首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:研究2型糖尿病患者内脏脂肪含量与胰岛β细胞功能及胰岛素抵抗的关系。方法:对65例初诊2型糖尿病患者采用256 CT平脐经L4、5水平进行扫描并测量皮下及内脏脂肪含量,并以BMI不同进行分组,即体重正常组、超重组、肥胖组。采用稳态模式评估法(HOMA)计算胰岛素抵抗指数、胰岛B细胞分泌功能,测量入组患者的相关人体指标、空腹血生化检查指标。结果:超体重组、肥胖组患者腰围、体重指数(body mass index, BMI)、甘油三酯(triglyceride, TG)、低密度脂蛋白胆固醇(low density lipoprotein cholesterol, LDL-C)、空腹血糖,(fasting blood-glucose, FBG)、空腹胰岛素(fasting insulin, FINS)INS、稳态模型胰岛素抵抗指数(Homeostatic Model Assessment for Insulin Resistance, HOMA-IR)、胰岛β细胞功能指数(Homeostasis model assessment-β,HOMA-β)指标肥胖组、超重组均明显高于正常体重组(P0.05),超体重组、肥胖组内脏脂肪含量、内脏脂肪面积、皮下脂肪含量、脂肪总含量、脂肪百分比,超重组、肥胖组均明显高于正常体重组(P0.05),且肥胖组各项指标明显高于超重组(P0.05)。多元回归分析显示腹部脂肪总含量、内脏脂肪含量、皮下脂肪含量、内脏脂肪面积、BMI与胰岛素抵抗呈正相关,而其中内脏脂肪含量及面积关系最密切。结论:内脏脂肪含量是2型糖尿病胰岛素抵抗及B细胞功能变化的独立影响因素。  相似文献   

2.
Adiponectin is an adipocyte-derived hormone associated with insulin sensitivity and atherosclerotic risk. As central rather than gluteofemoral fat is known to increase the risk of type 2 diabetes and cardiovascular disease, we investigated the mRNA and protein expression of adiponectin in human adipose tissue depots. RNA was extracted from 46 human adipose tissue samples from non-diabetic subjects aged 44.33 +/- 12.4 with a BMI of 28.3 +/- 6.0 (mean +/- SD). The samples were as follows: 21 abdominal subcutaneous, 13 omentum, 6 thigh; samples were also taken from diabetic subjects aged 66.6 +/- 7.5 with BMI 28.9 +/- 3.17; samples were: 6 abdominal subcutaneous; 3 thigh. Quantitative PCR and Western analysis was used to determine adiponectin content. Protein content studies determined that when compared with non-diabetic abdominal subcutaneous adipose tissue (Abd Sc AT) (values expressed as percentage relative to Abd Sc AT -100 %). Adiponectin protein content was significantly lower in non-diabetic omental AT (25 +/- 1.6 %; p < 0.0001, n = 6) and in Abd Sc AT from diabetic subjects (36 +/- 1.5 %; p < 0.0001, n = 4). In contrast, gluteal fat maintained high adiponectin protein content from non-diabetic patients compared with diabetic patients. An increase in BMI was associated with lower adiponectin protein content in obese ND Abd Sc AT (25 +/- 0.4 %; p < 0.0001). These findings were in agreement with the mRNA expression data. In summary, this study indicates that adiponectin protein content in non-diabetic subjects remains high in abdominal subcutaneous fat, including gluteal fat, explaining the high serum adiponectin levels in these subjects. Omental fat, however, expresses little adiponectin. Furthermore, abdominal and gluteal subcutaneous fat appears to express significantly less adiponectin once diabetic status is reached. In conclusion, the adipose tissue depot-specific expression of adiponectin may influence the pattern of serum adiponectin concentrations and subsequent disease risk.  相似文献   

3.
Kim C  Park J  Park J  Kang E  Ahn C  Cha B  Lim S  Kim K  Lee H 《Obesity (Silver Spring, Md.)》2006,14(7):1164-1171
Objective: Clinical aspects of diabetes and obesity are somewhat different, even at similar levels of insulin resistance. The purpose of this study was to determine differences in body fat distribution and serum adiponectin concentrations in diabetic and non‐diabetic obese participants. We were also interested in identifying the characteristics of insulin resistance in these two groups, particularly from the standpoint of adiponectin. Research Methods and Procedures: Adiponectin concentrations of 112 type 2 diabetic obese participants and 124 non‐diabetic obese participants were determined. Abdominal adipose tissue areas and midthigh skeletal muscle areas were measured by computed tomography. A homeostasis model assessment of the insulin resistance score was calculated to assess insulin sensitivity. The relationships among serum adiponectin, body fat distribution, and clinical characteristics were also analyzed. Results: Both abdominal subcutaneous and visceral fat areas were higher in the non‐diabetic obese group, whereas midthigh low‐density muscle area was higher in the diabetic obese group. The homeostasis model assessment of the insulin resistance score was similar between groups, whereas serum adiponectin was lower in the diabetic obese group. Abdominal visceral fat (β = ?0.381, p = 0.012) was a more important predictor of adiponectin concentration than low‐density muscle (β = ?0.218, p = 0.026) in cases of non‐diabetic obesity, whereas low‐density muscle (β = ?0.413, p = 0.013) was a better predictor of adiponectin level than abdominal visceral fat (β = ? 0.228, p = 0.044) in diabetic obese patients. Discussion: Therefore, factors involved in pathophysiology, including different serum adiponectin levels and body fat distributions, are believed to be responsible for differences in clinical characteristics, even at similar levels of insulin resistance in both diseases.  相似文献   

4.
Visceral adipose tissue (VAT) imaged by computed tomography (CT) or magnetic resonance imaging (MRI) is associated with the metabolic syndrome features, being morphologically and functionally different from subcutaneous adipose tissue (SAT). Insulin effect is lower and catecholamine effect higher in visceral adipose tissue, with its metabolites and its secretions draining through portal system, partially at least, to the liver. Thus, visceral cells transfer and release fatty acids more extensively, have increased glucocorticoid and reduced thiazolidinedione responses, produce more angiotensinogen, interleukin-6 and plasminogen activator inhibitor-1, and secrete less leptin and adiponectin than SAT. Furthermore, there are regional differences in the intrinsic characteristics of the preadipocytes, with those of SAT presenting greater differentiation and fat cell gene expression but less apoptosis than that of VAT. All features contribute to the morbidity associated with increased VAT. To evaluate the relationship between VAT and components of the metabolic syndrome, 55 non-diabetic women, 11 lean (VAT < 68 cm 2) and 44 obese were studied. The obese with VAT within the normal range (VAT < or = 68 cm 2) had higher BMI, WHR, BP and resistance to FFA suppression during oGTT in comparison to the lean controls. The obese with VAT > 68 cm 2 compared to those with VAT < or = 68 cm 2 had similar body mass index (BMI) but significantly higher in vivo homeostasis model assessment for insulin resistance (HOMA IR ) results and triglycerides. By pooling all data, correlation analysis indicated that VAT contributes more to insulin resistance (HOMA IR ) than SAT does, but not when insulin-suppressed plasma free fatty acids during oral glucose tolerance test as an index of insulin resistance are taken into consideration.  相似文献   

5.
6.
Impaired fibrinolysis is a common finding in obese humans. This condition is now considered as an established risk factor for thromboembolic complications. Furthermore, obesity is characterized by a specific pattern of circulating concentrations of fat-cell products interleukin-6 (IL-6), leptin, and adiponectin. The aim of our study was to investigate the relationship between these proteins and selected variables of the fibrinolytic system in 74 mildly hypertensive, overweight subjects. Circulating IL-6 and leptin levels showed a positive association with BMI (r = 0.24, p = 0.04 and r = 0.70, p < 0.0001), whereas adiponectin was not correlated to BMI. Interestingly, IL-6 was also positively associated with t-PA/PAI-1 complexes after adjustment for BMI and other anthropometric variables. Leptin was positively correlated with PAI-1 activity and antigen (r = 0.32, p = 0.006 and r = 0.37, p < 0.001, respectively) and negatively with t-PA activity (r = -0.27, p = 0.03). However, these associations lost significance after correction for BMI or HOMA, an insulin sensitivity index. In contrast, adiponectin levels were independently and negatively correlated with PAI-1 antigen (r = -0.26, p = 0.04, after correction for BMI). In conclusion, our study provides further evidence that IL-6, leptin, and adiponectin are associated with impaired fibrinolysis in overweight hypertensive humans.  相似文献   

7.
Objective: To determine whether serum adiponectin is decreased in obesity and is restored toward normal level after treatment in children. Research Methods and Procedures: Subjects were 53 Japanese obese children, 33 boys and 20 girls (6 to 14 years old), and 30 age‐matched nonobese controls for measuring adiponectin (16 boys and 14 girls). Blood was drawn after an overnight fast, and the obese children were subjected to anthropometric measurements including waist and hip circumferences and skinfold thicknesses. Paired samples were obtained from 21 obese children who underwent psychoeducational therapy. Visceral adipose tissue area was measured by computed tomography. Adiponectin was assayed by an enzyme‐linked immunosorbent assay. Results: The serum levels of alanine aminotransferase, uric acid, triglyceride, total cholesterol, low‐density lipoprotein‐cholesterol, total cholesterol/high‐density lipoprotein‐cholesterol, apo B, apo B/apo A1, and insulin in obese children were higher than the reference values. Serum adiponectin level was lower in the obese children than in the controls (6.4 ± 0.6 vs. 10.2 ± 0.8 mg/L, means ± SEM, p < 0.001). In 21 obese children whose percent overweight declined during therapy, the adiponectin level increased (p = 0.002). The adiponectin level was correlated inversely with visceral adipose tissue area in obese children (r = ?0.531, p < 0.001). The inverse correlations of adiponectin with alanine aminotransferase, uric acid, and insulin were significant after being adjusted for percentage overweight, percentage body fat, or sex. Discussion: Serum adiponectin level is decreased in obese children depending on the accumulation of visceral fat and is restored toward normal level by slimming.  相似文献   

8.
Fat cell function and fibrinolysis.   总被引:3,自引:0,他引:3  
Plasminogen activator inhibitor-1 (PAI-1) is a specific inhibitor of plasminogen activators and may be the principal regulator of plasminogen activation in vivo. PAI-1 levels are elevated in insulin-resistant subjects and are associated with an increased risk of atherothrombosis. After adjustment for metabolic parameters, increased PAI-1 levels were no longer considered as a cardiovascular risk factor. The mechanisms underlying the strong association between PAI-1 levels and the metabolic disturbances found in insulin resistance are still not understood. Several studies have suggested that visceral adipose tissue may be a major source of PAl-1. Accordingly, adipose tissue PAI-1 production particularly that from visceral fat, was found to be elevated in obese human subjects. Within human adipose tissue, stromal cells appear to be the main cells involved in PAI-1 synthesis. This review discusses the potential mechanisms linking adipose tissue to plasma PAI-1 levels such as the intervention of cytokines (TNFalpha and TGFbeta), free fatty acids and hormones (insulin and glucocorticoids). Moreover alteration of adipose tissue cellular composition induced by the modulation of PAI-1 expression opens a novel field of interest.  相似文献   

9.
Human adipose tissue can produce plasminogen activator inhibitor-1 (PAI-1). It has been suggested that high levels of PAI-1 are of importance in enhanced cardiovascular disease observed among obese subjects, especially abdominally obese individuals. In the present study, we investigated the level of mRNA and production of PAI-1 in adipose tissue from two adipose tissue depots (omental vs. subcutaneous). Adipose tissue from both depots was obtained from obese (mean BMI, 46.9 kg/m 2) and non-obese (mean BMI, 23.9 kg/m 2) women. PAI-1 mRNA was measured both in fresh adipose tissue obtained immediately after surgery and after the adipose tissue (fragments) had been incubated for up to 72 h. In immediately frozen adipose tissue, PAI-1 mRNA expression was similar in omental and subcutaneous adipose tissue. No differences between obese and non-obese women were found. However, when adipose tissue fragments were cultured, PAI-1 mRNA and PAI-1 production were significantly higher in omental than in subcutaneous adipose tissue (p < 0.05). In the culture system, the production of PAI-1 in obese subjects was higher than in non-obese subjects in both subcutaneous (p < 0.05) and in omental adipose tissue (p = 0.19). In order to test whether these regional differences observed after incubation of the adipose tissue were due to differences in local accumulation of cytokines that may stimulate PAI-1 by a paracrine or autocrine manner, we investigated the expression of transforming growth factor beta1 (TGF-beta1) mRNA and tumor necrosis factor alpha (TNF-alpha) mRNA and protein. No differences between the two fat depots were found. In conclusion, no differences in PAI-1 expression between omental and subcutaneous adipose tissue were observed in biopsies frozen immediately after removal, but after incubation of adipose tissue (which somehow stimulates PAI-1 production), higher levels of PAI-1 were found in omental adipose tissue than in subcutaneous adipose tissue. Finally, PAI-1 production in adipose tissue from obese women was higher in non-obese women after incubation for 72 h.  相似文献   

10.
It is well established that fat distribution rather than the total quantity of fat is the major determinant of cardiovascular risk in overweight subjects. However, it is not known whether the concept of fat distribution still makes sense in severely obese subjects. Particularly, the role of visceral fat accumulation and/or of adipocyte hypertrophy in insulin resistance (IR) has not been studied in this population. Therefore, the aim of this study was to clarify the determinants of metabolic disorders in severely obese women. We performed a cross‐sectional study in 237 severely obese women (BMI >35 kg/m2). We assessed total body fat mass and fat distribution by anthropometric measurements (BMI and waist‐to‐hip ratio (WHR)) and by dual‐energy X‐ray absorptiometry (DXA). In 22 women, we measured subcutaneous and visceral adipocyte size on surgical biopsies. Mean BMI was 44 ± 7 kg/m2 (range 35–77), mean age 37 ± 11 years (range 18–61). Lipid parameters (triglycerides, high‐density lipoprotein cholesterol) and IR markers (fasting insulin and homeostasis model assessment (HOMA) index) correlated with fat distribution, whereas inflammatory parameters (C‐reactive protein, fibrinogen) correlated only with total fat mass. An association was observed between android fat distribution and adipocyte hypertrophy. Visceral adipocyte hypertrophy was associated with both IR and hypertension, whereas subcutaneous fat‐cell size was linked only to hypertension. Our results obtained in a large cohort of women showed that fat distribution still predicts metabolic abnormalities in severe obesity. Furthermore, we found a cluster of associations among fat distribution, metabolic syndrome (MS), and adipocyte hypertrophy.  相似文献   

11.
Visceral adipose tissue (VAT) is a key pathogenic fat depot in the metabolic syndrome (MetS), but liver fat (LF) may also play an important role. We evaluated associations of VAT and LF with MetS in normal weight, overweight, and obese men and women (BMI <25, 25-29.9, and ≥30 kg/m2, respectively). This analysis included 2,495 participants from the Age, Gene/Environment Susceptibility (AGES)-Reykjavik study with computed tomography measurements for VAT and LF. MetS was defined by ≥3 of the following: larger abdominal circumference, hypertension, elevated triglyceride (TG), low high-density lipoprotein (HDL), impaired fasting glucose (IFG), and microalbuminuria. We estimated the odds of MetS per 1-s.d. increase in VAT and LF, adjusting for key covariates. VAT was associated with an increased odds of MetS in normal weight, overweight, and obese women (odds ratios (OR) = 2.78, 1.63, and 1.43, respectively; all P < 0.01) that diminished in magnitude with increasing BMI (VAT × BMI class interaction P < 0.001). In men, VAT was related to MetS only among the overweight (OR = 1.69, P < 0.01). LF was associated with MetS in the overweight and obese groups in women (OR = 1.38 and 1.45; both P < 0.001) and in men (OR = 1.38, P = 0.01; and OR = 1.27, P = 0.10), but not in the normal weight groups. These BMI-specific relationships persisted when both fat depots were included in the model. VAT and LF were associated with MetS independently of each other, and these relationships were modified by BMI class such that, VAT was the more important depot at lower levels of obesity and LF at higher levels. Importantly, fatty liver may be a novel metabolic risk factor in overweight and obese individuals.  相似文献   

12.
Animal studies have revealed the association between stearoyl-CoA desaturase 1 (SCD1) and obesity and insulin resistance. However, only a few studies have been undertaken in humans. We studied SCD1 in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) from morbidly obese patients and their association with insulin resistance, sterol regulatory element binding protein-1 (SREBP-1) and ATPase p97, proteins involved in SCD1 synthesis and degradation. The insulin resistance was calculated in 40 morbidly obese patients and 11 overweight controls. Measurements were made of VAT and SAT SCD1, SREBP-1 and ATPase p97 mRNA expression and protein levels. VAT and SAT SCD1 mRNA expression levels in the morbidly obese patients were significantly lower than in the controls (P = 0.006), whereas SCD1 protein levels were significantly higher (P < 0.001). In the morbidly obese patients, the VAT SCD1 protein levels were decreased in patients with higher insulin resistance (P = 0.007). However, SAT SCD1 protein levels were increased in morbidly obese patients with higher insulin resistance (P < 0.05). Multiple linear regressions in the morbidly obese patients showed that the variable associated with the SCD1 protein levels in VAT was insulin resistance, and the variables associated with SCD1 protein levels in SAT were body mass index (BMI) and ATPase p97. In conclusion, these data suggest that the regulation of SCD1 is altered in individuals with morbid obesity and that the SCD1 protein has a different regulation in the two adipose tissues, as well as being closely linked to the degree of insulin resistance.  相似文献   

13.
Accumulation of cytotoxic and T‐helper (Th)1 cells together with a loss of regulatory T cells in gonadal adipose tissue was recently shown to contribute to obesity‐induced adipose tissue inflammation and insulin resistance in mice. Human data on T‐cell populations in obese adipose tissue and their potential functional relevance are very limited. We aimed to investigate abundance and proportion of T‐lymphocyte sub‐populations in human adipose tissue in obesity and potential correlations with anthropometric data, insulin resistance, and systemic and adipose tissue inflammation. Therefore, we analyzed expression of marker genes specific for pan‐T cells and T‐cell subsets in visceral and subcutaneous adipose tissue from highly obese patients (BMI >40 kg/m2, n = 20) and lean to overweight control subjects matched for age and sex (BMI <30 kg/m2; n = 20). All T‐cell markers were significantly upregulated in obese adipose tissue and correlated with adipose tissue inflammation. Proportions of cytotoxic T cells and Th1 cells were unchanged, whereas those of regulatory T cells and Th2 were increased in visceral adipose tissue from obese compared to control subjects. Systemic and adipose tissue inflammation positively correlated with the visceral adipose abundance of cytotoxic T cells and Th1 cells but also regulatory T cells within the obese group. Therefore, this study confirms a potential role of T cells in human obesity‐driven inflammation but does not support a loss of protective regulatory T cells to contribute to adipose tissue inflammation in obese patients as suggested by recent animal studies.  相似文献   

14.
Early studies reported that the size of adipose cells correlates with insulin resistance. However, a recent study comparing moderately obese, sensitive and resistant subjects, with comparable BMI (~30), did not detect any significant difference in the size of the large cells, but rather a smaller proportion of large cells in the resistant subjects, suggesting impaired adipogenesis. We hypothesize that a decreased proportion, rather than the size, of large adipose cells is also associated with insulin resistance in first-degree relatives of type 2 diabetic patients. Thirty-five leaner (BMI 18-34) subjects who were relatively healthy were recruited. Insulin sensitivity was measured by the euglycemic, hyperinsulinemic clamp. Needle biopsies of abdominal subcutaneous fat were assayed for adipose cell size by fitting the cell size distribution with two exponentials and a Gaussian function. The fraction of large cells was defined as the area of the Gaussian peak and the size of the large cells was defined as its center (c(p)). Glucose infusion rate (GIR) and c(p) were negatively correlated, but insulin sensitivity and the proportion of large cells were not correlated. BMI and c(p) were also strongly correlated, but a relationship of modest correlation between the cell size and insulin resistance was still significant after correcting for BMI. In contrast to moderately obese subjects, in the first-degree relatives of type 2 diabetic patients both BMI and the size of the large adipose cells predict the degree of insulin resistance; no correlation is found between the proportion of large adipose cells and insulin resistance.  相似文献   

15.
BACKGROUND: Two studies were designed to determine whether a single dose (80 mg) of the angiotensin II receptor blocker (ARB), valsartan, alters insulin sensitivity in obese, non-hypertensive subjects with and without Type 2 diabetes. METHODS: Insulin sensitivity (S(I)), glucose effectiveness (S(G)), and acute insulin response (AIR(0-10 min)) were measured by means of a 3-hour insulin-modified frequently sampled intravenous glucose tolerance test (FSIVGTT) before and after a single dose of valsartan. Study 1: obese, normotensive non-diabetic male subjects (n = 12), mean (SD) age 37.2 +/- 11.2 years, BMI 32.8 +/- 6.8 kg/m (2); Study 2: obese, normotensive Type 2 diabetic patients (n = 12), mean age 55.7 +/- 6.9 years, BMI 35.0 +/- 6.8 kg/m (2)/l. Both studies were randomised, double-blind, placebo-controlled, single-dose crossover group studies involving subjects in two study days, two weeks apart. After fasting samples were taken, a 300 mg/kg iv glucose bolus was injected at 0 min, and 0.05 U/kg iv insulin was given 20 min later. Blood samples for analysis of glucose and insulin were taken throughout the 3-hour study period. RESULTS: Study 1 (non-diabetic subjects) S(I) 2.81 vs. 2.63 x 10 (-4) min (-1) per microU/ml (p = 0.54), S(G) 0.020 vs. 0.020 min (-1) (p = 0.90), AIR(0-10) min 3305 vs. 3450 microU/min/ml (p = 0.71); Study 2 (patients with type 2 diabetes) S(I) 0.59 vs. 0.85 x 10 (-4) min (-1) per microU/ml (p = 0.15), S(G) 0.013 vs. 0.014 min (-1) (p = 0.71), AIR(0-10) min 65 vs. 119 microU/min/ml (p = 0.14), placebo vs. valsartan, respectively. CONCLUSION: In obese, non-hypertensive non-diabetic and Type 2 diabetic subjects a single dose of valsartan does not alter insulin sensitivity.  相似文献   

16.
Obesity is an increasingly important public health issue reaching epidemic proportions. Visceral obesity has been defined as an important element of the metabolic syndrome and expansion of the visceral fat mass has been shown to contribute to the development of insulin resistance and cardiovascular disease. To identify novel contributors to cardiovascular and metabolic abnormalities in obesity, we analyzed the adipose proteome and identified soluble epoxide hydrolase (sEH) in the epididymal fat pad from C57BL/6J mice that received either a regular diet or a “western diet.” sEH was synthesized in adipocytes and expression levels increased upon differentiation of 3T3‐L1 preadipocytes. Although normalized sEH mRNA and protein levels did not differ in the fat pads from mice receiving a regular or a “western diet,” total adipose sEH activity was higher in the obese mice, even after normalization for body weight. Furthermore, peroxisome proliferator–activated receptor γ (PPARγ) agonists increased the expression of sEH in mature 3T3‐L1 adipocytes in vitro and in adipose tissue in vivo. Considering the established role for sEH in inflammation, cardiovascular diseases, and lipid metabolism, and the suggested involvement of sEH in the development of type 2 diabetes, our study has identified adipose sEH as a potential novel therapeutic target that might affect the development of metabolic and cardiovascular abnormalities in obesity.  相似文献   

17.

Aims

Visceral adipose tissue measured by CT or MRI is strongly associated with an adverse metabolic risk profile. We assessed whether similar associations can be found with ultrasonography, by quantifying the strength of the relationship between different measures of obesity and indices of glucose metabolism in a population at high risk of type 2 diabetes.

Methods

A cross-sectional analysis of 1342 participants of the ADDITION-PRO study. We measured visceral adipose tissue and subcutaneous adipose tissue with ultrasonography, anthropometrics and body fat percentage by bioelectrical impedance. Indices of glucose metabolism were derived from a three point oral glucose tolerance test. Linear regression of obesity measures on indices of glucose metabolism was performed.

Results

Mean age was 66.2 years, BMI 26.9kg/m2, subcutaneous adipose tissue 2.5cm and visceral adipose tissue 8.0cm. All measures of obesity were positively associated with indicators of glycaemia and inversely associated with indicators of insulin sensitivity. Associations were of equivalent magnitude except for subcutaneous adipose tissue and the visceral/subcutaneous adipose tissue ratio, which showed weaker associations. One standard deviation difference in BMI, visceral adipose tissue, waist circumference, waist/height ratio and body fat percentage corresponded approximately to 0.2mmol/l higher fasting glucose, 0.7mmol/l higher 2-hr glucose, 0.06-0.1% higher HbA1c, 30 % lower HOMA index of insulin sensitivity, 20% lower Gutt’s index of insulin sensitivity, and 100 unit higher Stumvoll’s index of beta-cell function. After adjustment for waist circumference visceral adipose tissue was still significantly associated with glucose intolerance and insulin resistance, whereas there was a trend towards inverse or no associations with subcutaneous adipose tissue. After adjustment, a 1cm increase in visceral adipose tissue was associated with ~5% lower insulin sensitivity (p≤0.0004) and ~0.18mmol/l higher 2-hr glucose (p≤0.001).

Conclusion

Visceral and subcutaneous adipose tissue assessed by ultrasonography are significantly associated with glucose metabolism, even after adjustment for other measures of obesity.  相似文献   

18.
Autotaxin (ATX) is a lysophospholipase D involved in synthesis of a bioactive mediator: lysophosphatidic. ATX is abundantly produced by adipocytes and exerts a negative action on adipose tissue expansion. In both mice and humans, ATX expression increases with obesity in association with insulin resistance. In the present study, fat depot-specific regulation of ATX was explored in human. ATX mRNA expression was quantified in visceral and subcutaneous adipose tissue in obese (BMI?>?40?kg/m2; n?=?27) and non-obese patients (BMI?<?25?kg/m2; n?=?10). Whatever the weight status of the patients is, ATX expression was always higher (1.3- to 6-fold) in subcutaneous than in visceral fat. Nevertheless, visceral fat ATX was significantly higher (42?%) in obese than in non-obese patients, whereas subcutaneous fat ATX remained unchanged. In obese patients, visceral fat ATX expression was positively correlated with diastolic arterial blood pressure (r?=?0.67; P?=?0.001). This correlation was not observed with subcutaneous fat ATX. Visceral fat ATX was mainly correlated with leptin (r?=?0.60; P?=?0.001), inducible nitric oxide synthase (r?=?0.58; P?=?0,007), and apelin receptor (r?=?0.50; P?=?0.007). These correlations were not observed with subcutaneous fat ATX. These results reveal that obesity-associated upregulation of human adipose tissue ATX is specific to the visceral fat depot.  相似文献   

19.
We previously reported that adenosine monophosphate-activated protein kinase (AMPK) activity is lower in adipose tissue of morbidly obese individuals who are insulin resistant than in comparably obese people who are insulin sensitive. However, the number of patients and parameters studied were small. Here, we compared abdominal subcutaneous, epiploic, and omental fat from 16 morbidly obese individuals classified as insulin sensitive or insulin resistant based on the homeostatic model assessment of insulin resistance. We confirmed that AMPK activity is diminished in the insulin resistant group. A custom PCR array revealed increases in mRNA levels of a wide variety of genes associated with inflammation and decreases in PGC-1α and Nampt in omental fat of the insulin resistant group. In contrast, subcutaneous abdominal fat of the same patients showed increases in PTP-1b, VEGFa, IFNγ, PAI-1, and NOS-2 not observed in omental fat. Only angiotensinogen and CD4(+) mRNA levels were increased in both depots. Surprisingly, TNFα was only increased in epiploic fat, which otherwise showed very few changes. Protein carbonyl levels, a measure of oxidative stress, were increased in all depots. Thus, adipose tissues of markedly obese insulin resistant individuals uniformly show decreased AMPK activity and increased oxidative stress compared with insulin sensitive patients. However, most changes in gene expression appear to be depot-specific.  相似文献   

20.
Insulin sensitivity is impaired and ectopic fat (accretion of lipids outside of typical adipose tissue depots) increased in obese adults and adolescents. It is unknown how early in life this occurs; thus, it is important to evaluate young children to identify potential factors leading to the development of metabolic syndrome. We examined an ethnically diverse cohort of healthy, exclusively prepubertal children (N = 123; F = 57, M = 66; age 8.04 ± 0.77 years) to examine differences in insulin sensitivity and ectopic and visceral fat deposition between obese and nonobese youth. Obesity was categorized by age- and sex-adjusted BMI z-scores (nonobese = z-score <2 (N = 94) and obese = z-score ≥2 (N = 29)). Insulin sensitivity was assessed by both a frequently sampled intravenous glucose tolerance test (S(i)) and the homeostatic model assessment of insulin resistance (HOMA(IR)). Intramyocellular lipids (IMCLs) from soleus and intrahepatic lipids (IHLs) were assessed by magnetic resonance spectroscopy, visceral adipose tissue (VAT) by magnetic resonance imaging, and total body fat by dual-energy X-ray absorptiometry. We also examined serum lipids (total cholesterol, triglycerides, high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol) and blood pressure (diastolic and systolic). Obese children exhibited significantly lower S(i) (5.9 ± 5.98 vs. 13.43 ± 8.18 (mμ/l)(-1)·min(-1), P = 0.01) and HDL-C and higher HOMA(IR) (1.68 ± 1.49 vs. 0.63 ± 0.47, P < 0.0001), IMCL (0.74 ± 0.39 vs. 0.44 ± 0.21% water peak, P < 0.0001), IHL (1.49 ± 1.13 vs. 0.54 ± 0.42% water peak, P < 0.0001), VAT (20.16 ± 8.01 vs. 10.62 ± 5.44 cm(2), P < 0.0001), total cholesterol, triglycerides, low-density lipoprotein cholesterol, and systolic blood pressure relative to nonobese children. These results confirm significantly increased ectopic fat and insulin resistance in healthy obese vs. nonobese children prior to puberty. Excessive adiposity during early development appears concomitant with precursors of type 2 diabetes and the metabolic syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号