首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
External NADH and succinate were oxidized at similar rates by soybean (Glycine max) cotyledon and leaf mitochondria when the cytochrome chain was operating, but the rate of NADH oxidation via the alternative oxidase was only half that of succinate. However, measurements of the redox poise of the endogenous quinone pool and reduction of added quinones revealed that external NADH reduced them to the same, or greater, extent than did succinate. A kinetic analysis of the relationship between alternative oxidase activity and the redox state of ubiquinone indicated that the degree of ubiquinone reduction during external NADH oxidation was sufficient to fully engage the alternative oxidase. Measurements of NADH oxidation in the presence of succinate showed that the two substrates competed for cytochrome chain activity but not for alternative oxidase activity. Both reduced Q-1 and duroquinone were readily oxidized by the cytochrome oxidase pathway but only slowly by the alternative oxidase pathway in soybean mitochondria. In mitochondria isolated from the thermogenic spadix of Philodendron selloum, on the other hand, quinol oxidation via the alternative oxidase was relatively rapid; in these mitochondria, external NADH was also oxidized readily by the alternative oxidase. Antibodies raised against alternative oxidase proteins from Sauromatum guttatum cross-reacted with proteins of similar molecular size from soybean mitochondria, indicating similarities between the two alternative oxidases. However, it appears that the organization of the respiratory chain in soybean is different, and we suggest that some segregation of electron transport chain components may exist in mitochondria from nonthermogenic plant tissues.  相似文献   

2.
Aging-related decrease in hepatic cytochrome oxidase of the Fischer 344 rat   总被引:1,自引:0,他引:1  
The effect of aging on the hepatic mitochondrial population has been determined using a rigorously defined group of Fischer 344 rats with known survivorship data. The age groups studied included mature adult controls (8.5 months; 100% survivorship), an intermediate aged group (17.5 months; 90% survivorship), and an aged group (29 months; 20% survivorship). Cytochrome oxidase activity and content were determined in homogenates and mitochondrial fractions. The mitochondrial fractions were characterized by determination of respiratory activity, and monoamine oxidase activity as well as evaluation of the polypeptide composition by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional electrophoresis. The yield of protein in the isolated mitochondrial fraction as well as the mitochondrial specific content decreased significantly as a function of aging. Mitochondrial specific content was determined from the specific activities of cytochrome oxidase in the homogenate (per gram liver) and in the isolated mitochondrial fraction (per mg protein). Specific activity of hepatic cytochrome oxidase decreased approximately 15% (P = 0.035) in homogenates from the 17.5-month animals with a further, highly significant (P = 0.0002) decrease (29%) in the 29-month animals. In contrast, there was no statistically significant difference among the age groups in the cytochrome oxidase specific activity in the isolated hepatic mitochondrial fractions. However, the percentage of the total homogenate cytochrome oxidase activity recovered in the isolated mitochondrial fraction decreased significantly in the 29-month animals (P = 0.0063 vs the 8.5-month controls; P = 0.022 vs the 17.5-month group). Cytochrome aa3 content of total liver homogenates from aged animals decreased (P = 0.00064) which is in agreement with the decline in cytochrome oxidase specific activity in this age group. In the mitochondrial fraction from the aged animals, cytochrome aa3 content was essentially unchanged which is consistent with the lack of aging-related change in mitochondrial cytochrome oxidase specific activity. In freshly isolated mitochondrial fractions, no aging-related alterations were observed in respiratory control and ADPO ratios. The addition of exogenous NADH and cytochrome c did not change significantly the respiratory rate of hepatic mitochondria from control or aged animals. These results demonstrate the integrity of freshly isolated mitochondrial preparations from both control and aged Fischer 344 rats. In addition, there was no aging-related alteration in either monoamine oxidase specific activity or polypeptide composition. The similarities observed in the specific activities of cytochrome oxidase and monoamine oxidase, as well as in the cytochrome aa3 content and polypeptide composition of the isolated mitochondrial fraction, suggest a generalized decrease in hepatic mitochondrial content as a function of aging rather than a selective loss of mitochondrial components.  相似文献   

3.
To counter antibiotic-resistant bacteria, we screened the Kitasato Institute for Life Sciences Chemical Library with bacterial quinol oxidase, which does not exist in the mitochondrial respiratory chain. We identified five prenylphenols, LL-Z1272β, γ, δ, ? and ζ, as new inhibitors for the Escherichia coli cytochrome bd. We found that these compounds also inhibited the E. coli bo-type ubiquinol oxidase and trypanosome alternative oxidase, although these three oxidases are structurally unrelated. LL-Z1272β and ? (dechlorinated derivatives) were more active against cytochrome bd while LL-Z1272γ, δ, and ζ (chlorinated derivatives) were potent inhibitors of cytochrome bo and trypanosome alternative oxidase. Thus prenylphenols are useful for the selective inhibition of quinol oxidases and for understanding the molecular mechanisms of respiratory quinol oxidases as a probe for the quinol oxidation site. Since quinol oxidases are absent from mammalian mitochondria, LL-Z1272β and δ, which are less toxic to human cells, could be used as lead compounds for development of novel chemotherapeutic agents against pathogenic bacteria and African trypanosomiasis.  相似文献   

4.
Studies are reported on the interrelationships in liver mitochondria of copper status, cytochrome oxidase activity, adenine nucleotide binding capacity and phospholipid synthesis. Direct exposure of mitochondria to cyanide or diethyldithiocarbamate depressed cytochrome oxidase activity; ADP-binding and phospholipid synthesis. Fractionation of mitochondria to increase the specific activity of cytochrome oxidase about 10-fold did not increase the affinity to bind ADP. Ageing of mitochondria or dialysis of mitochondria or mitochondrial membrane preparations against water or diethyldithiocarbamate at 0--2 degrees for 18 h did not decrease cytochrome oxidase activity or copper content of reisolated and resuspended mitochondria or mitochondrial membrane preparations, but considerably reduced the affinity to bind ADP. The respiratory inhibitors, fluoride and azide, at concentrations inhibitory to cytochrome oxidase did not reduce ADP-binding or phospholipid synthesis. Atractyloside did not inhibit cytochrome oxidase activity but did inhibit ADP-binding and phospholipid synthesis. Pre-incubation of mitochondrial membrane preparations with Cu++ increased the copper content and ADP-binding affinity. The results indicate that cytochrome oxidase is not the ADP-binding site of the mitochondrial membrane system and that reduced cytochrome oxidase activity per se does not depress binding affinity. Copper appears to be a component of the adenine nucleotide binding sites of mitochondrial membranes because the copper-complexing agents, cyanide and diethyldithiocarbamate, depressed ADP-binding, while increased mitochondrial membrane copper content increased ADP-binding.  相似文献   

5.
The effects of salicylic acid (SA) on the rate of respiration and the activity of cyanide-resistant sensitive to salicylhydroxamic acid oxidation pathway in detached etiolated cotyledons of yellow lupine (Lupinus luteus L.) and mitochondria isolated from these cotyledons were studied. Cotyledon treatment with 1 mM SA for 12 h increased the rate of oxygen uptake predominantly due to the activation of cyanide-resistant respiration (CRR) and alternative pathway of mitochondrial oxidation. It was established that the lupine genome encodes at least two isoforms of alternative oxidase (AO), LuAOX1 and LuAOX2, with the mol wt of about 35 kD. These proteins are always present in the mitochondria of etiolated lupine cotyledons, but their level increased rapidly after cotyledon treatment with SA, probably by increasing the mRNA content of the corresponding genes. SA-induced expression of Aox genes was correlated with the activation of CRR and an increase in the maximal activity (capacity) of AO in both detached yellow lupine cotyledons and mitochondria isolated from them.  相似文献   

6.
Calorie restriction (CR) enhances animal life span and prevents age-related diseases, including neurological decline. Recent evidence suggests that a mechanism involved in CR-induced life-span extension is NO?-stimulated mitochondrial biogenesis. We examine here the effects of CR on brain mitochondrial content. CR increased eNOS and nNOS and the content of mitochondrial proteins (cytochrome c oxidase, citrate synthase, and mitofusin) in the brain. Furthermore, we established an in vitro system to study the neurological effects of CR using serum extracted from animals on this diet. In cultured neurons, CR serum enhanced nNOS expression and increased levels of nitrite (a NO? product). CR serum also enhanced the levels of cytochrome c oxidase and increased citrate synthase activity and respiratory rates in neurons. CR serum effects were inhibited by L-NAME and mimicked by the NO? donor SNAP. Furthermore, both CR sera and SNAP were capable of improving neuronal survival. Overall, our results indicate that CR increases mitochondrial biogenesis in a NO?-mediated manner, resulting in enhanced reserve respiratory capacity and improved survival in neurons.  相似文献   

7.
Cox17 is a key mitochondrial copper chaperone involved in the assembly of cytochrome c oxidase (COX). The NMR solution structure of the oxidized apoCox17 isoform consists of a coiled-coil conformation stabilized by two disulfide bonds involving Cys(26)/Cys(57) and Cys(36)/Cys(47). This appears to be a conserved tertiary fold of a class of proteins, localized within the mitochondrial intermembrane space, that contain a twin Cys-x(9)-Cys sequence motif. An isomerization of one disulfide bond from Cys(26)/Cys(57) to Cys(24)/Cys(57) is required prior to Cu(I) binding to form the Cu(1)Cox17 complex. Upon further oxidation of the apo-protein, a form with three disulfide bonds is obtained. The reduction of all disulfide bonds provides a molten globule form that can convert to an additional conformer capable of binding up to four Cu(I) ions in a polycopper cluster. This form of the protein is oligomeric. These properties are framed within a complete model of mitochondrial import and COX assembly.  相似文献   

8.
Cytochrome bc1 complexes of microorganisms.   总被引:17,自引:2,他引:15       下载免费PDF全文
The cytochrome bc1 complex is the most widely occurring electron transfer complex capable of energy transduction. Cytochrome bc1 complexes are found in the plasma membranes of phylogenetically diverse photosynthetic and respiring bacteria, and in the inner mitochondrial membrane of all eucaryotic cells. In all of these species the bc1 complex transfers electrons from a low-potential quinol to a higher-potential c-type cytochrome and links this electron transfer to proton translocation. Most bacteria also possess alternative pathways of quinol oxidation capable of circumventing the bc1 complex, but these pathways generally lack the energy-transducing, protontranslocating activity of the bc1 complex. All cytochrome bc1 complexes contain three electron transfer proteins which contain four redox prosthetic groups. These are cytochrome b, which contains two b heme groups that differ in their optical and thermodynamic properties; cytochrome c1, which contains a covalently bound c-type heme; and a 2Fe-2S iron-sulfur protein. The mechanism which links proton translocation to electron transfer through these proteins is the proton motive Q cycle, and this mechanism appears to be universal to all bc1 complexes. Experimentation is currently focused on understanding selected structure-function relationships prerequisite for these redox proteins to participate in the Q-cycle mechanism. The cytochrome bc1 complexes of mitochondria differ from those of bacteria, in that the former contain six to eight supernumerary polypeptides, in addition to the three redox proteins common to bacteria and mitochondria. These extra polypeptides are encoded in the nucleus and do not contain redox prosthetic groups. The functions of the supernumerary polypeptides of the mitochondrial bc1 complexes are generally not known and are being actively explored by genetically manipulating these proteins in Saccharomyces cerevisiae.  相似文献   

9.
In order to further investigate the mechanism regulating the control of mitochondrial respiration by thyroid hormones, the effect of the hyperthyroidism on the kinetic characteristics of cytocrome c oxidase in rat heart mitochondria was studied. Mitochondrial preparations from both control and hyperthyroid rats had equivalent Km values for cytochrome c, while the maximal activity of cytochrome oxidase was significantly increased (by around 30%) in mitochondrial rats. This enhanced activity of cytochrome oxidase was associated to a parallel increases in mitochondrial State 3 respiration. The hormone treatment resulted in a decrease in the flux control coefficient of the oxidase. The enhanced activity of cytochrome oxidase in hyperthyroid rats does not appear to be dependent on an increases in the mass of this enzyme complex in that the heme aa3 content was equivalent in both hyperthyroid and control preparations. The Arrhenius plot characteristics differ for cytochrome oxidase activity in mitochondria from hyperthyroid rats as compared with control rats in the breakpoint of the biphasic plot is shifted to a lower temperature. Cardiolipin content was significantly increased in mitochondrial preparations from hyperthyroid rats, while there were no significant alterations in the fatty acid composition of cardiolipin of control and hyperthyroid preparations. The results support the conclusion that the enhanced cytochrome oxidase activity in heart mitochondrial preparations from hyperthyroid rats is due to a specific increase in the content of cardiolipin.  相似文献   

10.
The activity of mitochondrial cytochrome oxidase was investigated during the embryonic development of nucleocytoplasmic hybrids containing a nuclear genome derived from R. pipiens and a mitochondrial genome derived from R. palustris. Using a quantitative cytochemical approach, we found that the activity of cytochrome oxidase failed to increase during the development of these embryos. Control embryos containing a haploid chromosomal complement, derived from the same species as that from which the maternally inherited mitochondria is derived and hybrid crosses between R. palustris and R. pipiens, showed a significant increase in cytochrome oxidase activity during development. Oxygen uptake data from diploid and haploid R. pipiens embryos were in agreement with the data obtained by the cytochemical method. These results indicate that a normal pattern of cytochrome oxidase activity during embryonic development requires a nuclear genome which contains a haploid chromosomal complement derived from the same species as that from which the mitochondrial genome is derived.  相似文献   

11.
ATP influences the kinetics of electron transfer from cytochrome c to mitochondrial oxidase both in the membrane-embedded and detergent-solubilized forms of the enzyme. The most relevant effect is on the so-called "high affinity" binding site for cytochrome c which can be converted to "low affinity" by millimolar concentrations of ATP (Ferguson-Miller, S., Brautigan, D. L., and Margoliash, E. (1976) J. Biol. Chem. 251, 1104-1115). This phenomenon is characterized at the molecular level by the following features. ATP triggers a conformational change on the water-exposed surface of cytochrome c oxidase; in this process, carboxyl groups forming the cluster of negative charges responsible for binding cytochrome c change their accessibility to water-soluble protein modifier reagents; as a consequence the electrostatic field that controls the enzyme-substrate interaction is altered and cytochrome c appears to bind differently to oxidase; photolabeling experiments with the enzyme from bovine heart and other eukaryotic sources show that ATP cross-links specifically to the cytoplasmic subunits IV and VIII. Taken together, these data indicate that ATP can, at physiological concentration, bind to cytochrome c oxidase and induce an allosteric conformational change, thus affecting the interaction of the enzyme with cytochrome c. These findings raise the possibility that the oxidase activity may be influenced by the cell environment via cytoplasmic subunit-mediated interactions.  相似文献   

12.
13.
ABSTRACT. The glycerophosphate oxidase (GPO), the unique terminal oxidase of bloodstream trypanosome (TAO), appears to be functionally similar to the alternative oxidases of some plants and higher fungi. Immunoblotting of mitochondrial proteins of bloodstream trypomastigotes of Trypanosoma brucei brucei with monoclonal or polyclonal antibodies to Sauromatum guttatum (voodoo lily) and Symplocarpus foetidus (skunk cabbage) alternative oxidases respectively revealed two proteins of about 33 kDa (p33) and 68 kDa (p68). These proteins are not present in procyclic trypomastigotes. Electrophoresis under rigorous denaturing conditions indicated p68 to be the dimer of p33. Indirect immunofluorescent studies of bloodstream and procyclic trypomastigotes with monoclonal antibody to plant alternative oxidase also showed the localization of 33 kDa protein in the mitochondria of the bloodstream trypomastigotes. The functional TAO activity could be solubilized efficiently from the mitochondrial membrane of the bloodstream trypomastigotes by 1% NP-40 or 10 mM lauryl maltoside. When fractionated by Superose 12 gel filtration chromatography, p33 was co-purified with the TAO enzymatic activity. The apparent molecular size of the active enzyme complex was found to be 160 kDa. Gradual disappearance of the 33 kDa protein and the TAO enzymatic activity were well correlated during in vitro differentiation of the bloodstream to procyclic trypomastigotes. This study implies that the net biosynthesis of p33, an essential subunit of TAO, is decreased during differentiation from bloodstream to procyclic trypomastigotes.  相似文献   

14.
Interaction of cytochrome c with electron carriers in intact and damaged (with destroyed outer membrane) rat liver mitochondria was studied. It was shown that the increase in ionic strength causes changes in the respiration rate of damaged mitochondria due to the reduction of the cytochrome c affinity for its binding sites in the organelles. This suggests that cytochrome c concentration in the intermembrane space of intact mitochondria is increased by salts, whereas the increase in ionic strength has a slight influence on the rates of succinate oxidase and external rotenone-insensitive NADH-oxidase of intact mitochondria. At low ionic strength values, the Michaelis constant (KM) value of external NADH-oxidase for cytochrome c exceeds by one order of magnitude that for succinate oxidase, while the maximal activity of these two systems is nearly the same. The increase in ionic strength causes an increase in the KM value for both oxidases. Interaction of cytochrome c with mitochondrial proteins was modelled by cytochrome c interaction with cibacron-dextran anions. It was concluded that the ionic strength-sensitive electrostatic interactions play a decisive role in cytochrome c binding to electron carriers in mitochondrial membranes. However, cytochrome c content and its binding parameters in intact-mitochondrial membranes prevent the latent activity of external NADH oxidase to be revealed in intact mitochondria after the increase in the ionic strength of the surrounding medium.  相似文献   

15.
Under standard conditions, liver regeneration is not impaired if mitochondrial protein synthesis is completely blocked. By treating rats with oxytetracycline for various periods of time directly prior to partial hepatectomy, livers were led to a condition of relative deficiency in cytochrome c oxidase and ATP synthetase. To this end, oxytetracycline was administered by means of continuous intravenous infusion up to concentrations of 20 μg/ml serum, giving a gradual decrease in cytochrome c oxidase activity. This activity was used as a marker for functionally capable mitochondria and as a tool to monitor the efficiency of inhibition of mitochondrial protein synthesis. It is shown that liver regeneration is strongly impaired after a period of pretreatment of 22 days or more and continuation of oxytetracycline treatment during regeneration. The mitochondrial respiratory capacity is reduced to 14% of the control value under these conditions. To obtain inhibitory levels within the regenerating liver, it was necessary to raise the serum levels slightly above 20 μg/ml. This measure is most likely required because of the poor vascularization of the regenerating liver. The serum levels were kept, however, far below those known to inhibit cytoplasmic protein synthesis. The results show that in normal liver the respiratory capacity must be reduced drastically before energy-requiring processes become affected. In Zajdela hepatoma cells, similar effects are found after reduction of the cytochrome c oxidase activity to 38%. This difference in sensitivity is probably based on the different mitochondrial content of liver cells and the liver-derived Zajdela cells.  相似文献   

16.
Lukas Stiburek  Jiri Zeman 《BBA》2010,1797(6-7):1149-1158
Eukaryotic cytochrome c oxidase (CcO), the terminal enzyme of the energy-transducing mitochondrial electron transport chain is a hetero-oligomeric, heme–copper oxidase complex composed of both mitochondrially and nuclear-encoded subunits. It is embedded in the inner mitochondrial membrane where it couples the transfer of electrons from reduced cytochrome c to molecular oxygen with vectorial proton translocation across the membrane. The biogenesis of CcO is a complicated sequential process that requires numerous specific accessory proteins, so-called assembly factors, which include translational activators, translocases, molecular chaperones, copper metallochaperones and heme a biosynthetic enzymes. Besides these CcO-specific protein factors, the correct biogenesis of CcO requires an even greater number of proteins with much broader substrate specificities. Indeed, growing evidence indicates that mitochondrial ATP-dependent proteases might play an important role in CcO biogenesis. Out of the four identified energy-dependent mitochondrial proteases, three were shown to be directly involved in proteolysis of CcO subunits. In addition to their well-established protein-quality control function these oligomeric proteolytic complexes with chaperone-like activities may function as molecular chaperones promoting productive folding and assembly of subunit proteins. In this review, we summarize the current knowledge of the functional involvement of eukaryotic CcO-specific assembly factors and highlight the possible significance for CcO biogenesis of mitochondrial ATP-dependent proteases.  相似文献   

17.
The problem of whether isolated mitochondria are able to synthesize specific proteins was investigated, particular consideration being paid to the possible contribution of micro-organisms to this activity. With ox heart mitochondria it was shown that: (1) The medium used for the incubations inhibits the exponential phase of bacterial growth for at least 8h either in the absence or the presence of fresh mitochondria, but the inhibition disappears after 4h when mitochondria damaged by freezing and thawing are used. (2) The incorporation of [14C]leucine into total proteins is linear up to at least 8h, although part of the radioactivity at the later periods might be due to some incorporation by resting-phase bacteria. (3) A contamination by as little as 800 cells/mg of mitochondrial protein is enough to contribute substantially to the total radioactivity incorporated by the mitochondrial preparations. (4) Purified cytochrome b and cytochrome oxidase are labelled even under conditions of minimal contamination by micro-organisms (less than 60 cells/mg of mitochondrial protein) and the contribution of bacterial proteins to the radioactivity found in cytochromes is negligible, as shown by double-labelling experiments. (5) At 4h the specific radioactivities of cytochrome b and cytochrome oxidase are seven- and 16-fold lower respectively than that of a structural protein-rich fraction, suggesting that the labelling of cytochromes is due to a residual contamination by these proteins.  相似文献   

18.
The effects on the thermogenic activity of brown adipose tissue of caging mice singly or in groups of different sizes has been investigated. At 23 degrees C the total cytochrome oxidase activity and the level of mitochondrial GDP binding were higher in mice caged singly than in mice caged in groups of three or six. At 4 degrees C GDP binding and cytochrome oxidase activity were lower in mice caged in groups of two, three or six than in mice caged singly. The mitochondrial concentration of uncoupling protein was not clearly affected by the number of mice in each cage.  相似文献   

19.
Asahi T  Honda Y  Uritani I 《Plant physiology》1966,41(7):1179-1184
The acid-insoluble nitrogen content, lipid content, and cytochrome oxidase activity in the mitochondrial fraction are found to increase during incubation of slices of sweet potato (Ipomoea batatas) root tissue. These increases appear to be related to an increase in the number of the mitochondrial particles. The increase in the mitochondrial fraction is not accompanied by an increase in cell number. The nitrogen content in the mitochondrial fraction increases prior to the changes in the activity of cytochrome oxidase and lipid content. The increase in the numbers of the mitochondrial particles lags behind the increase in the cytochrome oxidase activity. Such findings are also found in the tissue infected by Ceratocystis fimbriata.  相似文献   

20.
Cell respiration is catalyzed by the heme-copper oxidase superfamily of enzymes, which comprises cytochrome c and ubiquinol oxidases. These membrane proteins utilize different electron donors through dissimilar access mechanisms. We report here the first structure of a ubiquinol oxidase, cytochrome bo3, from Escherichia coli. The overall structure of the enzyme is similar to those of cytochrome c oxidases; however, the membrane-spanning region of subunit I contains a cluster of polar residues exposed to the interior of the lipid bilayer that is not present in the cytochrome c oxidase. Mutagenesis studies on these residues strongly suggest that this region forms a quinone binding site. A sequence comparison of this region with known quinone binding sites in other membrane proteins shows remarkable similarities. In light of these findings we suggest specific roles for these polar residues in electron and proton transfer in ubiquinol oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号