of natural amino acid biosynthesis. In particular, the native valine and leucine pathways in E. coli were utilized to supply the precursors. Then alcohol acyltransferases from various organisms were investigated on their capability to catalyze esterification reactions. It was discovered that ATF1 from Saccharomyces cerevisiae was the best enzyme for the formation of both IBAc and IAAc in E. coli. In vitro biochemical characterization of ATF1 confirmed the fermentation results and provided rational guidance for future enzyme engineering. We also performed strain improvement by removing byproduct pathways (Δldh, ΔpoxB, Δpta) and increased the production of both target chemicals. Then the best IBAc producing strain was used for scale-up fermentation in a 1.3-L benchtop bioreactor. 36 g/L of IBAc was produced after 72 h fermentation. This work demonstrates the feasibility of total biosynthesis of medium-chain esters as renewable chemicals.  相似文献   

4.
Acetate is a primary inhibitory metabolite in Escherichia coli cultivation which is detrimental to bacterial growth and the formation of desired products. It can be derived from acetyl coenzyme A by the phosphotransacetylase (Pta)–acetate kinase (AckA) pathway. In this study, the fermentation characteristics of Pta mutant strain E. coli TRTHΔpta were compared with those of the control strain E. coli TRTH in a 30-L fermentor. The effects of glucose concentration and dissolved oxygen (DO) level were investigated, and the results suggest that DO and glucose concentration are vital influencing parameters for the production of L-tryptophan. Based on our experimental results, we then tested a DO-stat fed-batch fermentation strategy. When DO was controlled at about 20 % during L-tryptophan fermentation in the DO-stat fed-batch system, the pta mutant was able to maintain a higher growth rate at the exponential phase, and the final biomass and L-tryptophan production were increased to 55.3 g/L and 35.2 g/L, respectively. Concomitantly, as the concentration of acetate decreased to 0.7 g/L, the accumulation of pyruvate and lactate increased in the mutant strain as compared with the control strain. This characterization of the recombinant mutant strain provides useful information for the rational modification of metabolic fluxes to improve tryptophan production.  相似文献   

5.

Objectives

To improve 1,3-propanediol (1,3-PD) production and reduce byproduct concentration during the fermentation of Klebsiella pneumonia.

Results

Klebsiella. pneumonia 2-1ΔldhA, K. pneumonia 2-1ΔaldH and K. pneumonia 2-1ΔldhaldH mutant strains were obtained through deletion of the ldhA gene encoding lactate dehydrogenase required for lactate synthesis and the aldH gene encoding acetaldehyde dehydrogenase involved in the synthesis of ethanol. After fed-batch fermentation, the production of 1,3-PD from glycerol was enhanced and the concentrations of byproducts were reduced compared with the original strain K. pneumonia 2-1. The maximum yields of 1,3-PD were 85.7, 82.5 and 87.5 g/l in the respective mutant strains.

Conclusion

Deletion of either aldH or ldhA promoted 1,3-PD production in K. pneumonia.
  相似文献   

6.
Escherichia coli FB-04(pta1), a recombinant l-tryptophan production strain, was constructed in our laboratory. However, the conversion rate (l-tryptophan yield per glucose) of this strain is somewhat low. In this study, additional genes have been deleted in an effort to increase the conversion rate of E. coli FB-04(pta1). Initially, the pykF gene, which encodes pyruvate kinase I (PYKI), was inactivated to increase the accumulation of phosphoenolpyruvate, a key l-tryptophan precursor. The resulting strain, E. coli FB-04(pta1)ΔpykF, showed a slightly higher l-tryptophan yield and a higher conversion rate in fermentation processes. To further improve the conversion rate, the phosphoenolpyruvate:glucose phosphotransferase system (PTS) was disrupted by deleting the ptsH gene, which encodes the phosphocarrier protein (HPr). The levels of biomass, l-tryptophan yield, and conversion rate of this strain, E. coli FB-04(pta1)ΔpykF/ptsH, were especially low during fed-batch fermentation process, even though it achieved a significant increase in conversion rate during shake-flask fermentation. To resolve this issue, four HPr mutations (N12S, N12A, S46A, and S46N) were introduced into the genomic background of E. coli FB-04(pta1)ΔpykF/ptsH, respectively. Among them, the strain harboring the N12S mutation (E. coli FB-04(pta1)ΔpykF-ptsHN12S) showed a prominently increased conversion rate of 0.178 g g?1 during fed-batch fermentation; an increase of 38.0% compared with parent strain E. coli FB-04(pta1). Thus, mutation of the genomic of ptsH gene provided an alternative method to weaken the PTS and improve the efficiency of carbon source utilization.  相似文献   

7.
Very high gravity (VHG) fermentation is the mainstream technology in ethanol industry, which requires the strains be resistant to multiple stresses such as high glucose concentration, high ethanol concentration, high temperature and harsh acidic conditions. To our knowledge, it was not reported previously that any ethanol-producing microbe showed a high performance in VHG fermentations without amino acid and vitamin. Here we demonstrate the engineering of a xylose utilizing recombinant Zymomonas mobilis for VHG ethanol fermentations. The recombinant strain can produce ethanol up to 136 g/L without amino acid and vitamin with a theoretical yield of 90 %, which is significantly superior to that produced by all the reported ethanol-producing strains. The intracellular fatty acids of the bacterial were about 16 % of the bacterial dry biomass, with the ratio of ethanol:fatty acids was about 273:1 (g/g). The recombinant strain was achieved by a multivariate-modular strategy tackles with the multiple stresses which are closely linked to the ethanol productivity of Z. mobilis. The over-expression of metB/yfdZ operon enabled the growth of the recombinant Z. mobilis in a chemically defined medium without amino acid and vitamin; and the fatty acids overproduction significantly increased ethanol tolerance and ethanol production. The coupled production of ethanol with fatty acids of the Z. mobilis without amino acid and vitamin under VHG fermentation conditions may permit a significant reduction of the production cost of ethanol and microbial fatty acids.  相似文献   

8.
Klebsiella oxytoca naturally produces a large amount of 2,3-butanediol (2,3-BD), a promising bulk chemical with wide industrial applications, along with various byproducts. In this study, the in silico gene knockout simulation of K. oxytoca was carried out for 2,3-BD overproduction by inhibiting the formation of byproducts. The knockouts of ldhA and pflB genes were targeted with the criteria of maximization of 2,3-BD production and minimization of byproducts formation. The constructed K. oxytoca ΔldhA ΔpflB strain showed higher 2,3-BD yields and higher final concentrations than those obtained from the wild-type and ΔldhA strains. However, the simultaneous deletion of both genes caused about a 50 % reduction in 2,3-BD productivity compared with K. oxytoca ΔldhA strain. Based on previous studies and in silico investigation that the agitation speed during 2,3-BD fermentation strongly affected cell growth and 2,3-BD synthesis, the effect of agitation speed on 2,3-BD production was investigated from 150 to 450 rpm in 5-L bioreactors containing 3-L culture media. The highest 2,3-BD productivity (2.7 g/L/h) was obtained at 450 rpm in batch fermentation. Considering the inhibition of acetoin for 2,3-BD production, fed-batch fermentations were performed using K. oxytoca ΔldhA ΔpflB strain to enhance 2,3-BD production. Altering the agitation speed from 450 to 350 rpm at nearly 10 g/L of acetoin during the fed-batch fermentation allowed for the production of 113 g/L 2,3-BD, with a yield of 0.45 g/g, and for the production of 2.1 g/L/h of 2,3-BD.  相似文献   

9.
A time- and cost-efficient two-step gene elimination procedure was used for acetogen Clostridium sp. MT1834 capable of fermenting CO2/H2 blend to 245 mM acetate (p < 0.005). The first step rendered the targeted gene replacement without affecting the total genome size. We replaced the acetate pta-ack cluster with synthetic bi-functional acetaldehyde-alcohol dehydrogenase (al-adh). Replacement of pta-ack with al-adh rendered initiation of 243 mM ethanol accumulation at the expense of acetate production during CO2/H2 blend continuous fermentation (p < 0.005). At the second step, al-adh was eliminated to reduce the genome size. Resulting recombinants accumulated 25 mM mevalonate in fermentation broth (p < 0.005). Cell duplication time for recombinants with reduced genome size decreased by 9.5 % compared to Clostridium sp. MT1834 strain under the same fermentation conditions suggesting better cell energy pool management in the absence of the ack-pta gene cluster in the engineered biocatalyst. If the first gene elimination step was used alone for spo0A gene replacement with two copies of synthetic formate dehydrogenase in recombinants with a shortened genome, mevalonate production was replaced with 76.5 mM formate production in a single step continuous CO2/H2 blend fermentation (p < 0.005) with cell duplication time almost nearing that of the wild strain.  相似文献   

10.
This study elucidated the importance of two critical enzymes in the regulation of butanol production in Clostridium acetobutylicum ATCC 824. Overexpression of both the 6-phosphofructokinase (pfkA) and pyruvate kinase (pykA) genes increased intracellular concentrations of ATP and NADH and also resistance to butanol toxicity. Marked increases of butanol and ethanol production, but not acetone, were also observed in batch fermentation. The butanol and ethanol concentrations were 29.4 and 85.5 % higher, respectively, in the fermentation by double-overexpressed C. acetobutylicum ATCC 824/pfkA+pykA than the wild-type strain. Furthermore, when fed-batch fermentation using glucose was carried out, the butanol and total solvent (acetone, butanol, and ethanol) concentrations reached as high as 19.12 and 28.02 g/L, respectively. The reason for improved butanol formation was attributed to the enhanced NADH and ATP concentrations and increased tolerance to butanol in the double-overexpressed strain.  相似文献   

11.

Objectives

To improve the production of 2,3-butanediol (2,3-BD) in Klebsiella pneumoniae, the genes related to the formation of lactic acid, ethanol, and acetic acid were eliminated.

Results

Although the cell growth and 2,3-BD production rates of the K. pneumoniae ΔldhA ΔadhE Δpta-ackA strain were lower than those of the wild-type strain, the mutant produced a higher titer of 2,3-BD and a higher yield in batch fermentation: 91 g 2,3-BD/l with a yield of 0.45 g per g glucose and a productivity of 1.62 g/l.h in fed-batch fermentation. The metabolic characteristics of the mutants were consistent with the results of in silico simulation.

Conclusions

K. pneumoniae knockout mutants developed with an aid of in silico investigation could produce higher amounts of 2,3-BD with increased titer, yield, and productivity.
  相似文献   

12.
Glycolysis was thought to be the major pathway of energy supply in both fast‐replicating tachyzoites and slowly growing bradyzoites of Toxoplasma gondii. However, its biological significance has not been clearly verified. The genome of T. gondii encodes two lactate dehydrogenases (LDHs), which are differentially expressed in tachyzoites and bradyzoites. In this study, we knocked out the two LDH genes individually and in combination and found that neither gene was required for tachyzoite growth in vitro under standard growth conditions. However, during infection in mice, Δldh1 and Δldh1 Δldh2 mutants were unable to propagate and displayed significant virulence attenuation and cyst formation defects. LDH2 only played minor roles in these processes. To further elucidate the mechanisms underlying the critical requirement of LDH in vivo, we found that Δldh1 Δldh2 mutants replicated significantly more slowly than wild‐type parasites when cultured under conditions with physiological levels of oxygen (3%). In addition, Δldh1 Δldh2 mutants were more susceptible to the oxidative phosphorylation inhibitor oligomycin A. Together these results suggest that lactate fermentation is critical for parasite growth under physiological conditions, likely because energy production from oxidative phosphorylation is insufficient when oxygen is limited and lactate fermentation becomes a key supplementation.  相似文献   

13.
Saccharomyces cerevisiae sake yeast strain Kyokai no. 7 has one of the highest fermentation rates among brewery yeasts used worldwide; therefore, it is assumed that it is not possible to enhance its fermentation rate. However, in this study, we found that fermentation by sake yeast can be enhanced by inhibiting mitophagy. We observed mitophagy in wild-type sake yeast during the brewing of Ginjo sake, but not when the mitophagy gene (ATG32) was disrupted. During sake brewing, the maximum rate of CO2 production and final ethanol concentration generated by the atg32Δ laboratory yeast mutant were 7.50% and 2.12% higher than those of the parent strain, respectively. This mutant exhibited an improved fermentation profile when cultured under limiting nutrient concentrations such as those used during Ginjo sake brewing as well as in minimal synthetic medium. The mutant produced ethanol at a concentration that was 2.76% higher than the parent strain, which has significant implications for industrial bioethanol production. The ethanol yield of the atg32Δ mutant was increased, and its biomass yield was decreased relative to the parent sake yeast strain, indicating that the atg32Δ mutant has acquired a high fermentation capability at the cost of decreasing biomass. Because natural biomass resources often lack sufficient nutrient levels for optimal fermentation, mitophagy may serve as an important target for improving the fermentative capacity of brewery yeasts.  相似文献   

14.
Ethyl carbamate (EC), a pluripotent carcinogen, is mainly formed by a spontaneous chemical reaction of ethanol with urea in wine. The arginine, one of the major amino acids in grape musts, is metabolized by arginase (encoded by CAR1) to ornithine and urea. To reduce the production of urea and EC, an arginase-deficient recombinant strain YZ22 (Δcarl/Δcarl) was constructed from a diploid wine yeast, WY1, by successive deletion of two CAR1 alleles to block the pathway of urea production. The RT-qPCR results indicated that the YZ22 almost did not express CAR1 gene and the specific arginase activity of strain YZ22 was 12.64 times lower than that of parent strain WY1. The fermentation results showed that the content of urea and EC in wine decreased by 77.89 and 73.78 %, respectively. Furthermore, EC was forming in a much lower speed with the lower urea during wine storage. Moreover, the two CAR1 allele deletion strain YZ22 was substantially equivalent to parental strain in terms of growth and fermentation characteristics. Our research also suggested that EC in wine originates mainly from urea that is produced by the arginine.  相似文献   

15.
The biosynthesis of poly-3-hydroxybutyrate (P3HB), a biodegradable bio-plastic, requires acetyl-CoA as precursor and NADPH as cofactor. Escherichia coli has been used as a heterologous production model for P3HB, but metabolic pathway analysis shows a deficiency in maintaining high levels of NADPH and that the acetyl-CoA is mainly converted to acetic acid by native pathways. In this work the pool of NADPH was increased 1.7-fold in E. coli MG1655 through plasmid overexpression of the NADP+-dependent glyceraldehyde 3-phosphate dehydrogenase gene (gapN) from Streptococcus mutans (pTrcgapN). Additionally, by deleting the main acetate production pathway (ackA-pta), the acetic acid production was abolished, thus increasing the acetyl-CoA pool. The P3HB biosynthetic pathway was heterologously expressed in strain MG1655 Δack-pta/pTrcgapN, using an IPTG inducible vector with the P3HB operon from Azotobacter vinelandii (pPHB Av ). Cultures were performed in controlled fermentors using mineral medium with glucose as the carbon source. Accordingly, the mass yield of P3HB on glucose increased to 73 % of the maximum theoretical and was 30 % higher when compared to the progenitor strain (MG1655/pPHB Av ). In comparison with the wild type strain expressing pPHB Av , the specific accumulation of PHB (gPHB/gDCW) in MG1655 Δack-pta/pTrcgapN/pPHB Av increased twofold, indicating that as the availability of NADPH is raised and the production of acetate abolished, a P3HB intracellular accumulation of up to 84 % of the E. coli dry weight is attainable.  相似文献   

16.
Two lactate dehydrogenase (ldh) genes from Lactobacillus sp. strain MONT4 were cloned by complementation in Escherichia coli DC1368 (ldh pfl) and were sequenced. The sequence analysis revealed a novel genomic organization of the ldh genes. Subcloning of the individual ldh genes and their Northern blot analyses indicated that the genes are monocistronic.  相似文献   

17.
Streptomyces transglutaminase (TGase) is an important industrial enzyme that catalyzes cross-linking of proteins. It is secreted as a zymogene and then is activated by proteases under physiological conditions. Although the activation process of TGase has been well investigated, the physiological function of TGase in Streptomyces has not been revealed. In this study, physiological function of TGase from Streptomyces hygroscopicus was found to be involved in differentiation by construction of a TGase gene interruption mutation strain (Δtg). The mutant Δtg showed an absence of differentiation compared with the parent strain. Furthermore, the production of TGase was found to be increased with the extending growth arrest phase of mycelium in submerged cultures. Thus, to enhance yield of TGase, the mycelium differentiation of Streptomyces was regulated via low temperature stress in a 3-L stirred-tank fermenter. The production of TGase increased by 39 % through extending the growth arrest phase for 4 h. This study found that TGase is involved in Streptomyces differentiation and proposed an approach to improve TGase production by regulation of mycelium differentiation in submerged cultures.  相似文献   

18.
The use of high concentrations of molasses as a fermentation feed-stock for ethanol production is normally precluded by the presence of inhibitory compounds. Use of the thermotolerant, ethanol-producing yeast strain Kluyveromyces marxianus IMB3 in fermentations containing high concentrations of molasses resulted in sub-optimal production of ethanol. The results suggested that this was caused by the presence of inhibitory materials rather than an intolerance to increased concentrations of ethanol. In the current study we describe the pretreatment of molasses preparations with either an Amberlite® monobed mixed ion-exchange resin or non-living microbial biomass from a local distillery. In the study molasses samples diluted to yield a final sugar concentration of 160?g/l were used as the substrate. Control fermentations using the untreated molasses dilutions yielded a maximum ethanol concentration of 40?g/l, representing 49% of the maximum theoretical yield. Fermentations using molasses samples pre-treated with Amberlite® or non-living biomass yielded maximum ethanol concentrations of 58 and 54?g/l, representing 71 and 66% of the maximum theoretical yield, respectively. The results suggest that pre-treatment brings about removal of toxic or inhibitory materials from the fermentation feed-stock and we believe that such pre-treatments, particularly using the less expensive non-living biomass preparations may find a role in processes concerned with the commercial production of ethanol from molasses using this microorganism.  相似文献   

19.
The purpose of this study was to evaluate the important technological and fermentative properties of wine yeast strains previously isolated from different wine producing regions of Turkey. The determination of the following important properties was made: growth at high temperatures; fermentative capability in the presence of high sugar concentration; fermentation rate; hydrogen sulfide production; killer activity; resistance to high ethanol and sulfur dioxide; foam production; and enzymatic profiles. Ten local wine yeast strains belonging to Saccharomyces, and one commercial active dry yeast as a reference strain were evaluated. Fermentation characteristics were evaluated in terms of kinetic parameters, including ethanol yield (YP/S), biomass yield (YX/S), theoretical ethanol yield (%), specific ethanol production rate (qp; g/gh), specific glucose uptake rate (qs; g/gh), and the substrate conversion (%). All tested strains were able to grow at 37 °C and to start fermentation at 30° Brix, and were resistant to high concentrations of sulfur dioxide. 60 % of the strains were weak H2S producers, while the others produced high levels. Foam production was high, and no strains had killer activity. Six of the tested strains had the ability to grow and ferment at concentrations of 14 % ethanol. Except for one strain, all fermented most of the media sugars at a high rate, producing 11.0–12.4 % (v/v) ethanol. Although all but one strain had suitable characteristics for wine production, they possessed poor activities of glycosidase, esterase and proteinase enzymes of oenological interest. Nine of the ten local yeast strains were selected for their good oenological properties and their suitability as a wine starter culture.  相似文献   

20.
Acetate is a primary inhibitory metabolite in cultures of Escherichia coli, and the production of both biomass and desired products are increased by reducing the accumulation of acetate. In this study, the accumulation of acetate during ?-tryptophan production was decreased by genetic modification of ?-tryptophan-producing strain (BCTRP) and optimization of the fermentation process. The mutant (BCTRPG), which has a deletion of the integral membrane permease IICBGlc (ptsG), produces a higher concentration of ?-tryptophan than mutants with deletions of either phosphate acetyltransferase (pta) or ptaptsG, due to the low accumulation of acetate and other byproducts, as well as high biomass production. The appropriate dissolved oxygen (DO) level, glucose feeding mode, and pH control strategy were applied to ?-tryptophan production using the BCTRPG mutant. The BCTRPG strain with optimized conditions resulted in a reduction in acetate accumulation (71.08% reduction to 0.72 g/L) and an increase in ?-tryptophan production (35.81% increase to 17.14 g/L) compared with the BCTRP strain in the original culture condition. Meanwhile, an analysis of the metabolic flux distribution indicated that the acetate synthesis flux decreased from 19.2% (original conditions) to 8.4% (optimized conditions), and the flux of tryptophan formation with the optimized conditions was 18.5%, which was 1.89 times higher than under the original conditions. This study provided the theoretical foundation and technical support for high-level industrialization production of ?-tryptophan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号