首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study was conducted to explore the potency of morphine to induce reductions of specific cytochrome P450 isoenzyme functions. Male Sprague-Dawley rats were treated with escalating doses (20-125 mg/kg per day) of morphine for 2 weeks in order to study the effects on the following cytochrome P450 catalyzed reactions: 16 alpha-hydroxylation of dehydroepienderosterone (DHA) and progesterone; 17 alpha- and 21-hydroxylation of progesterone; N-demethylation of ethymorphine, codeine and morphine as well as O-dealkylation of ethylmorphine and codeine. 16 alpha-Hydroxylation of DHA and progesterone and 17 alpha-hydroxylation of progesterone decreased to 18, 12 and 10% of control activities, respectively. The N-demethylation of ethylmorphine and codeine decreased to 34 and 43% of control activities, respectively. Morphine treatment had no effect on the 21-hydroxylation reactions or the O-dealkylation of ethylmorphine or codeine. A monoclonal antibody (Mab) against rat liver cytochrome P450 2 c/RLM 5 exerted a 66-73% inhibition of the N-demethylation of ethylmorphine and codeine, respectively, whereas the O-dealkylation reactions were not affected. This Mab inhibited the 16 alpha- and 17 alpha-hydroxylation of DHA and progesterone, whereas the 21-hydroxylation reactions were unaffected. The steroid hydroxylation reactions in rat adrenals were not altered upon morphine treatment. Our data suggest that a major part of the 16 alpha- and 17 alpha-steroid hydroxylations are catalyzed by the same (or closely related) cytochrome(s) P450 as the opioid N-demethylation reactions.  相似文献   

2.
Mu receptor binding of some commonly used opioids and their metabolites.   总被引:8,自引:1,他引:7  
The binding affinity to the mu receptor of some opioids chemically related to morphine and some of their metabolites was examined in rat brain homogenates with 3H-DAMGO. The chemical group at position 6 of the molecule had little effect on binding (e.g. morphine-6-glucuronide Ki = 0.6 nM; morphine = 1.2 nM). Decreasing the length of the alkyl group at position 3 decreased the Ki values (morphine less than codeine less than ethylmorphine less than pholcodine). Analgesics with high clinical potency containing a methoxyl group at position 3 (e.g. hydrocodone, Ki = 19.8 nM) had relatively weak receptor binding, whilst their O-demethylated metabolites (e.g. hydromorphone, Ki = 0.6 nM) had much stronger binding. Many opioids may exert their pharmacological actions predominantly through metabolites.  相似文献   

3.
Although the endocrine disruptor bisphenol A (BPA) is reported to inhibit nerve conduction, the underlying mechanisms are unclear. Therefore, in the present study, we examined the effect of BPA on compound action potentials (CAPs) recorded from the frog sciatic nerve using the air-gap method. Treatment of the sciatic nerve with BPA (0.5 mM) for 20 min reduced the peak amplitude of the CAP by approximately 60% in a partially reversible manner. The reduction in the CAP peak amplitude was concentration-dependent, with a half-maximal inhibitory concentration (IC50) value of 0.31 mM. This effect of BPA was unaffected by an estrogen-receptor antagonist, 4-hydroxytamoxifen, which by itself reduced CAP peak amplitude, with an IC50 value of 0.26 mM (comparable to that of BPA). The natural estrogen 17β-estradiol, at the highest dissolvable concentration (0.05 mM), had an effect similar to that of BPA. The IC50 value of BPA was comparable to those of some local anesthetics in inhibiting frog CAPs. Our findings suggest that BPA inhibits nerve conduction in a manner independent of estrogen receptors. This action of BPA may underlie, at least in part, the neurotoxicity of the compound.  相似文献   

4.
We have previously found that phenanthrenic opioids, including codeine, modulate morphine glucuronidation in the rat. Here codeine and five of its derivatives were compared in their effects on the synthesis of morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) from morphine by rat liver microsomal preparations, and by primary cultures of rat hepatocytes previously incubated for 72 h with either codeine or its derivatives. Acetylcodeine and pivaloylcodeine shared the capability of the parent compound of inhibiting the synthesis of M3G by liver microsomes through a noncompetitive mechanism of action. Their IC50 were 3.25, 2.27, and 4.32 μM, respectively. Dihydrocodeine, acetyldihydrocodeine, and lauroylcodeine were ineffective. In all the experimental circumstances M6G was undetectable in the incubation medium. In primary hepatocyte cultures codeine only inhibited M3G formation, but with a lower efficacy than that observed with microsomes (IC50 20.91 vs 4.32 μM). Preliminary results show that at micromolar concentrations codeine derivatives exhibit a low rate of affinity for μ opiate receptors. In conclusion, acetyl and pivaloyl derivatives of codeine noncompetitively inhibit liver glucuronidation of morphine interacting with microsomes. This study further strengths the notion that phenanthrenic opioids can modulate morphine glucuronidation independently from their effects on μ opiate receptors.  相似文献   

5.
The immunomodulatory effects of opioids are known in various infections. However, little is known about the effects of opioids in tuberculosis (TB). In the present study, we report the effects of morphine in Mycobacterium smegmatis infection in mice and macrophages. Morphine exerted a dose-dependent suppression of infection in vivo: 50 and 100 mg/kg morphine exerted significant (P<0.05) suppression whereas 5 mg/kg morphine showed no effect. Analogous to the in vivo effects, incubation of M. smegmatis-infected mouse peritoneal macrophages with morphine (100 μM) showed significant reduction in intramacrophage CFU counts. However, morphine did not show any direct antimycobacterial activity in broth dilution assay upto 100 μM concentration. Further, morphine-induced intramacrophage killing of M. smegmatis was abrogated by naloxone and aminoguanidine indicating the involvement of opioid-receptor activation and nitric oxide production in protective effects of morphine. In conclusion, morphine suppressed the progression of experimental TB in both mice and macrophage models.  相似文献   

6.
A procedure based on liquid chromatography-mass spectrometry (LC-MS) is described for determination of 6-monoacetylmorphine, morphine, morphine-3-glucuronide, morphine-6-glucuronide, codeine, cocaine, benzoylecgonine and cocaethylene in meconium using nalorfine as the internal standard. The analytes are initially extracted from the matrix by methanol (6-monoacetylmorphine, morphine, codeine, cocaine, benzoylecgonine and cocaethylene) or 0.01 M ammonium hydrogen carbonate buffer (morphine-3-glucuronide, morphine-6-glucuronide). Subsequently a solid-phase extraction with Bondelut Certify columns (6-monoacetylmorphine, morphine, codeine, cocaine, benzoylecgonine and cocaethylene) or ethyl solid-phase extraction columns (morphine-3-glucuronide, morphine-6-glucuronide) was applied. Chromatography was performed on a C(8) reversed-phase column using a gradient of acetic acid 1%-acetonitrile as a mobile phase. Analytes were determined in LC-MS single ion monitoring mode with atmospheric pressure ionisation-electrospray (ESI) interface. The method was validated in the range 0.005-1.00 microg/g using 1 g of meconium per assay and applied to analysis of meconium in newborns to assess fetal exposure to opiates and cocaine.  相似文献   

7.
This paper presents evidence of studies on the effects of the narcotic alkaloids, cocaine hydrochloride, morphine sulfate, and codeine phosphate, on nonenzymatic lipid peroxidation in rat brain mitochondria. These organelles abound in polyunsaturated fatty acids and are thus susceptible to oxidative attack. Lipid peroxidation was indexed mainly by assaying the extent of malonaldehyle (MDA) production and also the formation of fluorescent products in the course of the reaction. We found that morphine sulfate lowered fluorescence while the other two alkaloids showed no effect on lipid peroxidation in the absence of the inducers, 1.0 mM ascorbic acid or 0.1 mM ferrous sulfate. The apparent antioxidative nature of morphine sulfate was also observed in its effects on induced and noninduced MDA production, both cocaine hydrochloride and codeine phosphate stimulated MDA production by about 20% in the absence of any inducers. This paper also attempts to draw a structure-activity relationship for the antioxidative action of opium alkaloids, which we postulated to be due to the chelating capability of the alkaloid molecule.  相似文献   

8.
AimsTransient receptor potential (TRP) vanilloid-1 (TRPV1) and melastatin-8 (TRPM8) channels play a role in transmitting sensory information in primary-afferent neurons. TRPV1 agonists at high concentrations inhibit action potential conduction in the neurons and thus have a local anesthetic effect. The purpose of the present study was to know whether TRPM8 agonist menthol at high concentrations has a similar action and if so whether there is a structure–activity relationship among menthol-related chemicals.Main methodsCompound action potentials (CAPs) were recorded from the frog sciatic nerve by using the air-gap method.Key findings(?)-Menthol and (+)-menthol concentration-dependently reduced CAP peak amplitude with the IC50 values of 1.1 and 0.93 mM, respectively. This (?)-menthol activity was resistant to non-selective TRP antagonist ruthenium red; TRPM8 agonist icilin did not affect CAPs, indicating no involvements of TRPM8 channels. p-Menthane, (+)-limonene and menthyl chloride at 7–10 mM minimally affected CAPs. On the other hand, (?)-menthone, (+)-menthone, (?)-carvone, (+)-carvone and (?)-carveol (in each of which chemicals OH or O group was added to p-menthane and limonene) and (+)-pulegone inhibited CAPs with extents similar to that of menthol. 1,8-Cineole and 1,4-cineole were less effective while thymol and carvacrol were more effective than menthol in inhibiting CAPs.SignificanceMenthol-related chemicals inhibited CAPs and were thus suggested to exhibit local anesthetic effects comparable to those of lidocaine and cocaine as reported previously for frog CAPs. This result may provide information to develop local anesthetics on the basis of the chemical structure of menthol.  相似文献   

9.
Effects of a short-term exposure to millimeter waves (CW, 40–52 GHz, 0.24–3.0 mW/cm2) on the compound action potential (CAP) conduction were studied in an isolated frog sciatic nerve preparation. CAPs were evoked by either a low-rate or a high-rate electrical stimulation of the nerve (4 and 20 paired pulses/s, respectively). The low-rate stimulation did not alter the functional state of the nerve, and the amplitude, latency, and peak latency of CAPs could stay virtually stable for hours. Microwave irradiation for 10–60 min at 0.24–1.5 mW/cm2, either at various constant frequencies or with a stepwise frequency change (0.1 or 0.01 GHz/min), did not cause any detectable changes in CAP conduction or nerve refractoriness. The effect observed under irradiation at a higher field intensity of 2–3 mW/cm2 was a subtle and transient reduction of CAP latency and peak latency along with a rise of the test CAP amplitude. These changes could be evoked by any tested frequency of the radiation; they reversed shortly after cessation of exposure and were both qualitatively and quantitatively similar to the effect of conventional heating of 0.3–0.4°C. The high-rate electrical stimulation caused gradual and reversible decrease of the amplitude of conditioning and test CAPs and increased their latencies and peak latencies. These changes were essentially the same with and without irradiation (2.0–2.7 or 0.24–0.28 mW/cm2), except for attenuation of the decrease of the test CAP amplitude. This effect was observed at both field intensities, but was statistically significant only for certain frequencies of the radiation. Within the studied limits, this effect appeared to be dependent on the frequency rather than on the intensity of the radiation, but this observation requires additional experimental confirmation. Bioelectromagnetics 18:324–334, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
Animal studies indicate that opioids inhibit the firing rate of vestibular neurons, which are important in mediating the vestibulosympathetic reflex. Furthermore, this inhibition appears to be greater in more mature rats. In the present study, we tested the hypotheses that opioids inhibit the vestibulosympathetic reflex in humans and that endogenous opioids contribute to the age-related impairment of the vestibulosympathetic reflex. These hypotheses were tested by measuring muscle sympathetic nerve activity (MSNA), arterial blood pressure, and heart rate responses to otolith organ engagement during head-down rotation (HDR) in young (24 +/- 2 yr old) and older (63 +/- 2 yr) subjects before and after administration of either an opioid-receptor antagonist (16 mg naloxone in 9 young and 8 older subjects) or an opioid-receptor agonist (60 mg codeine in 7 young and 7 older subjects). Naloxone did not augment the reflex increase in MSNA during HDR in young (Delta7 +/- 2 vs. Delta4 +/- 2 bursts/min and Delta81 +/- 23 vs. Delta60 +/- 24% change in burst frequency and total MSNA before and after naloxone, respectively) or older subjects (Delta2 +/- 2 vs. Delta1 +/- 2 burst/min and Delta8 +/- 7 vs. Delta8 +/- 9% before and after naloxone). Similarly, codeine did not attenuate the increase in MSNA during HDR in young (Delta8 +/- 1 vs. Delta7 +/- 2 bursts/min and Delta53 +/- 4 vs. Delta64 +/- 16% before and after codeine) or older subjects (Delta6 +/- 4 vs. Delta3 +/- 3 bursts/min and Delta38 +/- 21 vs. Delta33 +/- 20%). Mean arterial blood pressure and heart rate responses to HDR were not altered by either naloxone or codeine. These data do not provide experimental support for the concept that opioids modulate the vestibulosympathetic reflex in humans. Moreover, endogenous opioids do not appear to contribute the age-associated impairment of the vestibulosympathetic reflex.  相似文献   

11.

Background

Opioids have been used for the management of pain and coadministration of two opioids may induce synergism. In a model of tonic pain, the acetic acid writhing test and in a phasic model, the hot plate, the antinociceptive interaction between fentanyl, methadone, morphine, and tramadol was evaluated.

Results

The potency of opioids in the writhing test compared to the hot plate assay was from 2.5 (fentanyl) to 15.5 (morphine) times, respectively. The ED50 was used in a fixed ratio for each of the six pairs of opioid combinations, which, resulted in a synergistic antinociception except for methadone/tramadol and fentanyl/tramadol which were additive, in the hot plate. The opioid antagonists naltrexone, naltrindole and nor-binaltorphimine, suggests that the synergism of morphine combinations are due to the activation of MOR subtypes with partially contribution of DOR and KOR, however fentanyl and methadone combinations are partially due to the activation of MOR and DOR subtypes and KOR lack of participation. The antinociceptive effects of tramadol combinations, are partially due to the activation of MOR, DOR and KOR opioid subtypes.

Conclusion

These results suggets that effectiveness and magnitude of the interactions between opioids are dependent on pain stimulus intensity.  相似文献   

12.
Effects of NaF on the synaptic transmission of bullfrog sympathetic ganglia were studied by extra- and intracellular recordings. The results obtained were as follows: 1) The amplitude of the orthodromic compound action potential (CAP) evoked by preganglionic nerve stimulation was remarkably augmented with 10 microM NaF, whereas that of the antidromic CAPs remained unchanged with the same dose of NaF. The low amplitude of the orthodromic CAP which was diminished by a low-Ca2(+)-ringer's solution reversed with an additional administration of NaF. The amplitudes of the orthodromic CAPs were enhanced by phosphodiesterase inhibitors such as isobutylmethylxanthine, theophylline, and physostigmine. In addition, augmentation of the orthodromic CAPs was induced by an adenylate cyclase activator (forskolin) and d.b-cAMP; however, its augmented responses were not affected by an additional administration of NaF. 2) In the intracellular recording, NaF showed no effect on the resting membrane potential and depolarizing response induced by acetylcholine. However, the EPSP appearing in the phase of afterhyperpolarization of the orthodromic action potential was significantly increased by NaF, whereas no effect was found on the antidromic action potential. In order to evaluate these findings, effects of NaF on the decreased low-Ca2(+)-action potential were observed. After application of NaF, the low-Ca2(+)-orthodromic EPSPs were reversed, and when the height of the EPSP was raised to the critical firing level, a spike potential was driven in the cell. These facts suggest that the site of NaF action seems to exist in the presynaptic rather than postsynaptic process. Furthermore, it suggests that NaF probably acts on Gs-protein which activates adenylate cyclase at the presynaptic membrane. This resulted in a great increase in intracellular cAMP at the synaptic terminal and it triggered the Ca2(+)-increase. As an inevitable consequence, release of transmitter from the nerve terminals of the frog sympathetic ganglion was finally facilitated. These factors supposedly resulted in augmentation of the amplitude of the orthodromic CAP.  相似文献   

13.
There are conflicting reports for the role of endogenous opioids on sympathetic and cardiovascular responses to exercise in humans. A number of studies have utilized naloxone (an opioid-receptor antagonist) to investigate the effect of opioids during exercise. In the present study, we examined the effect of morphine (an opioid-receptor agonist) on sympathetic and cardiovascular responses at rest and during isometric handgrip (IHG). Eleven subjects performed 2 min of IHG (30% maximum) followed by 2 min of postexercise muscle ischemia (PEMI) before and after systemic infusion of morphine (0.075 mg/kg loading dose + 1 mg/h maintenance) or placebo (saline) in double-blinded experiments on separate days. Morphine increased resting muscle sympathetic nerve activity (MSNA; 17 +/- 2 to 22 +/- 2 bursts/min; P < 0.01) and increased mean arterial pressure (MAP; 87 +/- 2 to 91 +/- 2 mmHg; P < 0.02), but it decreased heart rate (HR; 61 +/- 4 to 59 +/- 3; P < 0.01). However, IHG elicited similar increases for MSNA, MAP, and HR between the control and morphine trial (drug x exercise interaction = not significant). Moreover, responses to PEMI were not different. Placebo had no effect on resting, IHG, and PEMI responses. We conclude that morphine modulates cardiovascular and sympathetic responses at rest but not during isometric exercise.  相似文献   

14.
Tramadol is a centrally acting opioid analgesic structurally related to codeine and morphine. Analogs of tramadol with deuterium-for-hydrogen replacement at metabolically active sites were prepared and evaluated in vitro and in vivo.  相似文献   

15.
The acute effects of capsaicin (CAP) were studied on membrane properties, the action potential (AP) and the membrane ionic currents in the giant serotoninergic neuron of the cerebral ganglion (MCC) in the snail of Helix pomatia L. CAP (30-300 microM) depolarized the MCC, decreased the amplitude, the rate of rise and the rate of fall of the action potential. CAP prolonged the AP-duration, increased the membrane slope resistance, decreased the hyperpolarizing afterpotential and the posttetanic hyperpolarization both in normal and Na-free media. All the effects were reversible and could be evoked repeatedly. CAP attenuated the outward membrane currents with decreasing potency in the sequence of the transient potassium (IA) voltage-dependent potassium (IK), Ca-dependent potassium (IC) and leakage currents (IL). CAP decreased or increased the peak amplitude of the Ca-current (ICa), depending on the extracellular Ca concentration. CAP increased the inactivation of the ICa, decreased the Ca-conductance (GCa) in normal and high Ca solutions and shifted the Ca-equilibrium potential (VCa) to more positive voltage in 30 mM Ca-solution. CAP decreased the electrically activated Na-current and blocked the acetylcholine (ACh) activated increase in Na-K conductances. It is concluded that CAP profoundly affects the electrically and some transmitter-activated cationic conductances. Further studies are needed to clarify the significance of these changes with respect to the mechanism of the selective neurotoxic effects of CAP.  相似文献   

16.
The biotransformation of codeine to morphine was studied in isolated capsules of Papaver somniferum. Cofactors such as nicotinamide adenine dinucleotide, adenosine 5′-triphosphate, S-acetyl coenzyme A and pyridoxal phosphate were not required in the conversion of codeine to morphine. Reducing agents such as dithiothreitol, glutathione and β-mercaptoethanol strongly promoted codeine and morphine degradation, while morphine formation remained at a constant level. Hydrogen peroxide (concentration > 0.25 mM) caused the conversion of codeine and morphine to N-oxides by non-enzymatic oxidation. Isolated capsules of P. somniferum provide a method of studying the biotransformation of codeine to morphine.  相似文献   

17.
Morphine 6-dehydrogenase, which catalyzes the dehydrogenation of morphine to morphinone, has been purified about 440-fold from the soluble fraction of guinea pig liver with a yield of 38%. The purified enzyme was a homogeneous protein on polyacrylamide gel disc electrophoresis and isoelectric focusing. The molecular weight and isoelectric point of the enzyme were 29,000 and 7.6, respectively. The enzyme utilizes both NAD and NADP as a cofactor, and the Km values were 0.12 mM for NAD and 0.42 mM for NADP. The Vmax values for morphine were 588 milliunits/mg of protein (with NAD) and 1600 milliunits/mg of protein (with NADP). The Km values for morphine were 0.12 mM (with NAD) and 0.49 mM (with NADP). The enzyme also exhibited activity for morphine-related compounds: nalorphine, normorphine, codeine, and ethylmorphine; however, 7,8-saturated congeners such as dihydromorphine and dihydrocodeine were poor substrates. The enzyme was inactivated by removal of 2-mercaptoethanol from the enzyme solution. The inactivated enzyme was rapidly recovered by the addition of 2-mercaptoethanol. Phenylarsine oxide and CdCl2 (dithiol modifiers) inhibited competitively toward cofactor binding and noncompetitively toward morphine binding. These results suggest that the enzyme possesses the essential thiol groups, probably vicinal dithiol, at or near the cofactor-binding site. Using the partially purified enzyme, 8-(2-hydroxyethylthio)dihydromorphinone was isolated as the product and identified by UV, mass, and NMR spectra. It was confirmed that morphinone proposed as the dehydrogenation product was nonenzymatically and covalently bound to 2-mercaptoethanol. Accordingly, the isolated morphinone-2-mercaptoethanol conjugate must be formed by two steps: enzymatic production of morphinone from morphine and then nonenzymatic binding of 2-mercaptoethanol to morphinone.  相似文献   

18.
Tramadol is a centrally acting opioid analgesic structurally related to codeine and morphine. O-Alkyl, N-desmethyl, and non-phenol containing derivatives of tramadol were synthesized to probe their effect on metabolic stability and both in vitro and in vivo potency.  相似文献   

19.
In this study, histopathological and biochemical changes due to chronic usage of morphine or tramadol in liver and kidney were assessed in rats. Thirty male Wistar rats (180–220 g) were included and divided into three groups. Normal saline (1 ml) was given intraperitoneally as placebo in the control group (n = 10). Morphine group (n = 10) received morphine intraperitoneally at a dose of 4, 8, 10 mg/kg/day in the first, second and the third ten days of the study, respectively. Tramadol group (n = 10), received the drug intraperitoneally at doses of 20, 40 and 80 mg/kg/day in the first, second and the third ten days of the study, respectively. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), creatinin, blood urea nitrogen (BUN) and malondialdehyde (MDA) levels were measured in the serum. Liver and kidney specimens were evaluated by light microscopy. Serum ALT, AST, LDH, BUN and creatinin levels were significantly higher in morphine group compared to the control group. Serum LDH, BUN and creatinin levels were significantly increased in the morphine group compared to the tramadol group. The mean MDA level was significantly higher in morphine group compared to the tramadol and control groups (P<0.05). Light microscopy revealed severe centrolobular congestion and focal necrosis in the liver of morphine and tramadol groups, but perivenular necrosis was present only in the morphine group. The main histopathologic finding was vacuolization in tubular cells in morphine and tramadol groups. Our findings pointed out the risk of increased lipid peroxidation, hepatic and renal damage due to long term use of opioids, especially morphine. Although opioids are reported to be effective in pain management, their toxic effects should be kept in mind during chronic usage Presented at the 10th XX Annual ESRA Congress, 6–9 April 2002, Warsaw, Poland.  相似文献   

20.
The two forms of clathrin light chains (LCA and LCB) or clathrin-associated proteins (CAP1 and CAP2) have presented an immunochemical paradox. Biochemically similar, both possess two known functional parameters: binding the clathrin heavy chain and mediating the action of an uncoating ATPase. All previously reported anti-CAP mAbs, however, react specifically with only CAP1 (Brodsky, F. M., 1985, J. Cell Biol., 101:2047-2054; Kirchhausen, T., S. C. Harrison, P. Parham, and F. M. Brodsky, 1983, Proc. Natl. Acad. Sci. USA, 80:2481-2485). Four new anti-CAP mAbs are reported here: two, C-7H12 and C-6C1, react with both forms; two others, C-10B2 and C-4E5, react only with the lower form. Sandwich ELISAs indicated that C-10B2, C-4E5, C-6C1, and C-7H12 react with distinct epitopes. Monoclonal antibodies C-10B2 and C-4E5 immunoprecipitate clathrin-coated vesicles (CCVs) and react with CAP2 epitopes accessible to chymotrypsin on the vesicle. These mAbs inhibit phosphorylation of CAP2 by endogenous CCV casein kinase II. In contrast, C-6C1 and C-7H12 react with epitopes that are relatively insensitive to chymotrypsin. CAP peptide fragments containing these epitopes remain bound to reassembled cages or CCVs after digestion. Immunoprecipitation and ELISAs demonstrate that C-7H12 and C-6C1 react with unbound CAPs but not with CAPs bound to triskelions or CCVs. The data indicate that the CAPs consist of at least two discernible structural domains: a nonconserved, accessible domain that is relevant to the phosphorylation of CAP2 and a conserved, inaccessible domain that mediates the binding of CAPs to CCVs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号